第六章 控制系统的抗干扰技术
- 格式:ppt
- 大小:353.50 KB
- 文档页数:39
工业自动化控制系统的抗干扰技术分析
工业自动化控制系统中,抗干扰技术是保障系统稳定运行和提高控制质量的重要手段。
本文将从信号干扰抑制、电磁干扰抗干扰技术和物理层抗干扰技术三个方面进行分析。
第一,信号干扰抑制。
在工业自动化控制系统中,常常会受到来自环境、设备和电源
等方面的各种信号干扰,如电压干扰、电流干扰、电磁辐射干扰等。
为了有效抑制这些信
号干扰,可以采取以下措施:
1. 信号选择技术:在工业自动化控制系统设计中,选择合适的信号类型和传输介质,可以减少信号干扰的影响。
2. 增加信号强度:可以通过增加信号的强度来提高干扰抑制能力,比如使用带动态
范围大的传感器和执行器。
3. 信号滤波技术:通过滤波器对信号进行滤波处理,可以滤除干扰信号中的高频成分,减小对控制系统的影响。
1. 地线布置技术:合理布置地线,减少地线电压降,降低电源干扰。
2. 屏蔽技术:在信号线、电源线和设备外壳上加装屏蔽层,减少电磁辐射的影响。
3. 滤波技术:采用电源滤波器、模拟信号滤波器、数字信号滤波器等,可以滤除电
源干扰和高频干扰。
物理层抗干扰技术。
物理层抗干扰技术主要是指通过工程设计手段,减少外界干扰对
系统的影响。
1. 电磁兼容性设计:在工业自动化系统设计中,注重电磁兼容性设计,可以减少外
界干扰对系统的影响。
2. 设备间隔离:对于容易受到干扰的设备,可以通过间隔隔离的方式,减少相互干扰。
3. 使用抗干扰设备:选择具有良好抗干扰性能的设备,能够有效降低外界干扰对系
统的影响。
工业自动化控制系统的抗干扰技术分析【摘要】工业自动化控制系统在现代工业生产中起着重要作用,但受到各种干扰的影响。
本文从抗干扰技术的重要性入手,分析了常见的干扰源及抗干扰技术的分类。
在硬件层面上,采用隔离、滤波等技术可以有效抑制干扰;在软件层面上,采用信号处理、滤波算法可以提高系统稳定性。
文章探讨了工业自动化控制系统抗干扰技术的发展趋势,应用意义和未来发展方向。
通过对抗干扰技术的研究,可以提高工业自动化系统的可靠性和稳定性,推动工业生产效率的提升。
【关键词】工业自动化控制系统、抗干扰技术、重要性、干扰源、分类、硬件、软件、发展、趋势、应用意义、展望、未来、技术、控制系统、自动化、抗干扰、发展方向1. 引言1.1 工业自动化控制系统的抗干扰技术分析如今,工业自动化控制系统在生产过程中起着至关重要的作用,可以实现生产过程的自动化、智能化和高效化。
随着工业环境的复杂性和干扰源的增多,控制系统面临着越来越严重的干扰问题。
干扰会导致系统失效、数据错误、生产质量下降甚至安全事故发生,因此抗干扰技术对工业自动化控制系统的稳定运行至关重要。
本文将对工业自动化控制系统的抗干扰技术进行深入分析,探讨其重要性、常见的干扰源、抗干扰技术的分类以及硬件和软件层面的具体应用。
将对工业自动化控制系统抗干扰技术的发展趋势进行展望,探讨其在实际应用中的意义以及未来的发展方向。
通过本文的介绍和分析,希望能够增进对工业自动化控制系统抗干扰技术的理解,为实际工程应用提供参考和借鉴。
2. 正文2.1 抗干扰技术的重要性抗干扰技术的重要性在工业自动化控制系统中是至关重要的。
因为现代工业环境中存在着各种各样的干扰源,如电磁干扰、振动干扰、温度变化等,这些干扰源会导致控制系统的误动作或不稳定性,严重影响生产效率和产品质量。
提高抗干扰能力可以有效保障工业自动化系统的正常运行。
抗干扰技术可以提高系统的稳定性和可靠性。
通过采用合适的抗干扰技术,可以有效减少干扰对系统的影响,保证系统平稳运行,减少故障率,提高系统的可靠性。
控制系统中的抗干扰技术随着微电子技术的高速发展和电路集成化程度的提高,单位面积内大规模集成芯片元器件数越来越多,所传递的信号电流也越来越小,系统的供电电压也越来越低,现已降到5V、3V乃至1.8V。
因此,芯片对外界的干扰也越趋敏感,所以显示出来的抗干扰能力也就越来越低。
想要提高控制系统的抗干扰能力,我们除了在设计控制系统本体的时候提髙其抗千扰能力之外更重要的是如何提高控制系统在工程应用时的抗干扰技术,例如对噪声的产生以及噪声在传播途径中加以有效的抑制等等。
1电缆的静电屏蔽和电磁屏蔽在控制系统中线缆非常重要因为它在控制系统中最长,容易通过近场的耦合干扰控制系统,并且它还像一根拾取和辐射噪声的天线。
所以用屏蔽来抑制线缆的静电感应和电磁感应是抗干扰的方法之一。
1.1电容性耦合的抑制静电屏蔽:当受感应导线的外层包上屏蔽层以后那么感应的噪声电压便作用在屏蔽层上,我们在为屏蔽层提供一个良好的接地那么屏蔽层上的电压为零所以受感应导体上的噪声电扭也为零,所以有效的抑制了电场的耦合。
所以我们在工业现场无论是电源电缆或是信号电缆都应采用屏蔽电缆。
1.2电感性耦合的抑制电感性耦合即为线路间磁场的相互作用。
在这里我们主要谈谈采用电磁屏蔽,包括双绞电缆和同轴电缆的使用。
(1)对作为噪声源的导线施行电磁屏蔽如果我们对一段导线增加屏蔽那么电流流过后,全部通过导体的屏蔽体返回到干扰源。
由于流过屏蔽体上的电流产生磁通量,且与导体产生的磁通量大小相等方向相反,这样在屏蔽体的外面,不存在磁通量,既这段导线被屏蔽了。
但是在低频时不宜两端接地。
(2)对作为信号线路施行电磁屏蔽。
信号线路防外界磁场干扰的最好方法是减少接收环路的面积以减少干扰磁场对接收环路产生的磁通量密度。
对于减少接收环路面积只有加屏蔽体两端接地才可以做到,才有电磁屏蔽作用,但是这种情况下电流的频率不宜太低。
(3)双绞的电磁屏蔽原理及应用。
双绞线本身是一种电磁屏蔽形式。
对作为噪声源的导线实施电磁屏蔽的原理图。
工业自动化控制系统的抗干扰技术分析
工业自动化控制系统是指利用计算机和现代控制技术对工业生产过程进行全面、快速、准确的监控和控制,从而提高生产效率和质量的自动化系统。
工业控制系统受到外部干扰
的影响,如电磁干扰、噪声干扰、温度变化、震动等,这些干扰会导致控制系统正常运行
的困难,因此需要采取一些抗干扰的技术手段来保证系统的稳定性和可靠性。
一、电磁干扰抗干扰技术
1.屏蔽技术:利用屏蔽材料对关键部件进行屏蔽,以防止外界电磁干扰的进入。
对于
电缆等传输线路,采用屏蔽电缆进行布置。
2.滤波技术:通过滤波器对输入信号进行滤波处理,滤除高频噪声,以减小对控制器
的干扰。
3.接地技术:合理的系统接地可以减小电磁干扰的影响。
通过增加接地电阻、加强地
线连接等手段来提高系统的抗干扰能力。
1.信号调理技术:通过信号调理器对输入信号进行放大、滤波、去噪等处理,以提高
信号的质量和稳定性。
2.差分输入技术:对于传输线路较长的情况,可以采用差分输入的方式,以减小噪声
的干扰。
三、温度变化抗干扰技术
1.温度补偿技术:对于受温度影响较大的传感器和执行器,可以采用温度补偿技术,
通过对温度进行实时监测和补偿来提高系统的精度和稳定性。
2.热控技术:对于温度敏感的元件,可以采用热控技术来控制其工作温度,以提高系
统的稳定性和可靠性。
四、震动抗干扰技术
1.机械减振技术:通过在机械结构中加入减振装置来减小震动对系统的影响。
2.信号处理技术:对于受到震动干扰的信号,可以采用信号处理技术对其进行滤波和
修复,提高系统的稳定性。
第六章计算机控制系统的抗干扰技术6.1 工业现场的干扰及对系统的影响在对生产过程的计算机控制过程当中,常常会因为各种各样的干扰导致控制不准确或失常。
很多从事计算机控制的人员都会有这样的经历,当他把经过千辛万苦安装和调试好的样机投入工业现场进行运行时,却不能够正常工作。
为什么在实验室调试时就很好,到了现场就不行呢,原因就是在生产现场的工业环境中有强大的干扰,微机系统如果没有采取抗干扰措施,或者措施不力。
(当然,还有其它原因,比如设计本身的不完善导致出错,或者在运输安装过程中对设备有所损坏,接线不正确等,但这类原因可以比较容易发现并迅速改正。
)因此,抗干扰技术对于计算机控制系统来讲是非常重要的。
所谓干扰,就是有用信号以外的噪声或造成计算机设备不能正常工作的破坏因素。
在生产过程中,人们不断的积累各种抗干扰技术,可以分为硬件措施和软件措施。
一个成功的抗干扰系统是硬件和软件相结合构成的。
硬件抗干扰效率高,但要增加系统的投资和设备;软件抗干扰投资低,以CPU的开销为代价的,影响到系统的工作效率和实时性。
6.1.1 干扰的来源微机控制系统所受到的干扰源分为外部干扰和内部干扰。
1 外部干扰外部干扰指那些与系统结构无关,而是由外界环境因素决定的,主要是空间电与磁的影响,环境温度,湿度等气象条件也是外来干扰。
外部干扰的主要来源有:电源电网的波动、大型用电设备(如天车、电炉、大电机、电焊机等)的启停、高压设备和电磁开关的电磁辐射、传输电缆的共模干扰等。
2 内部干扰内部干扰则是由系统结构,制造工艺等决定的。
内部干扰主要有:系统的软件干扰、分布电容或分布电感产生的干扰、多点接地造成的电位差给系统带来的影响等。
长线传输的波反射,多点接地的电位差,元器件产生的噪声也属于内部干扰。
6.1.2 干扰的作用途径1 传导耦合干扰由导线进入电路中称为传导耦合。
电源线、输入输出信号线都是干扰经常窜入的途径。
6.1.3 干扰的作用形式各种干扰信号通过不同的耦合方式进入系统后,按照对系统的作用形式又可分为共模干扰和串模干扰。
工业自动化控制系统的抗干扰技术分析工业自动化控制系统的抗干扰技术是指采用各种方法和措施,来消除或抑制在系统中出现的各种外来干扰,确保系统的可靠性、稳定性和正确性。
随着工业自动化控制系统的应用越来越广泛,对抗干扰技术的要求也越来越高。
在工业自动化控制系统中,主要的外来干扰包括电磁干扰、电力干扰、地线干扰、热干扰等。
下面介绍几种主要的抗干扰技术。
1. 屏蔽技术屏蔽技术是通过在电气设备的内部或外部包覆屏蔽材料,来防止电磁波向设备传递,从而达到抑制干扰的目的。
屏蔽技术的优点是结构简单、易于实现,但其缺点是耗费的成本较高,生产周期较长。
2. 线路设计正确的线路设计能够显著地降低外部干扰对系统的影响。
对于电源线、信号线、地线的设计,需要充分考虑其长度、布局位置以及电器元件的受电量。
例如,在连接耦合器时,最好将信号和电源线相分离,并采取盐稳压、滤波等措施,以保证干净的电源线。
3. 综合降噪技术综合降噪技术包括软件和硬件两种方式。
在软件方面,可以通过编写程序对采样数据进行处理以降低噪声,还可利用滤波技术进行降噪。
在硬件方面,可以采用例行的电气清洗和维护,以保障系统的正常运行。
4. 外部配套设备防护工业自动化控制系统中的外部配套设备, 如变频器等, 也经常会出现影响系统正常工作的干扰, 因此需要采取防护措施, 确保其正常工作。
常见的方法包括: 在配套设备关键部分的电路上添加RC滤波器, 使用交流滤波器和电源滤波器等。
总结:上述抗干扰技术不仅可以降低电器元件被外部干扰的风险, 还能大大提高设备的可靠性和性能。
因此, 工业自动化控制系统中必须要考虑到抗干扰技术的应用, 以增强其稳定性和可靠性。
第六章 计算机控制系统抗干扰技术、 §1.干扰的来源和传播途径一、干扰的来源和干扰的分类计算机控制系统的干扰来源可分为:外部干扰:指那些与系统结构无关,由外部环境因素所决定的。
内部干扰:指那些由系统结构、制造工艺所决定的干扰。
计算机控制系统按干扰的作用方式可分为:串模干扰:指叠加在被测信号上的干扰噪声。
共模干扰:指模/数转换器两个输入端上公有的干扰电压。
1、串模干扰及其抑制方法串模干扰是叠加在被测信号上的干扰信号,也称横向干扰或正态干扰。
如图。
串模干扰的表现形式可用这样一个电路来解释:如图:抑制串模干扰的方法: 1)加输入滤波器。
2)采用带屏蔽层的双绞线或同轴电缆连接一次仪表和转换设备,再屏蔽层良好接地,就可避免干扰从传输导线窜入检测回路。
3)利用器件特性克服干扰。
提高阈值电平可抑制低噪声干扰;采用低速逻辑器件或加电容器降低速度,可以抑制高频干扰。
4)采用数字滤波技术。
采用平均值法、中值法、一阶滤波法等算法。
2、共模干扰及其抑制方法共模干扰是指同时加到计算机控制系统两个输入端上的公有的干扰电压。
如图。
1)采用共模抑制比高的、双端输入运算放大器。
2) 采用光耦合器或变压器隔离,如图。
3)采用隔离放大器。
利用隔离放大器完成对测量的信号的放大及模拟信号与传输通道的隔离。
I/O接口和通道还应采取下述几种措施:1)尽量缩短信号线的长度。
2)不用的输入端子不能悬空,必须通过负载电阻接到电源线上。
3)为防止电磁感应,信号线应采用屏蔽线。
除此之外还应考虑:电源与供电系统,系统的接地等,这些方面都要采取抗干扰措施,才能更好的提高系统的可靠性。
自动化系统所使用的各种类型PLC 中,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。
要提高PLC 控制系统可靠性,一方面要求PLC 生产厂家提高设备的抗干扰能力,另一方面要求应用部门在工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。
电气控制系统的抗干扰技术措施电气控制系统的抗干扰技术措施主要是为了保证系统的稳定性和可靠性,减少外部干扰对系统的影响。
在电气控制系统中,常见的干扰源包括电磁干扰、电压浪涌、电网电压波动、噪声等。
下面将对电气控制系统的抗干扰技术措施进行详细介绍。
首先,针对电磁干扰,可以采取以下技术措施:1.电磁兼容性(EMC)设计:在系统设计的早期阶段,应考虑到电磁兼容性,合理布局电气设备,减少电气设备之间的相互干扰。
2.地线设计:合理设计地线系统,将设备的金属壳体接地,形成完善的地网,以减少电磁辐射。
3.屏蔽设计:对于特别敏感的设备,可以采用屏蔽措施,如金属屏蔽盒,减少外界电磁场对设备的干扰。
4.滤波器设计:在电源输入端加装滤波器,可以将高频噪声滤除,减小对系统的影响。
其次,对于电压浪涌和电网电压波动引起的干扰,可以采取以下技术措施:1.过压保护器:在电源输入端安装过压保护器,当电压超过设定值时,自动切断电源,以保护系统设备。
2.电容器滤波器:在电源线上并联安装电容器滤波器,能够阻抗电网电压变化的高频干扰。
3.稳压器:通过电压稳定器,将电源的输出保持在一个稳定的范围内,避免电网电压波动对系统的影响。
此外,针对噪声引起的干扰,可以采取以下技术措施:1.屏蔽技术:对于特别敏感的电气设备,可以采用金属屏蔽技术,将设备屏蔽起来,减少噪声的干扰。
2.滤波器:在信号输入端设置滤波器,能够将高频噪声滤除,保证输入信号的准确性。
3.悬空引线:对于特别敏感的信号线,可以使用悬空引线的技术,将信号线与其他线路分开,减少噪声的传导。
另外,还有一些通用的技术措施1.输入电源隔离:使用隔离变压器或光电隔离器,将输入电源与外部干扰隔离开来,减少外来干扰的传导。
2.过滤器:在信号线上使用低通滤波器、带通滤波器或高通滤波器,以根据实际需求滤除特定频段的干扰信号。
3.增加缓冲区:通过增加缓冲区,可以减小外部干扰对系统的影响,并提高系统的稳定性。
关于工业自动化控制系统的抗干扰技术CATALOGUE目录•工业自动化控制系统概述•干扰源及对工业自动化控制系统的影响•抗干扰技术原理及方法•抗干扰技术在工业自动化控制系统中的应用案例•抗干扰技术的发展趋势及展望CHAPTER工业自动化控制系统概述定义作用工业自动化控制系统的定义与作用组成工业自动化控制系统主要由传感器、执行器、控制器、通信网络和人机交互界面等组成。
原理通过传感器实时采集生产过程中的各种参数,经控制器分析处理后,输出控制信号驱动执行器操作,实现生产过程的自动控制。
同时,人机交互界面提供操作与监控功能,通信网络负责各组成部分之间的信息传递。
工业自动化控制系统的组成与原理工业自动化控制系统的应用领域010*******CHAPTER干扰源及对工业自动化控制系统的影响电磁干扰源温差干扰源光电干扰源化学干扰源干扰源的种类控制系统失灵设备损坏生产效率下降030201干扰对工业自动化控制系统的影响传导干扰辐射干扰耦合干扰干扰的传播途径CHAPTER抗干扰技术原理及方法信号传输保护系统抗干扰能力提高噪声源控制抗干扰技术原理抗干扰的基本方法01020304电磁屏蔽滤波技术接地技术软件抗干扰措施衡量抗干扰技术对干扰信号的抑制能力,通常以分贝(dB)为单位表示。
干扰抑制比误差率稳定性兼容性抗干扰技术应用后,系统输出与理论值之间的误差比例。
低误差率表明抗干扰效果较好。
评估抗干扰技术在长时间运行过程中的稳定性,包括系统性能波动、漂移等指标。
衡量抗干扰技术与其他系统、设备之间的兼容程度,确保系统整体运行的稳定性和可靠性。
抗干扰技术的评估指标CHAPTER抗干扰技术在工业自动化控制系统中的应用案例案例一:电磁屏蔽技术在DCS系统中的应用电磁屏蔽技术能够有效降低DCS系统的电磁干扰。
描述:在分布式控制系统(DCS)中,电磁屏蔽技术被广泛应用于防止电磁干扰。
通过采用导电材料对DCS系统关键部件进行屏蔽,可以显著减少外部电磁场对系统性能的影响。