PLC抗干扰技术
- 格式:ppt
- 大小:531.50 KB
- 文档页数:16
5.5抗干扰措施
可编程控制器的主要应用场合是工业现场,由于恶劣的工作环境,各种干扰
对PLC设备的正常运行存在着严重的影响,有必要考虑PLC的抗干扰措施。
PLC的输入设备主要是传感器、光电开关、按钮等;PLC的输出设备主要有
接触器、电磁阀线圈等。
由于这些I/O设备分布较广,因此,在运行过程中,会
将大量的干扰信号带入PLC主机内。
抗干扰的主要措施有:
1输入信号电缆、输出信号电缆和电力电缆都要分开敷设,不能扎在一起。
(2)必要时需选用带有屏蔽层的输入和输出信号电缆,并注意一端接地。
(3)多芯电缆中的备用芯线也要一端接地,一则扩大屏蔽作用,二则抑制芯
线间的信号串扰及外部干扰。
(4)5b避免干扰,同一电平等级的信号才能用一条多芯电缆传输。
所以,对
数字信号和模拟信号,在任何情况下,都必须分开电缆进行传翰。
低电平信号线
应与其它信号线分开.尽量缩短模拟量I/O信号线的长度,并采用双芯屏蔽线作为信号线。
(5)PLC电柜应有独立的接地线,接地电阻小于lO欧姆。
(6)引至PLC柜的电缆要尽缆远离那些会产生电磁干扰的装置。
(7)一般要将PLC装于专门的电柜中,要注意PLC四周留有50mm以上的净空
间,保证良好的通风环境。
在设备现场,要充分考虑周围环境的影响,尽量不要
将PLC安装在多尘、有油烟、有导电灰尘、有腐蚀性气体、振动、热源或潮湿的
地方。
1、采用性能优良的电源,抑制电网引入的干扰。
对于三菱PLC系统供电的电源,应采用非动力线路供电,直接从低压配电室的主母线上采用专用线供电。
选用隔离变压器,且变压器容量应比实际需要大1.2~1.5倍左右,还可在隔离变压器前加入滤波器。
对于变送器和共用信号仪表供电应选择分布电容小、采用多次隔离和屏蔽及漏感技术的配电器。
控制器和I/O系统分别由各自的隔离变压器供电,并与主电路电源分开。
三菱PLC的24V 直流电源尽量不要给外围的各类传感器供电,以减少外围传感器内部或供电线路短路故障对三菱PLC系统的干扰。
此外,为保证电网馈电不中断,可采用在线式不间断供电电源(UPS)供电,UPS具备过压、欠压保护功能、软件监控、与电网隔离等功能,可提高供电的安全可靠性。
对于一些重要的设备,交流供电电路可采用双路供电系统。
2、正确选择电缆的和实施敷设,消除三菱plc的空间辐射干扰。
不同类型的信号分别由不同电缆传输,采用远离技术,信号电缆按传输信号种类分层敷设,相同类型的信号线采用双绞方式。
严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠近平行敷设,增大电缆之间的夹角,以减少电磁干扰。
为了减少动力电缆尤其是变频装置馈电电缆的辐射电磁干扰,从干扰途径上阻隔干扰的侵入,要采用屏蔽电力电缆。
3、三菱plc输入输出通道的抗干扰措施输入模块的滤波可以降低输入信号的线间的差模干扰。
为了降低输入信号与大地间的共模干扰,三菱PLC要良好接地。
输入端有感性负载时,对于交流输入信号,可在负载两端并接电容和电阻,对于直流输入信号可并接续流二极管。
为了抑制输入信号线间的寄生电容、与其他线间的寄生电容或耦合所产生的感应电动势,可采用RC浪涌吸收器。
输出为交流感性负载,可在负载两端并联RC浪涌吸收器;若为直流负载,可并联续流二极管,也要尽可能靠近负载。
对于开关量输出的场合,可以采用浪涌吸收器或晶闸管输出模块。
另外,采用输出点串接中间继电器或光电耦合措施,可防止三菱PLC输出点直接接入电气控制回路,在电气上完全隔离。
常见的PLC控制系统抗干扰措施1. 引言PLC(Programmable Logic Controller)是一种常用于工业控制系统中的计算机控制设备。
在实际工业环境中,PLC控制系统常常面临各种干扰源的干扰,这些干扰可能导致系统稳定性下降、数据误差增加甚至系统故障。
因此,在设计和应用PLC控制系统时,需要采取一系列抗干扰措施来降低干扰的影响。
本文将介绍常见的PLC控制系统抗干扰措施,包括电磁干扰、地线干扰、高温环境干扰以及其他常见干扰的应对措施。
2. 电磁干扰的抗干扰措施电磁干扰是PLC控制系统中常见的干扰源之一,它可以导致数据误差、通信故障等问题。
以下是抗电磁干扰的措施:•屏蔽设计:在PLC设备和信号线上添加屏蔽层,以阻隔外部电磁干扰的入侵。
屏蔽层可以采用金属箔、金属编织层等材料。
•磁屏蔽:在PLC设备附近放置磁场屏蔽装置,以减弱外部磁场对设备的影响。
磁屏蔽装置可以采用铁氧体材料制成。
•地线隔离:将PLC设备的地线和电源系统的地线隔离开,防止电磁干扰通过地线传输到PLC设备中。
3. 地线干扰的抗干扰措施地线干扰是指由地线电流引起的干扰,它会导致系统电势差增大、信号失真等问题。
以下是抗地线干扰的措施:•地线去耦:在PLC设备的电源输入端和地线之间添加去耦电容,并将其接地。
去耦电容可以起到隔离地线干扰的作用。
•地线分离:将PLC设备的地线和其他设备的地线分离开,避免地线干扰的相互影响。
•良好接地:确保PLC设备的良好接地,减少地线干扰的发生。
4. 高温环境干扰的抗干扰措施高温环境对PLC控制系统的影响主要体现在PLC设备的散热和温度抗性方面。
以下是抗高温环境干扰的措施:•散热设计:合理设计PLC设备的散热结构,增加散热面积和散热风扇等设备,保证设备在高温环境下正常工作。
•温度抗性选择:选择具有良好温度抗性的元件和材料,确保PLC设备在高温环境下的可靠性。
•温度检测:安装温度传感器,实时监测PLC设备的温度,及时采取散热措施以防止设备过热。
提高PLC控制系统的抗干扰技术摘要:以本钢(3)热轧改造电气设备安装工程系统管理为例,介绍了plc在监控与管理系统中的应用,针对常见的几种影响plc 运行的电磁干扰,采用性能优良的电源给plc系统供电、plc系统输入输出信号、系统接地和电缆的敷设等方面采取措施提高plc控制系统的可靠性,在实际生活中,采用以上措施后,plc控制系统的性能得到了很大程度的提高,保证了热轧生产安全经济的运行。
关键词:plc控制系统干扰源抗干扰技术中图分类号:tn973.3 文献标识码:a 文章编号:引言:为了提高plc控制系统可靠性,我们在施工安装和调试时也做了相应的措施和防范。
在本钢(3)热轧改造电气设备安装工程中,本工程采用了plc系统进行现场仪表信号的采集、分析、控制,并通过et200通信模块传输回plc,使用wincc软件进行显示和操作,操作人员不需要去现场即可监控系统运行,而且仪表数据超出限定值会发出报警信号,也符合安全生产的要求。
现场有压力传感器、温度变送器、流量开关和电磁阀等设备。
1.plc控制系统干扰类型。
要提高plc控制系统可靠性,一方面是plc生产厂家提高设备的抗干扰能力,另一方面是plc系统的应用部门在工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能,确保系统在运行过程中的可靠性。
影响plc控制系统的干扰源与一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。
干扰类型通常按干扰产生的原因、干扰的模式和干扰的波形性质来划分。
其中共模干扰和差模干扰是一种比较常用的分类方法。
共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的同方向电压迭加所形成。
差模干扰是指作用于信号两极间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的,这种干扰叠加在信号上,直接影响测量与控制精度。
plc热电阻模块干扰消除方法随着工业自动化的不断发展,PLC热电阻模块在工业生产中扮演着重要的角色。
然而,在实际应用中,我们常常会遇到热电阻模块带来的干扰问题,这种干扰不仅影响了系统的稳定性和准确性,还可能导致生产事故和质量问题。
因此,如何有效地消除PLC热电阻模块的干扰,成为工程师们面临的一项重要挑战。
首先,我们需要深入了解PLC热电阻模块的工作原理和干扰机理。
PLC热电阻模块是一种常用的温度测量装置,通过热传导原理实现对温度的测量和监控。
然而,在实际应用中,由于周围环境的电磁干扰、温度变化等因素,热电阻模块的信号往往会受到干扰,导致温度测量的不准确甚至失真。
因此,我们需要从物理原理上理解这些干扰是如何产生和传播的,才能有针对性地制定消除措施。
其次,针对不同的干扰源,我们需要采取不同的消除策略。
首先是电磁干扰的问题。
电磁干扰是影响PLC热电阻模块性能的最主要因素之一,它可能来自于电气设备、电源线路、电磁场等。
为了消除这种干扰,我们可以通过增加屏蔽措施、提高信号线路的抗干扰能力、调整信号采集的时间和频率等方式来降低电磁干扰对PLC热电阻模块的影响。
另外,还需要注意放置热电阻模块的位置,避免其与其他电气设备和电源线路过近,从而减少电磁干扰的影响。
其次是温度变化带来的干扰。
温度变化会影响热电阻的电阻值,从而影响温度测量的准确性。
为了消除这种干扰,我们可以采取增加温度补偿模块、提高热电阻的稳定性和精度、采用多点温度校准等方法来降低温度变化对热电阻模块的影响。
此外,还需要合理设置控制参数和阈值,及时调整控制策略,以应对温度变化带来的影响。
此外,还需要注意PLC热电阻模块本身的质量和使用环境。
质量不良的热电阻模块容易受到干扰,影响其稳定性和可靠性。
因此,在选购热电阻模块时,我们需要选择正规厂家生产的产品,并注意查看产品的质量认证和检测报告。
同时,还需要确保热电阻模块的安装位置、固定方式、接线方式等符合要求,避免外界因素对其造成损坏和干扰。
关键软硬件设计策略提高PLC抵抗干扰能力在现代工业自动化系统中,可编程逻辑控制器(PLC)扮演着至关重要的角色。
然而,由于工业环境的复杂性和干扰源的存在,PLC经常会受到电磁干扰的影响。
为了提高PLC的抵抗干扰能力,有一些关键的软硬件设计策略可以采用。
软件设计策略:1.合理的程序设计:在进行PLC程序设计时,应充分考虑干扰的可能源,并采取相应的措施。
例如,在输入信号处理过程中,可以增加滤波器或脉冲抑制电路来降低干扰信号的影响。
此外,为了减少噪音引起的误触发,应关注输入信号的稳定性并进行相应的滤波处理。
2.适当的信号接地:良好的信号接地是提高抗干扰能力的关键。
为了减少信号传输中的干扰幅度,可采用共模抑制技术,将信号引线与地线电位相对接地,以减小干扰信号对地返回的路径。
此外,还可以采用绑线或屏蔽等措施来降低信号干扰,增强系统的抗干扰能力。
3.合理的信号布线:对于PLC的输入输出线路布线,应避免与高功率设备或干扰源的信号线路交叉。
为了减少干扰信号的传播,可以采用分离布线方法,将高功率线路与信号线路分开布置。
此外,还可以利用屏蔽线缆或光纤通信来减少干扰的传输。
硬件设计策略:1.选择抗干扰能力强的硬件:在选用PLC设备时,应注重其抗干扰能力。
选用带有抗干扰滤波器的输入输出模块和专用的处理器模块,可以有效减小干扰信号对PLC的影响。
2.适当的隔离措施:通过使用隔离器件,如光耦、继电器等,可以隔离输入和输出信号,减少干扰信号的传导。
此外,可通过使用电磁屏蔽盒或金属屏蔽罩等措施,进一步提高PLC系统的抗干扰能力。
3.地线设计:良好的地线设计是降低干扰的关键。
首先,要确保地线接地的可靠性,以减少地线干扰。
其次,要采用单点接地的方式,减少接地电势差产生的干扰。
此外,还可以使用地线滤波器或隔离地线等方法来保持地线的纯净和稳定。
4.温度和湿度控制:恶劣的温度和湿度条件对PLC的工作可靠性和抗干扰能力有很大影响。
因此,在安装PLC设备时,应提供合适的散热措施和湿度控制,确保设备在适宜的环境温度和湿度下运行。
PLC的抗干扰措施(1)电源的合理处理,抑制电网引入的干扰对于电源引入的电网干扰可以安装一台带屏蔽层的变比为1:1的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接LC滤波电路。
(2)正确选择接地点,完善接地系统良好的接地是保证PLC可靠工作的重要条件,可以避免偶然发生的电压冲击危害。
接地的目的通常有两个,其一为了安全,其二是为了抑制干扰。
完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。
可编程控制仪控制系统的地线包括系统地、屏蔽地、交流地和保护地等。
接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。
例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A,B 都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态如雷击时,地线电流将更大。
此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内又会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。
若系统地与其他接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。
PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC 的逻辑运算和数据存储,造成数据混乱、程序跑飞或死机。
模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。
安全地或电源接地:将电源线接地端和柜体连线接地为安全接地。
如电源漏电或柜体带电,可从安全接地导入地下,不会对人造成伤害。
系统接地:可编程控制仪控制器为了与所控的各个设备同电位而接地,叫系统接地。
接地电阻值不得大于4 Ω,一般需将PLC设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。
信号与屏蔽接地:一般要求信号线必须要有惟一的参考地即“单点接地”,屏蔽电缆遇到有可能产生传导干扰的场合,也要在就地或者控制室唯一接地,防止形成“地环路”。
信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接点。
PLC控制系统抗干扰的措施及方法摘要:介绍PLC控制系统在不同的工业环境中受到来自系统本身(包含PLC硬件及软件)以及外界(包含空间辐射电磁场、电源、信号线、接地等)的干扰;并且通过分析产生干扰的原因,提出了解决主要抗干扰措施。
关键词:PLC;控制系统;干扰类型随着科学技术的发展,PLC作为一种自动化程度高、配置灵活的工业生产过程控制装置,因为其本身的高可靠性、允许在较为恶劣的环境下工作而在自动控制领域中得到广泛应用。
由于受到现场条件所限,工业控制系统的各类PLC大多处在强电电路和强电设备所形成的恶劣电磁环境中,电磁干扰极其严重,对PLC控制系统可靠运行极其不利,因此,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求使用部门在工程设计、安装调试和运行维护过程中采取抗干扰措施,双方配合才能妥善解决问题,有效增强系统的抗干扰性能。
因此,研究PLC控制系统干扰信号的来源、成因及抑制措施,对于提高PLC控制系统的抗干扰能力和可靠性具有重要作用。
一、提高PLC硬件抗干扰能力在选择设备时,首先要选择有高效抗干扰能力的产品,其中包括了电磁兼容性。
尤其是抗外部干扰能力,如采用浮地技术、隔离性能较好的PLC系统;监控信号在接入PLC前,在信号线与地之间并接电容,以减少共模干扰;在信号两极间加装滤波器可减少差模干扰。
;另外要考察其在类似工作环境中的应用实绩。
在选择国外进口产品要注意:我国是采用220 V高内阻电网制式,而欧美地区是110 V低内阻电网制式。
由于我国电网内阻大,零点电位漂移大,地电位变化大,工业企业现场的电磁干扰至少要比欧美地区高4倍以上,对系统抗干扰性能要求更高,在国外能正常工作的PLC产品在国内不一定能可靠运行,这就要在采用国外产品时,按我国的标准(GB/T13926)合理选择。
另外,在干扰多的场合,安装在控制对象侧的I/0模块要使用绝缘型的I/0模块;在干扰相对较小的场合,可使用非绝缘型的I/O模块。
PLC系统的抗干扰措施:PLC专为工业环境应用而设计,其为了适应此环境而采取了一系列抗干扰措施,已完全能可靠工作。
但在非常恶劣的条件下,也会导致PLC误动作。
如:电磁干扰、高温、欠电等。
电源、输入、输出接线是外部干扰入侵PLC的重要途径,为了提高PLC控制系统的可靠性,应采取相应的抗干扰措施。
一、抑制电源系统引入的干扰PLC应尽可能取用电压波动较小、波形畸变较小的电源,PLC的供电线路应与其他大功率用电设备或强干扰设备分开。
在干扰较强或是可靠性要求很高的场合可采用以下几种抗干扰方法:1、在PLC电源的输入端加接隔离变压器,由隔离变压器的输出端直接向PLC供电,这样可抑制来自电网的干扰。
隔离变压器的电压比可取1:1,在一次和二次绕组之间采用双屏蔽技术,一次屏蔽层用漆包线或铜线等非导磁材料绕一层,注意电气不能短路,并接到中性线;二次则采用双绞线,双绞线能减少电源线间干扰。
2、在PLC电源的输入端加接低通滤波器可滤去交流电源输入的高频干扰和高次谐波。
在干扰严重场合,可同时使用隔离变压器和低通滤波器的方法。
二、抑制输入、输出电路引入的干扰为了抑制输入、输出电路引入的干扰,一般应注意以下几点:1、开关量信号不容易受外界干扰,可以用普通单根导线传输;2、数字脉冲信号频率较高,传输过程中易受外界干扰,应选用屏蔽电缆传输;3、模拟量信号是连续变化的信号,外界的各种干扰都会迭加在模拟信号上而造成干扰,因而要选用屏蔽线或带防护的双绞线。
如果模拟量I/O信号离PLC较远,应采用电流传输方式。
而不用易受干扰的电压信号传输;4、PLC的输入、输出线要与动力线分开,距离在20cm以上,如果不能保证上述最小距离,可以将这部分动力线穿管,并将管接地。
绝不允许将PLC输入、输出线与动力线高压线捆扎在一起;5、应尽量减小动力线与信号线平行敷设的长度,否则应增大两者的距离以减小嗓声干扰。
一般两线间距离为20cm。
当两线平行敷设的长度在100--200m 时,两线间距离应在40cm以上;平等敷设长度在200--300cm时,两线间的距离应在60cm以上;6、PLC的输入、输出线最好单独敷设在封闭的电缆槽架内,线槽外壳要良好接地,不同类型的信号,如不同电压、不同电流类型的输入输出线,不能安排在同一根多芯屏蔽电缆内,而且在槽架内应隔开一定距离安放,屏蔽层应接地。