计算机控制系统中的抗干扰技术
- 格式:doc
- 大小:41.00 KB
- 文档页数:3
一、填空1.经常采用的软件抗干扰技术包括:数字滤波技术、数字信号的软件抗干扰技术、指令冗余技术、软件陷阱技术等。
2.采用积分式A/D转换器是抑制串模干扰的方法之一。
3.采用差分放大器作为信号前置放大是抑制串模干扰的方法之一。
4.通常把叠加在被测信号上的干扰信号称为串模干扰。
5.计算机控制系统中,按干扰的作用方式,可分为串模干扰和共模干扰两种,而数字滤波只能抑制串模干扰。
6.采用双绞线作信号引线是为了抑制串模干扰,采用终端匹配是为了抑制长线传输干扰。
二、选择题1、下列抗干扰措施中属于软件抗干扰技术的有(B、E、F),属于硬件抗干扰技术的有(A、C、D)。
A.采用双积分A/D转换器B.采用中位值滤波C.采用光耦滤波D.采用LC滤波E.采用限幅滤波F.重复书写指令G.串行通讯方式三、判断1.下图所示干扰源为共模干扰。
错,串模。
2.如果串模干扰频率比被测信号频率高,则采用输入低通滤波器来抑制高频率串模干扰。
对3.如果串模干扰频率比被测信号频率低,则采用高通滤波器来抑制低频串模干扰。
对4.对于串模干扰主要来自电磁感应的情况下,对被测信号应尽可能早地进行前置放大,从而达到提高回路中的信号噪声比的目的。
对5.下图所示干扰源为共模干扰。
对6.所谓软件陷阱,就是一条引导指令,强行将扑获的程序引向一个指定的地址,在那里有一段专门对程序出错进行处理的程序。
对7.所谓指令冗余,就是在关键地方人为插入一些单字节指令,或将有效单字节指令重复书写,提高弹飞程序纳入正轨的机会。
对四、简答1.干扰的作用途径是什么?答:(1) 静电耦合 (2) 磁场耦合 (3) 公共阻抗耦合2.什么是共模干扰和串模干扰?如何抑制?答:共模干扰:是指系统的两个信号输入端上所共有的干扰电压,也称为共态干扰。
共模干扰主要是由电源的地、放大器的地以及信号源的地之间的传输线上电压降造成得。
抑制共模干扰的方法:变压器隔离;光电隔离;浮地屏蔽等。
串模干扰:指叠加在被测信号上的干扰噪声,它串联在信号源回路中,与被测信号相加输入系统,也称为常态干扰。
计算机控制系统抑制干扰的技术分析
计算机控制系统是由计算机硬件和软件组成的,用于控制和监测各种工业应用。
在实
际应用中,计算机控制系统常常面临各种干扰,如电磁干扰、噪声干扰等,这些干扰可能
会对系统的稳定性和性能产生负面影响。
抑制干扰是计算机控制系统设计中一个重要的技
术问题。
抑制干扰的技术分析主要包括以下几个方面:
1. 信号传输线路的设计:计算机控制系统中的信号传输线路需要考虑干扰抑制的技
术措施。
在设计电缆布线时要避免和干扰源靠近,采用屏蔽线缆以阻断外界干扰,对于长
距离传输的信号需要采用差分信号传输来提高抗干扰能力。
2. 电磁干扰的抑制:电磁干扰是计算机控制系统中常见的一种干扰源。
为了抑制电
磁干扰,可以采用物理屏蔽措施,如在敏感设备周围设置屏蔽罩,减少外界电磁场对系统
的干扰;也可以采用滤波技术,通过滤波器对输入信号进行滤波,去除掉不需要的高频成分。
4. 地线设计:地线是计算机控制系统中常用的抗干扰措施之一。
合理的地线设计可
以有效地减少系统受到的干扰。
在设计中,可以采用单点接地原则,将各个设备的地线连
接到一个共同的地点,减少地线回路的面积。
还可以采用分立地线设计,将高频和低频信
号的地线分开,减少信号间的相互干扰。
计算机控制系统抑制干扰的技术分析主要包括信号传输线路的设计、电磁干扰的抑制、噪声干扰的抑制和地线设计等方面。
通过合理的设计和抑制措施,可以有效地减少干扰对
计算机控制系统的影响,提高系统的稳定性和性能。
第一讲1、什么是计算机数字控制系统?一般由哪几部分组成?请用框图形式给出实例,并简单说明其工作原理。
计算机控制系统就是利用计算机(通常称为工业控制机)来实现生产过程自动控制的系统;一般由计算机和生产过程两部分组成;计算机控制系统由工业控制计算机主体(包括硬件、软件与网格结构)和生产过程两大部分组长。
其中硬件系统有主机、输入输出通道、外部设备、检测与执行机构组成;三个步骤原理:①实时数据采集:对来自测量变送装置的被控量的瞬时值进行检测和输入。
②实时控制决策:对采集到的被控量进行分析和处理,并按已定的控制规律,决定将要采取的控制行为。
③实时控制输出:根据控制决策,适时地对执行机构发出控制信号,完成控制任务。
2、实时、在线方式、离线方式的含义是什么?实时:指信号的输入、计算和输出都要在一定的时间范围内完成,亦即计算机对输入信息,以足够快的速度进行控制,超出了这个时间,就失去了控制的时机,控制也就失去了意义。
在线方式:在线方式亦称为联机方式,是指生产过程和计算机直接连接,并受计算机控制的方式称为。
离线方式:离线方式亦称为脱机方式,是指生产过程不和计算机相连,且不受计算机控制,而是靠人进行联系并做相应操作的方式。
3、简述计算机数字控制系统的发展趋势。
计算机数值控制系统的发展趋势有控制系统的网络化、扁平化、只能化、综合化。
第二讲1、简述计算机控制系统中过程通道的基本类型及其作用。
数字量输入通道:接受外部装置或产生过程的状态信号,同时将状态信号经转换、保护、滤波、隔离等措施转换成计算机能够接收的逻辑信号;数字量输出通道:把计算机输出的微弱数字信号转换成能对生产过程进行控制的数字驱动信号;模拟量输入通道:把被控对象的过程参数如温度、压力、流量、液位重量等模拟信号转换成计算机可以接收的数字量信号;模拟量输出通道:把计算机处理后的数字量信号转换成模拟量电压或电流信号,去驱动相应的执行器,从而达到控制的目的。
2、简述计算机控制系统抗干扰技术的基本措施。
第 9 章计算机控制系统中的抗干扰技术
由于工业现场的工作环境往往十分恶劣,计算机控制系统不可避免地受到各种各样的干扰。
这些干扰可能会影响到测控系统的精度,使系统的性能指标下降,降低系统的可靠性,甚至导致系统运行混乱或故障,进而造成生产事故。
干扰可能来自外部,也可能来自内部;它可通过不同的途径作用于控制系统,且其作用程度及引起的后果与干扰的性质及干扰的强度等因素有关。
干扰是客观存在的,研究抗干扰技术就是要分清干扰的来源,探索抑制或消除干扰的措施,以提高计算机控制系统的可靠性和稳定性。
本章首先介绍干扰的种类及传播途径,然后根据硬件和软件抗干扰措施的不同,分别加以论述。
9.1 干扰的传播途径与作用方式
干扰是指有用信号以外的噪声或造成计算机设备不能正常工作的破坏因素。
产生干扰信号的原因称为干扰源。
干扰源通过传播途径影响的器件或系统称为干扰对象。
干扰源、传播途径及干扰对象构成了干扰系统的三个要素。
抗干扰技术就是通过对这三要素中的一个或多个采取必要措施来实现的。
为了有效地抑制和消除干扰,首先需要分清干扰的来源、传播途径,以及干扰的作用方式。
9.1.1 干扰的来源
计算机控制系统中干扰的来源是多方面的,有时甚至错综复杂。
总体上,按照来源,干扰可分为外部干扰和内部干扰。
外部干扰与系统所在环境和使用条件有关,与系统内部结构无关。
内部干扰则由系统结构布局、制造工艺引入。
1. 外部干扰
外部干扰与系统结构无关,是由使用条件和外部环境因素决定的。
外部干扰主要有:天电干扰,如雷电或大气电离作用引起的干扰电波;天体干扰,如太阳或其他星球辐射的电磁波;周围电气设备发出的电磁波干扰;电源的工频干扰;气象条件引起的干扰,如温度、湿度;地磁场干扰;火花放电、弧光放电、辉光放电等产生的电磁波等。
2. 内部干扰
内部干扰是由系统的结构布局、线路设计、元器件性质变化和漂移等原因造成的,主要有:分布电容、分布电感引起的耦合感应;电磁场辐射感应;长线传输的波反射;多点接地造成的电位差引入的干扰;寄生振荡引起的干扰以及热噪声、闪变噪声、尖峰噪声等。
3. 电场耦合
电场耦合,又称静电耦合,是通过电容耦合窜入其他线路的。
这些分布电容的存在,可以对频率为ω的干扰信号提供1/jωC的电抗通道,电场干扰就可以由该通道窜入系统,形成干扰。
4. 磁场耦合
在设备内部,线圈或变压器的漏磁也会引起干扰;在设备外部,平行架设的两根导线也会产生干扰,如图9.3所示。
其中,ω为感应磁场交变角频率,M为两根导线之间的互感,I1为导线1中的电流。
另外,长线干扰具有天线效应,即能够辐射干扰波和接收干扰波。
例如,在大功率的广播电台周围,当垂直极化波的电场强度为100mv/m时,长度为10cm的垂直导体可以产生5mv的感应电动势,这也是一个不小的数字。
5. 公共阻抗耦合
在计算机控制系统中,普遍存在公共耦合阻抗,例如,电源引线、印刷电路板上的地和公共电源线、汇流排等。
同时,各汇流条之间具有电容,数字脉冲可以通过这个电容耦合过来。
6. 差模干扰
它串联在信号源回路中,与被测信号相加输入系统,如图9.6(a)所示,图中Us为被测信号电压,Un为干扰信号电压。
采用开关电源、DC-DC变换器以及UPS供电等,来提高电源的稳定性。
计算机控制系统在工业现场运行时,其所受干扰的来源是多方面的,除电网电压的过压、欠压以及浪涌以外,对系统危害最严重的首推电网的尖峰脉冲干扰,这种干扰常使计算机程序“跑飞”或“死机”。
另外,使系统远离干扰源,对大功率用电设备采取专门措施抑制尖峰干扰的产生等都是较为可行的方法。
7. 掉电保护
为此,计算机系统应加装UPS(不间断电源),或增加电源电压监视电路,及早监测到掉电状态,从而进行应急处理。
对于没有使用UPS的计算机控制系统,为了防止掉电后RAM 中的信息丢失,经常采用镍电池对RAM进行数据保护。
当CPU受到干扰不能按正常状态执行程序时,就会引起计算机控制的混乱,所以需要采取措施,使CPU在受到干扰的情况下,尽可能无扰地恢复系统正常工作。
下面是几种常见的针对CPU的抗干扰措施。
对于失控的CPU,最简单的方法是使其复位,程序自动从头开始执行。
上电复位是指计算机在开机上电时自动复位,此时所有硬件都从其初始状态开始,程序从第一条指令开始执行;人工复位是指操作员按下复位按钮时的复位;自动复位是指系统在需要复位的状态时,由特定的电路自动将CPU复位的一种方式。
因此,人工复位主要用于各类智能测试仪器、数据采集与操作指导控制系统等,一般不用于直接控制系统。
在掉电中断服务程序中,首先进行现场保护,把当时的重要状态参数、中间结果,甚至某些片内寄存器的内容一一存入具有后备电池的RAM中。
当电源恢复正常时,CPU重新复位,复位后应首先检查是否有掉电标记,如果有,则说明本次复位为掉电保护之后的复位,应按掉电中断服务程序相反的方式恢复现场,以一种合理的安全方式使系统继续未完成的工作。
当CPU受到干扰,程序“跑飞”后,往往将一些操作数当作指令代码来执行,从而引起整个程序的混乱。
采用指令冗余技术是使程序从“跑飞”状态,恢复正常的一种有效措施。
所谓软件冗余,就是人为地在程序的关键地方加入一些单字节指令NOP,或将有效单字节指令重写,当程序“跑飞”到某条单字节指令时,就不会发生将操作数当作指令来执行的错误。
指令冗余虽然将“跑飞”的程序很快地纳入程序轨道,但不能保证系统工作正常。
例如程序从一个模块“跑飞”到另一个不该去的模块,即使很快安定下来,但执行了不该执行的程序指令,同样会造成控制系统出现问题。
当程序“跑飞”到非程序区(如EPROM中未使用的空间、程序中的数据区等)时,指令冗余不起作用,这时可采用软件陷阱和Watchdog(看门狗)技术。
软件陷阱是在非程序区的特定地方设置一条引导指令(看作一个陷阱),程序正常运行时不会落入该引导指令的陷阱,当CPU受到干扰,程序“跑飞”时,如果落入指令陷阱,将由引导指令将“跑飞”的程序强制跳转到出错处理程序,由该程序进行出错处理和程序恢复。
由于程序指令不可能占满整个程序存储区,总有一些地方是正常程序不会达到的区域,可在该区域设置软件陷阱,对“跑飞”的程序进行捕捉,或在大片的ROM空间,每隔一段设置一个陷阱。
当程序“跑飞”到一个临时构成的死循环中时,冗余指令和软件陷阱将不起作用,造成系统完全瘫痪。
当系统运行时,看门狗与CPU同时工作。
程序正常运行时,会在规定的时间内由程序向看门狗发送复位信号,使看门狗定时系统重新开始定时计数,没有输出信号发出;当程序“跑飞”并且其他的措施没有发挥作用时,看门狗便不能在规定的时间内得到复位信号,其输出端会发出信号使CPU系统复位。
其中,MAX793和MAX815都是具有Watchdog功能的μP集成芯片,这些芯片的具体使用在这里不作详细介绍,可以参考单片机相关资料。
主程序在开始处启动计数器0,计数器0开始计数,每中断一次,就将设在中断服务程序中的记录中断发生次数的整型变量加1。
若发现不正常,则可断定主程序已经“跑飞”,中断服务需要修改返回地址至主程序入口处。
第9章习题
1.简述干扰的主要来源及其传播途径。
2.简述干扰的分类。
3.试述干扰的作用方式有哪些?各有什么特点?并叙述如何识别或区分不同的干扰类型。
4.简述电源抗干扰技术。
5.简述有哪些软件抗干扰技术?看门狗技术有什么作用,有哪些方法可以实现看门狗?。