第七章检测系统抗干扰技术.
- 格式:ppt
- 大小:610.50 KB
- 文档页数:87
测试技术中的抗干扰技术本文叙述了电子电器设备产生传导干扰、辐射干扰的几个主要因素:干扰源、干扰源传输通道、受干扰的测试仪器与设备,同时介绍了抑制干扰也需要从这几个方面着手的方法。
关键词:传导干扰、辐射干扰电子技术的高速发展已让世界进入了信息时代,电子技术的广泛应用使得应用的电子、电气设备也越来越多和越来越复杂,电磁环境越来越恶劣,大中功率的发射机对非相应通道的高灵敏度测试仪器设备构成了灾难性的干扰,使得测试仪器设备系统不能正常工作、性能降低甚至损坏。
这种干扰源来自外部,是有损于网络信号的一种电磁现象。
这种干扰的电磁能量通过某种媒体传输至测试仪表等敏感设备,而此设备又以某种形式表示“响应”,并产生干扰的“效果”,例如示波器图像失真、杂散信号粒子、图像对比度差以及几何图形弯曲等等,这个作用过程和结果,即称之电磁干扰效应。
显而易见,电磁干扰已是测试技术发展中必须跨越的巨大障碍。
为了保障测试技术设备的正常工作,我们必须研究分析电磁干扰,研究限制抑制各类干扰的技术手段,提高测试环境的抗干扰能力。
并对电子实验室的电磁测试环境进行合理的设计。
电磁干扰类别(一)——传导干扰这种干扰是沿着导体传播的,诸如导线、传输线、电感和电容元件等均是传导干扰的传输通道。
从干扰源观察:它有不带任何信息的噪声及带有信息的无用信号。
如电源开关接通的瞬间所产生的火花对一个敏感电路可能会产生干扰。
一个带信息的信号在其对应通道是有用的信号,如果它进入别的通道,虽带信息都是无用信号,可对其它仪器造成干扰。
所以说,任何一台电子设备都可能成为一个干扰信号源。
传导电磁干扰的路径我们称谓电磁干扰的传输通道。
就是将干扰源通过线路传输给的输入端,它在测试仪器仪表设备电路中产生相应的干扰电压和电流。
所以研究电磁干扰必须分析电磁干扰源和测试仪器仪表设备电路之间的传输路径问题。
传导干扰的抑制方法综上所述,形成传导干扰的原因是干扰源、传输通道、测试仪器仪表设备。
第7章 光外差检测系统光电直接检测的光强信号及光电探测器转换后的电信号通常情况下是直流量。
而直流漂移是形成误差的重要原因,信号处理及细分都比较困难。
光外差检测采用两束具有微小频率差的光产生干涉,产生的信号为交流电,不仅克服了上述光电直接检测的漂移问题,而且使细分变得更容易,显著提高了抗干扰性能。
光外差检测(Optical heterodyne detection )广泛应用于激光通信、干涉测长、测角、激光雷达和测速等当面。
光外差检测与光直接检测比较,其测量精度要高7-8个数量级。
它的灵敏度接近了量子噪声限,可以检测单个光子,进行光子计数。
使用外差技术的双频激光干涉仪早已实现商品化,大量用于长度、位移、速度等的超精密测量,相对测量精度可优于百万分之一。
使用外差检测通信技术的工作距离比直接检测远的多,在外层空间特别是卫星之间通信联系已达到实用阶段,能够做到上万公里的通信距离和1Gbps 以上的通信速率。
7.1 光外差检测原理光外差检测是将包含有被测信息的相干光调制波和作为基准的本机振荡光波在满足波前匹配的条件下,在光电探测器上进行光学混频(相乘)。
由于光电探测器的响应远远低于光波频率,其输出是频率为二光波的差频电信号。
这个输出信号包含有调制信号的振幅、频率和相位特征。
显然,外差检侧也是相干检测.与非相干检测的直接检测法相比,外差检测具有灵敏度高、输出信噪比高、精度高、探测目标的作用距高远等优点。
因而在精密测量中得到了广泛的应用。
如图7-1所示,考虑频率为νM 和νL 两束互相平行的平面光,其空间任意点P 的电分量分别表示为:)2cos()(M M M M t a t E ϕπν+= (7.1) 和)2cos()(L L L L t a t E ϕπν+= (7.2)图7-1外差检测原理示意图其中,a M 和a L 分别表示两光束的振幅,φM 和φL 分别表示两光束在P 点的相位。
则两光束相叠加所得到的光强为:)2cos()2cos(2)2(cos )2(cos )]()([)(22222L L L M M M L L L M M M L M t a t a t a t a t E t E t I ϕπνϕπνϕπνϕπν++++++=+= (7.3)使用三角函数对上述表达式进行变换可得:)]()(2cos[)]()(2cos[)]24cos()24cos([2/12/2/)(2222L M L M L M L M L M L M L L L M M M L M t a a t a a t a t a a a t I ϕϕννπϕϕννπϕπνϕπν-+-++++++++++= (7.4) 上式共分5项,其中前两项组成了光强的直流部分,我们注意到第3项和第4项的频率在光频量级(1014Hz ),现有的光探测器都无法达到这么高的响应速度(通常在1010Hz 以下),故这两项不对探测器产生影响,而最后一项为光强信号的交流部分,其信号振幅为a M a L ,频率νM - νL 为两束相干光的频率差,也叫拍频。