当前位置:文档之家› 江苏省南京师大附中2021届高三上学期10月月考数学试卷 Word版含答案

江苏省南京师大附中2021届高三上学期10月月考数学试卷 Word版含答案

江苏省南京师大附中2021届高三上学期10月月考数学试卷 Word版含答案
江苏省南京师大附中2021届高三上学期10月月考数学试卷 Word版含答案

南京师大附中2020/2021学年度第一学期十月质量检测

试卷

高三数学

一、单选题:本大题共8小题,每小题5分,共40分.请把答案填在答卷纸相应位置上.

1.记全集U=R,集合A= {x|x2≥16},集合B= {x|2x≥2},则(CuA)∩B

=( )

A.[4,+∞)

B.(1,4]

C.[1,4)

D. (1,4)

2.已知a= ,b=, c=0.5a-2,则a,b,c的大小关系为( )

A.b

B.a

C. c

D. c

3.若cos(a+β)=,sin(β—)= ,a,β∈(0,)则cos(a+)=( )

A. —

B. —

C.

D. —

4.我国即将进入双航母时代,航母编队的要求是每艘航母配2~3艘驱逐舰,1~2艘核潜艇.船厂现有5艘驱逐舰和3艘核潜艇全部用来组建航母编队,则不同的组建方法种数为( )

A.30

B.60

C.90

D.120

5.已知= (2sin130, 2sin770), |-=1,与-的夹角为则*=( )

A. 2

B. 3

C. 4

D.%

6.函数f(x) =在[π,0)∪(0,π]的图象大致为

7.设F1,F2分别为双曲线C: :=1(a>0,b>0)的左、右焦点,过B的直线l与

0:x2+y2=a2相切,l与C的渐近线在第一象限内的交点是P,若PF2⊥x轴,则双曲线C

的离心率为( )

A. B.2 C.. D.4

8.对于函数y= f(x),若存在区间[a,b],当x∈[a,b]时的值域为[ka,kb](k>0),则称y= f(x)为k倍值函数.若f(x)=e x+2x是k倍值函数,则实数k的取值范围是( )

A. (e+1, +∞)

B. (e+2, +∞)

C.(e+十∞),

D.(e+,十∞)

二、多选题:本大题共4小题,每小题5分,共20分.请把答案填在答卷纸相应位置上.

9.已知函数f(x)=sin(3x+φ) ()的图象关于直线x=对称,则( )

A. 函数f(x+)为奇函数

B. 函数f(x)在[,]上单调递増

C. 若|f()?f()|=2,则|?|的最小值为

D. 函数f(x)的图象向右平移个单位长度得到函数y=?cos3x的图象

10.2020年初,突如其来的疫情改变了人们的消费

方式,在目前疫情防控常态化背景下,某超市为了解人

们以后消费方式的变化情况,更好地提高服务质量,

收集并整理了该超市2020年1月份到8月份线上收入

和线下收入法人数据,并绘制如下的折线图.根据折线

图,下列结论正确的有( )

A.该超市这8个月中,线上收入的平均值高于线下

收入的平均值

B.该超市这8个月中,线上收入与线下收入相差最小的月份是7月

C.该超市这8个月中,每月总收入与时间呈现负相关

D.从这8个月的线上收入与线下收入对比来看,在疫情逐步得到有效控制后,人们比较愿意线下消费

11.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是( ) A当0<CQ<时,S为四边形;

B当CQ=时,S不为等腰梯形;

C当CQ=时,S与C1D1的交点R满足C1R=

D当CQ=1时,S的面积为.

12. 关于函数f(x)=+ asinx, x∈(-π, +∞),下列结论正确的有( )

A.当a=1时,f(x) 在(O,f(0))处的切线方程为2x-y+1=0

B.当a=1时,f(x)存在惟一极小值点

C.对任意a>0,f(x)在(-π, +∞)上均存在零点

D.存在a<0,f(x)在(-π, +∞)上有且只有一个零点

三、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答卷纸相应位置上.

13.在的展开式中,只有第三项的二项式系数最大,则含x项的系数为__ _.

14.已知函数f(x) = xlnx-有两个极值点,则实数a的取值范围是_ _

15. 在三棱锥P- ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB= AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为__ _.

16. 己知函数f(x)= 若函数F(x)= f(x) +a恰有2个零点,则实数a的取值范围是_______

四、解答题:本大题共6小题,共计70分

17.已知函数f(x)=alnx?b,曲线y=f(x)在点(1,f(1))处的切线方程为y=?.

(1)求实数a,b的值;

(2)求函数f(x)在[,e]上的最大值。

18. 在AABC中,a,b,c分别为角A,B,C对边,且MABC同时满足下列四个条

件中的三个:①+=- ac ②1+cos2A= ③a= ④b=2.

(1)满足ABC有解的序号组合有哪些?

(2)在(1)的组合中任选一组,求AB的面积.

注:如果选择多个组合作为条件分别解答,按第一个解答计分. .

19. (12分)如图,在多面体ABCDFE中,四边形

ABEF为正方形,平面ABEF⊥平面CDFE,CD∥EF,.∠

CDF=∠DFE=90°, EF=2CD=2.

(1)若DF=1,证明:平面ACF⊥平面BCE ;

(1)若二面角A一BC- E的余弦值为 - ,求DF

的长.

20.今年4月23日我市正式宣布实施“3+1+2”的高考新方案,“3”是指必考的语文、数学、外语三门学科,“1”是指在物理和历史中必选一科,“2”是指在化学、生物、政治、地理四科中任选两科。为了解我校高一学生在物理和历史中的选科意愿情况,进行了一次模拟选科。已知我校高一参与物理和历史选科的有1800名学生,其中男生1000人,女生800人。按分层抽样的方法从中抽取了36个样本,统计知其中有17个男生选物理,6个女生选历史。

(Ⅰ)根据所抽取的样本数据,填写答题卷中的列

联表。并根据K2统计量判断能否有90%的把握认为选

择物理还是历史与性别有关?

(Ⅱ)在样本里选历史的人中任选4人,记选出4

人中男生有X人,女生有Y人,求随机变量ξ=X?Y的

P(?) 0.25 0.15 0.10 0.05 0.025

1.323

2.072 2.706

3.841 5.024

21.在平面直角坐标系xOy中,已知椭圆C:=1(a>b>0)的离心率为,点(2,1)在椭圆C 上。

(1)求椭圆C的方程;

(2)设直线l与圆O:+=2相切,与椭圆C相交于P,Q两点,求证:∠POQ是定值

22.已知函数f(x)= ?(a+1)x+alnx(a>1).

(Ⅰ)求函数f(x)的单调区间;

(Ⅱ)设,为函数f(x)的两个极值点,求证f()+f()+3a<.

参考答案

01-05 CACDB 06-08 DAB 09 AC 10. ABD 11. ACD 12.ABD 13.—32 14.(0.1) 15. 16.[ —,]

17.解:(1)f′(x)=?2bx,

则,

解得

(2)由(1)知f(x)=ln x?,

则f′(x)=?x=1?,

在区间[,e]上,f′(x)>0,解得x∈[,1);

f′(x)<0,解得x∈(1,e],

所以函数f(x)在[1e,1]上单调递增;

在[1,e]上单调递减,

所以函数f(x)在区间[,e]上的最大值为f(1)=?.

18.解: (1) 由条件①得cosB = =— ac * =—

由条件②得1+ 2cos2 A-1=1-cosA,即2cos2 A+cosA-1=0,

解得cosA=或cosA=-1 (舍), 因为A∈(0,r),所以A=

因为cosB=-- < =cos B∈(0, π),

而y= cosx在(0,π)单减,所以

于是A+B> += 与A+B<π矛盾

所以ABC不能同时满足①②.

当①③④作为条件时:

有=+- 2accosB,即 +2c=1,

解得.c=—1

所以ABC有解.

当②③④作为条件时:

有解得sinB=1.

因为B∈(0, π),

所以B=, MBC为直角三角形,

所以△ABC有解.

综上所述,满足有解三角形的所有组合为:①③④或②③④.

(2)若选择组合①③④:

因为B∈(0,π),

所以sinB= = =

所以△ABC的面积S =acsinB=*(—1)* =

若选择组合②③④:

因为B=

所以c= =1

所以△4BC的面积S =x1x=

19. (1)在△CEF中: FC==2,CE==2,EF=2,。

故= +,故CF⊥CE.+

平面ABEF⊥平面CDFE, AF⊥EF,故AF⊥平面CDFE,中

CEc平面CDFE,故AF⊥CE, AF∩CF=F,。

故CE⊥平面ACF,CEc平面BCE,故平面ACF⊥平面BCE 。

(2)如图所示:以FA.FE,FD为x.y,z轴建立空间直角坐标系,设DF=a

4(2,0,0), B(2,2,0), C(0,1a), E(0,2,0),

设平面ABC的法向量为=(xy.2),则

取x=a得到=(a.0.2);

设平面BCE的法向量为以=(),则

取y=a得到=(0,a,1)

故= =

解得a=2或a=-2 (舍去)故DF=2

20. (I)由条件知,按分层抽样法抽取的36个样本数据中有×36=20个男

生,

根据表中数据,计算K2= = 36×(17×6?10×3)2/ 27×9×20×16 =

2.4<2.706,

而P(?2.4)>P(?2.706)=0.10,

所以没有90%的把握认为选择物理还是历史与性别有关;

(II)由(I)知在样本里选历史的有9人,其中男生3人,女生6人;

所以ξ可能的取值有2,0,?2,?4;

且P(ξ=2)=P(X=3且Y=1)=,

P(ξ=0)=P(X=2且Y=2)=;

P(ξ=?2)=P(X=1且Y=3)=,

P(ξ=?4)=P(X=0且Y=4)=;

所以ξ的期望为E(ξ)=2×+0×+(?2)×+(?4)×=?.

21. (1)由题得e==,所以c2=,则=,

再将点(2,1)带入方程得=1,解得=6,所以=3,则椭圆C的方程为:=1;

(2)①当直线PQ斜率不存在时,则直线PQ的方程为x=或x=?,

当x=时,P(,),Q(,?),此时OP?OQ=0,所以OP⊥OQ,即∠POQ=90°,

当x=?时,同理可得OP⊥OQ,∠POQ=90°;

②当直线PQ斜率存在时,不妨设直线PQ的方程为y=kx+m,即kx?

y+m=0,

因为直线与圆相切,所以|m|=,即m2=2k2+2,

联立,得(1+2k2)x2+4kmx+2m2?6=0,

设P(x1,y1),Q(x2,y2),则有x1+x2=?,x1x2=,

此时OP?

OQ1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)×+km×()+m2将m2=2k2+2代入上式可得OP?OQ=0,所以OP⊥OQ,则∠POQ=90°;

综上:∠POQ是定值为90°.

22.解答:

(I)函数的定义域(0,+∞),

f′(x)?(a+1)+= =

a>1,

当x>a或00,当1

故函数的单调递增区间(a,+∞),(0,1),单调递减区间(1,a);

(II)不妨设x1

所以f(x1)+f(x2)+3a?=f(a)+f(a)+3a?=?a?1+?a(a+1)+a ln a+3a?,=?

+a+a ln a?4,

令g(a)=?+a+a ln a?4,a>1

则g′(a)=?a+2+ln a,

g″(a)=?1+<0,即g′(a)在(1,+∞)上单调递减,且g′(3)=ln3?

1>0,g′(4)=ln4?2<0,

故存在∈(3,4)使得g′(a)=0,即2?a0+ln=0,

当a∈(1,)时,g′(a)>0,g(a)单调递增,当a∈(,+∞)时,g′(a)<0,g(a)单调递减,

故当a=a0时,g(a)取得最大值g(a0)=?+a0+a0ln a0?4=??++ (?2)?4,=??4,

因为a0∈(3,4),结合二次函数的性质可知,当a0=4时,g(4)=0,

故g(a)

所以f()+f()+3a?<0,即f()+f()+3a<.

2015年江苏省高考数学试题及答案(理科)【解析版】

2015年江苏省高考数学试卷 一、填空题(本大题共14小题,每小题5分,共计70分) 1.(5分)(2015?江苏)已知集合A={1,2,3},B={2,4,5},则集合A∪B中元素的个数为5. 考点:并集及其运算. 专题:集合. 分析:求出A∪B,再明确元素个数 解答:解:集合A={1,2,3},B={2,4,5},则A∪B={1,2,3,4,5}; 所以A∪B中元素的个数为5; 故答案为:5 点评:题考查了集合的并集的运算,根据定义解答,注意元素不重复即可,属于基础题 2.(5分)(2015?江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为6. 考点:众数、中位数、平均数. 专题:概率与统计. 分析:直接求解数据的平均数即可. 解答:解:数据4,6,5,8,7,6, 那么这组数据的平均数为:=6. 故答案为:6. 点评:本题考查数据的均值的求法,基本知识的考查. 3.(5分)(2015?江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为. 考点:复数求模. 专题:数系的扩充和复数. 分析:直接利用复数的模的求解法则,化简求解即可. 解答:解:复数z满足z2=3+4i, 可得|z||z|=|3+4i|==5, ∴|z|=. 故答案为:. 点评:本题考查复数的模的求法,注意复数的模的运算法则的应用,考查计算能力. 4.(5分)(2015?江苏)根据如图所示的伪代码,可知输出的结果S为7.

考点:伪代码. 专题:图表型;算法和程序框图. 分析:模拟执行程序框图,依次写出每次循环得到的I,S的值,当I=10时不满足条件I<8,退出循环,输出S的值为7. 解答:解:模拟执行程序,可得 S=1,I=1 满足条件I<8,S=3,I=4 满足条件I<8,S=5,I=7 满足条件I<8,S=7,I=10 不满足条件I<8,退出循环,输出S的值为7. 故答案为:7. 点评:本题主要考查了循环结构的程序,正确判断退出循环的条件是解题的关键,属于基础题. 5.(5分)(2015?江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2 只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为. 考点:古典概型及其概率计算公式. 专题:概率与统计. 分析:根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可.解答:解:根据题意,记白球为A,红球为B,黄球为C1、C2,则 一次取出2只球,基本事件为AB、AC1、AC2、BC1、BC2、C1C2共6种, 其中2只球的颜色不同的是AB、AC1、AC2、BC1、BC2共5种; 所以所求的概率是P=. 故答案为:. 点评:本题考查了用列举法求古典概型的概率的应用问题,是基础题目. 6.(5分)(2015?江苏)已知向量=(2,1),=(1,﹣2),若m+n=(9,﹣8)(m, n∈R),则m﹣n的值为﹣3. 考点:平面向量的基本定理及其意义. 专题:平面向量及应用.

最新江苏高考数学试卷(含答案)

2012年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 参考公式: 棱锥的体积13 V Sh =,其中S 为底面积,h 为高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上........ . 1.已知集合{124}A =,,,{246}B =,,,则A B =U ▲ . 2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 ▲ 名学生. 3.设a b ∈R ,,117i i 12i a b -+= -(i 为虚数单位),则a b + 为 ▲ . 4 .右图是一个算法流程图,则输出的k 的值是 ▲ . 5.函数()f x =的定义域为 ▲ . 6.现有10个数,它们能构成一个以1为首项,3-等比数列,若从这10个数中随机抽取一个数,则它小于的概率是 ▲ . 7.如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =, 则四棱锥11A BB D D -的体积为 ▲ cm 3. 8.在平面直角坐标系xOy 中,若双曲线22 214x y m m -=+的离心率 m 的值为 ▲ . 9.如图,在矩形ABCD 中,2AB BC =,点E 为BC 的中点,点F 在边CD 上,若AB AF =u u u r u u u r g AE BF u u u r u u u r g 的值是 ▲ . 10.设()f x 是定义在R 上且周期为2的函数,在区间[11]-,上, (第4题) D A B C 1 1D 1A 1B (第7题)

黑龙江省高三上学期数学10月月考试卷(I)卷

黑龙江省高三上学期数学10月月考试卷(I)卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共9题;共18分) 1. (2分)(2018·山东模拟) 已知全集,集合, ,则中元素的个数是() A . 0 B . 1 C . 2 D . 3 2. (2分)《九章算术》是中国古代的数学专著,有题为:今有良马与驽马发长安至齐,齐去长安三千里,良马初日行一百九十三里,日增十三里,驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,问几何日相逢及各行几何?用享誉古今的“盈不足术”,可以精确的计算用了多少日多少时相逢,那么你认为在第几日相遇() A . 13 B . 14 C . 15 D . 16 3. (2分) (2015高一上·莆田期末) 函数的最小正周期为π,若其图象向左平移个单位后得到的函数为奇函数,则函数f(x)的图象() A . 关于点对称 B . 关于点对称

C . 关于直线对称 D . 关于直线对称 4. (2分)下列函数f(x)中,满足“对任意的x1 ,x2∈(0,+∞)时,均(x1﹣x2)[f(x1)﹣f(x2)]>0”的是() A . f(x)=()x B . f(x)=x2﹣4x+4 C . f(x)=|x+2| D . f(x)=log x 5. (2分) (2019高二下·哈尔滨月考) 已知函数的定义域为 ,为函数的导函数,当 时,且,,则下列说法一定正确的是() A . B . C . D . 6. (2分) (2019高三上·朝阳月考) 已知函数是奇函数, 是偶函数,则() A . B . C .

2020年江苏高考数学试题及答案

2020年江苏高考数学试题及答案 参考公式: 柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B =▲ 2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是▲ 3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是▲ 4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是▲ 5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是▲ 6.在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y ,则该双曲线的离心 率是▲ . 7.已知y =f (x )是奇函数,当x ≥0时,()2 3 f x x =,则()8f -的值是▲ . 8.已知2sin ()4απ +=23 ,则sin 2α的值是▲ . 9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半轻为0.5 cm,则此六角螺帽毛坯的体积是▲ cm.

10.将函数πsin(32)4y x =﹢的图象向右平移π 6 个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 ▲ . 11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和 221()n n S n n n +=-+-∈N ,则d +q 的值是▲ . 12.已知22451(,)x y y x y +=∈R ,则22x y +的最小值是▲ . 13.在△ABC 中,43=90AB AC BAC ==?,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3 ()2 PA mPB m PC =+-( m 为常数),则CD 的长度是▲ . 14.在平面直角坐标系xOy 中,已知0)P ,A ,B 是圆C :2 21()362x y +-=上的两个动点,满足PA PB =, 则△PAB 面积的最大值是▲ . 二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.( 本小题满分14分) 在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. ( 1)求证:EF ∥平面AB 1C 1; ( 2)求证:平面AB 1C ⊥平面ABB 1.

最新江苏省高考数学试卷及解析

2017年江苏省高考数学试卷 一.填空题 1.(5分)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件. 4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值是. 5.(5分)若tan(α﹣)=.则tanα=. 6.(5分)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是. 7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是.

8.(5分)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是. 9.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.10.(5分)某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是. 11.(5分)已知函数f(x)=x3﹣2x+e x﹣,其中e是自然对数的底数.若f(a﹣1)+f(2a2)≤0.则实数a的取值范围是. 12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=. 13.(5分)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是. 14.(5分)设f(x)是定义在R上且周期为1的函数,在区间[0,1)上,f(x)=, 其中集合D={x|x=,n∈N*},则方程f(x)﹣lgx=0的解的个数是. 二.解答题 15.(14分)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD. 求证:(1)EF∥平面ABC; (2)AD⊥AC.

广东省高三数学10月月考试题理(无答案)

2016-2017学年高三级上学期10月月考 理科数学 2016年10月本试卷共4页,满分150分,考试时间120分钟。 注意事项:略 第Ⅰ卷(选择题部分,共60分) 一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题 目要求的) 1.已知集合,则( ) A. B. C. D. 2.若复数是纯虚数(为虚数单位),则的值为( ) A. B. C. D.或 3.下列命题中, 是真命题的是() A. B. C.已知为实数, 则的充要条件是 D.已知为实数, 则是的充分条件 4.在各项均为正数的等比数列中,且成等差数列,记S n是数列{a n}的前n 项和,则 ( ) A.32 B.62 C.27 D.81 5.已知函数的最小正周期为,且其图像向左平移个单位后得到函数的图像,则函数的图像( ) A.关于直线对称 B.关于直线对称 C.关于点对称 D.关于点对称

6.甲、乙、丙、丁、戊五位同学站成一排照相留念,则在甲乙相邻的条件下,甲丙也相邻的概率为( ) A. B. C. D. 7.已知定义在R上的函数满足,,且当时,,则= ( ) A. B. C. D. 8.若如下框图所给的程序运行结果为S=41,则图中的判断框①中应填入的是( ) A. B. C. D. 9.设为椭圆的两个焦点,点在椭圆上,若线段的中点在轴上,则的值为( ) A. B. C. D. 10.已知变量满足若目标函数取到最大值,则的值为 ( ) A. B. C. D. 11.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某 多面体的三视图,则该多面体外接球的表面积为( ) A. B. C. D. 12.定义在区间(0,+∞)上的函数f(x)使不等式恒成立,其中为f(x)的导数,则( )

2018年江苏高考数学试题及答案

2018年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 注意事项 考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。本卷满分为160分,考试时间为120分钟。 考试结束后,请将本试卷和答题卡一片交回。 2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。 3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。学科@网 4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。 参考公式: 锥体的体积 1 3 V Sh =,其中S是锥体的底面积,h是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位 ...... 置上 ... 1.已知集合{0,1,2,8} A=,{1,1,6,8} B=-,那么A B=▲ . 2.若复数z满足i12i z?=+,其中i是虚数单位,则z的实部为▲ . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲ .

4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ . 5.函数()f x 的定义域为 ▲ . 6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ . 7.已知函数sin(2)()22y x ??ππ=+- <<的图象关于直线3 x π =对称,则?的值是 ▲ . 8.在平面直角坐标系xOy 中,若双曲线22 221(0,0)x y a b a b -=>>的右焦点(,0)F c 到一条渐近 ,则其离心率的值是 ▲ .

福建省最新2021届高三数学10月月考试题

福建省罗源第一中学2021届高三数学10月月考试题 一、单选题(每小题5分) 1.复数 1 1i i -+(i 为虚数单位)的虚部是( ) A. -1 B. 1 C. i - D. i 2.αβ≠是cos cos αβ≠的( )条件. A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3.已知sin(π+θ)=-3cos(2π-θ),|θ|<π 2 ,则θ等于( ) A .-π6 B .-π3 C.π6 D.π3 4.函数1ln sin 1x y x x +=?-的图象大致为( ) 5.已知a >0且a ≠1,函数f (x )=? ????a x ,x ≥1 ax +a -2,x <1在R 上单调递增,那么实数a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(1,2) D .(1,2] 6.已知△ABC 中,AB =2,B =π4,C =π6 ,点P 是边BC 的中点,则AP →·BC → 等于( ) A .1 B .2 C .3 D .4 7.若函数f (x )=sin ? ????ωx -π6(ω>0)在[0,π]上的值域为???? ??-12,1,则ω的最小值为( ) A.23 B .34 C.43 D .3 2 8.在ABC ?中,已知点P 在线段BC 上,点Q 是AC 的中点, AQ y AB x AP +=,0,0>>y x ,则 y x 11+的最小值为( )

A .2 3 B .4 C. 22 3 + D. 223+ 二、多选题(每小题5分,部分选对得3分) 9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( ) A .若a b >,则sin sin A B > B .若sin 2sin 2A B =,则AB C 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形 D .若2220a b c +->,则ABC 是锐角三角形 10.设点M 是ABC 所在平面内一点,则下列说法正确的是( ) A .若11 22 AM AB AC = +,则点M 是边BC 的中点 B .2AM AB AC =-若,则点M 在边BC 的延长线上 C .若AM BM CM =--,则点M 是ABC 的重心 D .若AM x AB y AC =+,且1 2x y +=,则MBC △的面积是的ABC 面积的12 11.要得到函数x y cos =的图像,只需将函数)3 2sin(π +=x y 的图像上所有的点( ) A .先向右平移 6π个单位长度,再将横坐标伸长到原来的2 1 (纵坐标不变) B .先向左平移个 12 π 单位长度,再将横坐标伸长到原来的2倍(纵坐标不变) C .横坐标伸长到原来的2倍(纵坐标不变),再向左平移 6 π 个单位长度 D .横坐标伸长到原来的 21(纵坐标不变),再向右平移3 π 个单位长度 12.设函数f (x )=sin ? ????ωx +π5(ω>0),已知f (x )在[0,2π]有且仅有5个零点.下述四个结论: A .f (x )在(0,2π)上有且仅有3个极大值点 B .f (x )在(0,2π)上有且仅有2个极小值点 C .f (x )在? ????0,π10上单调递增 D .ω的取值范围是???? ??125,2910 其中所有正确结论是( ) 三、填空题(每小题5分)

2020年江苏高考数学试卷

绝密★启用前 2020年普通高等学校招生全国统一考试(江苏卷) 数学Ⅰ 参考公式: 柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = ▲ . 2.已知 i 是虚数单位,则复数(1i)(2i)z =+-的实部是 ▲ . 3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是 ▲ . 4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 ▲ . 5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是 ▲ .

6.在平面直角坐标系xOy 中,若双曲线222105()x y a a -=>的一条渐近线方程为y =,则该双曲线的离 心率是 ▲ . 7.已知y =f (x )是奇函数,当x ≥0时,()2 3 f x x =,则()8f -的值是 ▲ . 8.已知2sin ()4απ+=2 3 ,则sin 2α的值是 ▲ . 9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 ▲ cm. 10.将函数πsin(32)4y x =﹢的图象向右平移π 6 个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是 ▲ . 11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和 221()n n S n n n +=-+-∈N ,则d +q 的值是 ▲ . 12.已知22451(,)x y y x y +=∈R ,则22x y +的最小值是 ▲ . 13.在△ABC 中,43=90AB AC BAC ==?,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若 3 ()2 PA mPB m PC =+-(m 为常数),则CD 的长度是 ▲ .

2019年江苏省高考数学试卷以及答案解析

绝密★启用前 2019年普通高等学校招生全国统一考试(江苏卷) 数学 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.(5分)已知集合A={﹣1,0,1,6},B={x|x>0,x∈R},则A∩B=.2.(5分)已知复数(a+2i)(1+i)的实部为0,其中i为虚数单位,则实数a的值是.3.(5分)如图是一个算法流程图,则输出的S的值是. 4.(5分)函数y=的定义域是. 5.(5分)已知一组数据6,7,8,8,9,10,则该组数据的方差是. 6.(5分)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是. 7.(5分)在平面直角坐标系xOy中,若双曲线x2﹣=1(b>0)经过点(3,4),则该双曲线的渐近线方程是. 8.(5分)已知数列{a n}(n∈N*)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是. 9.(5分)如图,长方体ABCD﹣A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E﹣BCD的体积是.

10.(5分)在平面直角坐标系xOy中,P是曲线y=x+(x>0)上的一个动点,则点P到直线x+y=0的距离的最小值是. 11.(5分)在平面直角坐标系xOy中,点A在曲线y=lnx上,且该曲线在点A处的切线经过点(﹣e,﹣1)(e为自然对数的底数),则点A的坐标是. 12.(5分)如图,在△ABC中,D是BC的中点,E在边AB上,BE=2EA,AD与CE交于点O.若?=6?,则的值是. 13.(5分)已知=﹣,则sin(2α+)的值是. 14.(5分)设f(x),g(x)是定义在R上的两个周期函数,f(x)的周期为4,g(x)的 周期为2,且f(x)是奇函数.当x∈(0,2]时,f(x)=,g(x)= 其中k>0.若在区间(0,9]上,关于x的方程f(x)=g(x)有8个不同的实数根,则k的取值范围是. 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(14分)在△ABC中,角A,B,C的对边分别为a,b,c. (1)若a=3c,b=,cos B=,求c的值; (2)若=,求sin(B+)的值. 16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1; (2)BE⊥C1E.

北京市人大附中2021届高三上学期10月月考数学试题含答案

人大附中2021届高三第一学期10月月考 数学试卷 一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目 要求的一项。 01.已知集合 {} {1,0,1},1 A B x N x =-=∈< ,则A B= A. {-1,0} B. {0,1} C. {0} D. Φ 02.已知命题 :(0,),ln0 P x x x ?∈+∞+<,则P?为 A. (0,),ln0 x x x ?∈+∞+< B. (0,),ln0 x x x ??+∞+≥ C. (0,),ln0 x x x ?∈+∞+≥ D. (0,),ln0 x x x ??+∞+≥ 03.已知点 5 (2cos1) 6 P π , 是角α终边上一点,则sinα= A.1 2 B. 2 C. 1 2 - D. 2 2 - 04.已知向量a=(1,1),b(2,-1),若(λa+2b)∥(a-b),则实数λ= A. 8 B. -8 C. 2 D. -2 05.以下选项中,满足log2log2 a b > 的是 A. a=2,b=4 B. a=8,b=4

C.1 ,8 4a b == D. 11 ,24a b == 06.下列函数中,既是奇函数又在区间(-1,1)内是增函数的是 A. ()33f x x x =- B. f (x )=sin x C. 1()ln 1x f x x -=+ D. ()x x f x e e -=+ 07.已知方程2 10x ax +-=在区间[0,1]上有解,则实数a 的取值范围是 A. [0,+∞) B.(-∞,0] C. (-∞,-2] D. [-2,0] 08.已知a 是非零向量,m 为实数,则“ a m =”是“22 a m =”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 09.已知a >0,若函数 31 ,1()1,1x ax x x f x a x -?-≤?=?->??有最小值,则实数a 的取值范围是 A. (1,+∞) B. [1,+∞) C. (1 2,+∞) D. [1 2,+∞) 10.定义在[1,+∞)上的函数f (x )满足,当0≤x ≤π时,f (x )=sin x ;当x ≥π时,f (x )=2f (x -π)若方程f (x )-x +m =0在区间[0,5π]上恰有3个不同的实根,则m 的所有可能取值集合是 A. 4[0, 3π B. 4(0, 3π C. 4[0, [343π ππ,) D. 4[0, (343π ππ,) 二、填空题共5小题每小题5分,共25分。请将答案全部填写在答题卡上。

全国高考江苏省数学试卷及答案【精校版】

江苏高考数学试题 数学Ⅰ试题 参考公式: 圆柱的侧面积公式:S 圆柱=cl , 其中c 是圆柱底面的周长,l 为母线长. 圆柱的体积公式:V 圆柱=Sh ,其中S 是圆柱的底面积,h 为高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上. . 1.已知集合{2134}A =--,,,,{123}B =-,,,则A B =I . 【答案】{13}-, 2.已知复数2(52)z i =+(i 为虚数单位),则z 的实部为 . 【答案】21 3.右图是一个算法流程图,则输出的n 的值是 . 【答案】5 4.从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的 概率是 . 【答案】13 5.已知函数cos y x =与sin(2)(0)y x ??=+<π≤,它们的图象有一个横坐标为 3 π 的交点,则?的值是 . 【答案】 6 π 6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24 7.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+, 则6a 的值是 .

【答案】4 8.设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且 1294S S =,则12V V 的值是 . 【答案】32 9.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 . 255 10.已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是 . 【答案】202?? ??? 11.在平面直角坐标系xOy 中,若曲线2b y ax x =+(a b ,为常数)过点(25)P -,,且该曲线在 点P 处的切线与直线7230x y ++=平行,则a b +的值是 . 【答案】3- 12.如图,在平行四边形ABCD 中,已知,85AB AD ==,, 32CP PD AP BP =?=u u u r u u u r u u u r u u u r ,,则AB AD ?u u u r u u u r 的 值是 . 【答案】22 13.已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21 ()22 f x x x =-+.若函 数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是 . 【答案】() 102 , 14.若ABC ?的内角满足sin 22sin A B C =,则cos C 的最小值是 . 62-二、解答题:本大题共6小题, 共计90 分. 请在答题卡指定区域内........ 作答, 解答时应写出文字

苏州中学2021届10月月考高三数学试卷

2 2 4 5 2 江苏省苏州中学2020-2021学年第一学期调研考试 高三数学 一、 单项选择题:本题共 8 小题,每小题 5 分,共 40 分. 1.已知集合A ={x |x 2 -x -2≤0} ,B ={ x |y = x } ,则A B =( ) A.{x |-1≤x ≤2} B.{x |0≤x ≤2} C.{x |x ≥-1} D. {x | x ≥ 0} ? π? 3 ? π? 2.已知sin α- ?= ,α∈ 0, ?, 则 cos α=() ? ? ? ? A. B. 10 10 C. D. 2 10 3 若 b b ;② a +b 0,b >0) 的图象在点(1,f (1)) 处的切线斜率为 2, 8a +b 则 的最小值是() ab A .10 B .9 C .8 D .3 5 Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数 I (t ) (t 的单位:天)的 Logistic 模型: I (t )= K 1+e -0.23(t -53) ,其中 K 为最大确诊病例数.当 I (t * ) = 0.95K 时,标志着已初步 遏制疫情,则 t * 约为( ) (ln19 ≈ 3) A .60 B .63 C .66 D .69 3 2 72 2 2

2018年江苏省高考数学试卷

( ( ( 2018年江苏省高考数学试卷 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.5.00分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩B=.2.5.00分)若复数z满足i?z=1+2i,其中i是虚数单位,则z的实部为.3.(5.00分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为. 4.(5.00分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为. 5.(5.00分)函数f(x)=的定义域为. 6.5.00分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为. 7.(5.00分)已知函数y=sin(2x+φ)(﹣ 称,则φ的值为. φ<)的图象关于直线x=对8.(5.00分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.9.(5.00分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,

( f (x )= ,则 f (f (15))的值为 . 10. (5.00 分)如图所示,正方体的棱长为 2,以其所有面的中心为顶点的多面 体的体积为 . 11. (5.00 分)若函数 f (x )=2x 3﹣ax 2+1(a ∈R )在(0,+∞)内有且只有一个 零点,则 f (x )在[﹣1,1]上的最大值与最小值的和为 . 12. 5.00 分)在平面直角坐标系 xOy 中,A 为直线 l :y=2x 上在第一象限内的点, B (5,0) ,以 AB 为直径的圆 C 与直线 l 交于另一点 D .若 =0,则点 A 的 横坐标为 . 13. (5.00 分)在△ABC 中,角 A ,B ,C 所对的边分别为 a ,b ,c ,∠ABC=120°, ∠ABC 的平分线交 AC 于点 D ,且 BD=1,则 4a +c 的最小值为 . 14. (5.00 分)已知集合 A={x |x=2n ﹣1,n ∈N*},B={x |x=2n ,n ∈N*}.将 A ∪B 的所有元素从小到大依次排列构成一个数列{a n },记 S n 为数列{a n }的前 n 项和, 则使得 S n >12a n +1 成立的 n 的最小值为 . 二、解答题:本大题共 6 小题,共计 90 分.请在答题卡指定区域内作答,解答时 应写出文字说明、证明过程或演算步骤 . 15. (14.00 分)在平行六面体 ABCD ﹣A 1B 1C 1D 1 中,AA 1=AB ,AB 1⊥B 1C 1. 求证:(1)AB ∥平面 A 1B 1C ; (2)平面 ABB 1A 1⊥平面 A 1BC .

2017年江苏高考数学试卷

年江苏省高考数学试卷2017 填空题一. 2a2},B={a,∩+3}.若AB={1},则实数a .的值为,已知集合.1(5分)A={1 2.(5分)已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是.3.(5分)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件. 4.(5分)如图是一个算法流程图:若输入x的值为,则输出y的值 是. 5.(5分)若tan(α﹣)=.则tanα=. 6.(5分)如图,在圆柱OO内有一个球O,该球与圆柱的上、下底面及母线均21 相切,记圆柱OO的体积为V,球O的体积为V,则的值是.2112

7.(5分)记函数f(x)=定义域为D.在区间[﹣4,5]上随机取一个数第1页(共31页) .x,则x∈D的概率是 2的右准线与它的两条渐﹣y=1(5分)在平面直角坐标系xOy中,双曲线8.PFQ 的面积是.,其焦点是近线分别交于点P,QF,F,则四边形F2112 9.(5分)等比数列{a}的各项均为实数,其前n项和为S,已知S=,S=,63nn.a=则8次,万元/吨,每次购买x运费为610.(5分)某公司一年购买某种货物600吨,x4x万元.要使一年的总运费与总存储费用之和最小,则一年的总存储费用为.的值是 x3af(,其中e=xe﹣2x+是自然对数的底数.若﹣11.(5分)已知函数f(x)2)≤0.则实数a的取值范围是(2a .﹣1)+f 12.(5分)如图,在同一个平面内,向量,,的模分别为1,1,,

[历年真题]2016年江苏省高考数学试卷

2016年江苏省高考数学试卷 一、填空题(共14小题,每小题5分,满分70分) 1.(5分)已知集合A={﹣1,2,3,6},B={x|﹣2<x<3},则A∩B=. 2.(5分)复数z=(1+2i)(3﹣i),其中i为虚数单位,则z的实部是. 3.(5分)在平面直角坐标系xOy中,双曲线﹣=1的焦距是. 4.(5分)已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是. 5.(5分)函数y=的定义域是. 6.(5分)如图是一个算法的流程图,则输出的a的值是. 7.(5分)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.8.(5分)已知{a n}是等差数列,S n是其前n项和,若a1+a22=﹣3,S5=10,则a9的值是. 9.(5分)定义在区间[0,3π]上的函数y=sin2x的图象与y=cosx的图象的交点个数是. 10.(5分)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是.

11.(5分)设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1)上,f(x)=,其中a∈R,若f(﹣)=f(),则f(5a)的值是.12.(5分)已知实数x,y满足,则x2+y2的取值范围是. 13.(5分)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,?=4,?=﹣1,则?的值是. 14.(5分)在锐角三角形ABC中,若sinA=2sinBsinC,则tanAtanBtanC的最小值是. 二、解答题(共6小题,满分90分) 15.(14分)在△ABC中,AC=6,cosB=,C=. (1)求AB的长; (2)求cos(A﹣)的值. 16.(14分)如图,在直三棱柱ABC﹣A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.求证: (1)直线DE∥平面A1C1F; (2)平面B1DE⊥平面A1C1F.

2018年江苏省高考数学试卷及解析

2018年江苏省高考数学试卷 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.(5.00分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩ B= . 2.(5.00分)若复数z满足i?z=1+2i,其中i是虚数单位,则z的实部为. 3.(5.00分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为. 4.(5.00分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为. 5.(5.00分)函数f(x)=的定义域为. 6.(5.00分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为. 1

7.(5.00分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对 称,则φ 的值为. 8.(5.00分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.9.(5.00分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为. 10.(5.00分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为. 11.(5.00分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为. 12.(5.00分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为. 13.(5.00分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为. 2

2019届高三数学10月月考试题文 (II)

2019届高三数学10月月考试题文 (II) 一、选择题:(本大题共12小题,每小题5分,共60分) 1.已知集合{}{} 21,0,1,2,3,20,A B x x x =-=->则A B =( ) A.{}3 B.{}2,3 C.{}1,3- D.{}1,2,3 2. 已知复数2 1i z = -,给出下列四个结论:①2z =;②22i z =;③z 的共轭复数1i z =-+;④z 的虚部为i .其中正确结论的个数是( ) A .0 B .1 C .2 D .3 3.下列关于命题的说法错误的是( ) A.命题“若2320x x -+=,则2x =”的逆否命题为“若2x ≠,则2 320x x -+≠” B.“2a =”是“函数()log a f x x =在区间()0,+∞上为增函数”的充分不必要条件 C.命题“0x R ?∈,使得20010x x ++<”的否定是“x R ?∈,均有2 10x x ++≥” D.“若0x 为()y f x =的极值点,则()00f x '=”的逆命题为真命题 4.已知等差数列 的前项和为,若 ,则 ( ) A . 36 B . 72 C . 144 D . 288 5.已知函数()y f x =在区间(),0-∞内单调递增,且()()f x f x -=,若 ()1.2121log 3,2,2a f b f c f -???? === ? ????? ,则,,a b c 的大小关系为( ) A.a c b >> B.b c a >> C.b a c >> D.a b c >> 6.把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A -BCD 的正视图与俯视图如图所示,则其侧视图的面积为( ) A. 22 B.1 2 C.2 4 D.1 4

2019届高三数学10月月考试题理无答案

2019届高三数学10月月考试题理无答案 一、选择题:本卷共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项 是符合题目要求的。 1.已知全集=U R ,{|1},{|2},M x x P x x =≤=≥ 则()U M P = A.{|12}x x << B.{|1}x x ≥ C.{|2}x x ≤ D.{|12}x x x ≤≥或 2.计算: 55sin 175cos 55cos 5sin -的结果是( ) A. 21- B. 21 C. 23- D. 23 3.等差数列{}n a 的前n 项和为n S ,若12a =,312S =,则7S 等于( ) A .14 B .28 C .56 D .112 4.已知命题p :(,0)x ?∈-∞使23x x <;命题q :(0, )2x π?∈,都有tan sin x x >,下列命 题为真命题的是 A p q ∧ B ()p q ?∨ C ()p q ?∧ D ()p q ?∧ 5. 下列函数中为偶函数且在(0,)+∞上是增函数的是( ) A. 12x y ??= ??? B. ln y x = C. 22x y x =+ D. 2x y -= 6. 已知函数2,4()(1),4 x x f x f x x ?≥=?+的图象如图所示,则函数log ()a y x b =+的图象可能是

A B C D 8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽 车在不同速度下的燃油效率情况. 下列叙述中正确的是 A .消耗1升汽油,乙车最多可行驶5千米 C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油 D .某市机动车最高限速80千米/小时.相同条件下在该市用丙车比用乙车更省油 二、填空题:本大题共6小题,每小题5分,共30分. 9. 2 1i =+_____ . 10.在ABC ?中,1a =,2b =,1cos 4 C = ,则c = sin A = . 11.已知不等式||1x m -<成立的充分不必要条件是1132x <<,则实数m 的取值范围是 12.将函数sin 2y x =的图象上所有的点向右平行移动10π 个单位长度,再把所得各点的横坐 标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是 13.设向量)cos 3,1(),1,(cos θθ==b a ,且b a //,则θ2cos = . 14.定义一种运算 12341423(,)(,)a a a a a a a a ?=- , 将函数()(3,2sin )(cos ,cos 2)f x x x x =?的图象向左平移n(n>0)个单位长度,所得图象对应的函数为偶函数,则n 的最小值为_______. 三、解答题:本大题共6小题,共80分。解答应写出文字说明,演算步骤或证明过

相关主题
相关文档 最新文档