控轧控冷1
- 格式:ppt
- 大小:9.39 MB
- 文档页数:98
材料的控轧控冷工艺
材料的控轧控冷工艺是一种通过控制轧制和冷却过程来改善材料的性能和结构的工艺。
这种工艺通常用于金属材料的加工,如钢铁等。
控轧是指在轧制过程中通过调节轧制温度、变形量和变形速度等参数,以控制材料的晶粒尺寸、组织结构和相变行为。
控轧可以使材料获得较细小的晶粒、均匀的组织和良好的力学性能。
控冷是指在轧制后通过冷却过程来控制材料的组织和性能。
控冷可以通过快速冷却或退火处理来改变材料的硬度、韧性和晶粒尺寸等特性。
控冷可以用于控制材料的相变行为,如马氏体转变和析出行为。
控轧控冷工艺的主要目的是优化材料的性能和结构,以适应特定的应用要求。
这种工艺可以改善材料的硬度、韧性、强度和耐腐蚀性等性能,并提高材料的加工性能和可焊性。
控轧控冷工艺广泛应用于金属制造、建筑、汽车、航空航天等领域,以满足不同材料对性能和结构的要求。
该工艺的应用可以提高材料的品质和成本效益,并推动材料的技术进步和创新。
控轧控冷工艺的发展及应用摘要控轧控冷工艺是把钢坯加热到适宜的温度,轧制时控制变形量和变形温度及轧后按工艺要求来冷却钢材。
控轧主要用于轧制细晶粒结构钢,主要原理是在终轧后当钢板在轧机上运行至“再结晶”完成的温度时,选用合适水冷方式获得理想延展性和韧性。
关键词变形量变形温度再结晶1 前言1.1 控轧控冷就是控制轧制和控制冷却,也叫TMCP(热机械变形轧制)+ACC。
比较适合于低碳微合金钢,特别是Nb、V 、Ti复合的。
1.2 控制轧制:是在调整钢的化学成分的基础上,通过控制加热温度、开轧温度,轧制过程温度、变形制度等工艺参数,控制奥氏体状态和相变产物的组织状态,从而达到控制钢材组织性能的目的.1.3 控制冷却:是通过控制热轧钢材轧后的冷却条件来控制奥氏体组织状态、控制相变条件、控制碳化物析出行为、控制相变后钢的组织和性能。
1.4 TMCP:控制轧制和控制冷却技术结合起来,能够进一步提高钢材的强韧性和获得合理的综合性能,并能够降低合金元素含量和碳含量,降低生产成本。
通过控轧控冷生产工艺可以使钢板的抗拉强度和屈服强度平均提高约40~60MPa,在低温韧性、焊接性能、节能、降低碳当量、节省合金元素以及冷却均匀性、保持良好板形方面都有无可比拟的优越性。
2 发展历程2.1 控轧控冷工艺主要是用于生产板材的技术。
该技术的核心是在轧制过程中通过控制加热温度、轧制过程、冷却条件等工艺参数,改善钢材的强度、韧性、焊接性能。
2.2 控制轧制工艺主要用于含有微量元素的低碳钢种,钢中常含有铌、钒、钛,其总量一般小于0.1%。
依据《塑性变形和轧制原理》控制轧制的内容是控制轧制参数,包括温度、变形量等,以控制再结晶过程,获得所要求的组织和性能。
根据塑性变形、再结晶和相变条件,控制轧制可分为三阶段,如下所述。
(1)在奥氏体再结晶区控制轧制:适用于轧制低碳优质钢普通碳素钢低合金高强度钢。
(2)在奥氏体未再结晶区控制轧制:适用于轧制含有微量合金元素的低碳钢,如含铌钛钒得低碳钢。
钢材控轧控冷工艺的原理钢材的控轧控冷工艺是一种重要的热处理工艺,它通过对钢材的热轧与冷处理过程进行精细控制,以实现对钢材组织和性能的调控。
钢材的控轧控冷工艺包括控轧与控冷两个方面。
控轧是指通过控制轧制温度、轧制速度、轧制负荷、轧制压力等工艺参数,来改变钢材的变形程度、变形速度和变形温度,在轧制过程中对钢材进行组织和性能的调控。
控轧工艺的原理主要包括以下几个方面:1.塑性变形原理:钢材在热轧过程中通过塑性变形来改变其晶粒结构和形态。
通过适当的控制轧制压力、轧制温度和变形程度,可以使钢材的晶粒细化,形成高强钢材的组织。
2.回火效应:控轧工艺中的控制冷却速率可以影响钢材的相变行为和形成的组织结构。
适当选择冷却速率可以实现奥氏体转变为铁素体,从而改善钢材的韧性,并且减少钢材的残余应力。
3.相变控制:控轧工艺可以通过控制变形温度和轧制速度来控制钢材的相变行为,例如马氏体相变。
通过选择合适的变形温度和轧制速度,可以实现马氏体的形成和相变产生的显微组织调控,从而获得高强度、高韧性的材料。
4.微量元素控制:在控轧工艺中,添加适量的微量合金元素可以改变钢材的组织和性能。
例如添加微量的硼元素可以细化晶粒,改善钢材的塑性和韧性。
控冷工艺是控制钢材在冷却过程中的温度和冷却速度,以实现对钢材组织和性能的调控。
控冷工艺的原理主要包括以下几个方面:1.相变控制:钢材的冷却速率会影响其相变行为和相变产物的组织结构。
通过控制冷却速率,可以实现奥氏体向铁素体的转变,形成细小的铁素体晶粒和均匀的组织结构。
2.马氏体相变控制:通过控制冷却速率,可以控制钢材从奥氏体向马氏体的相变行为。
适当调节冷却速度、冷却温度和冷却介质,可以实现马氏体的形成和马氏体组织的调控,从而获得高强度、高硬度的材料。
3.淬火与回火控制:控冷工艺还可以通过控制钢材的淬火和回火工艺参数,来调控钢材的组织和性能。
适当的淬火工艺可以实现钢材的高强度、高硬度,而回火工艺可以降低钢材的脆性和残余应力。
控轧控冷工艺基本原理控轧控冷工艺是一种通过控制轧制和冷却条件来调控钢材的组织和性能的加工工艺。
其基本原理是通过控制轧制温度、变形程度和冷却速度等参数,实现对钢材组织和性能的调控。
1. 控轧工艺原理控轧是指在钢材的轧制过程中,通过调整轧制温度和变形程度等参数,控制其组织和性能的加工工艺。
控轧工艺的基本原理是通过控制轧制温度和变形程度,调整钢材的晶粒度、相组成和形貌等因素,从而实现对钢材性能的调控。
在控轧过程中,调整轧制温度可以影响钢材的晶粒度和相组成。
通过控制轧制温度的高低,可以实现晶粒细化或粗化,进而影响钢材的力学性能和韧性。
同时,调整轧制温度还可以改变钢材中的相组成,如奥氏体、铁素体和贝氏体等的含量和分布,从而调节钢材的强度、硬度和耐腐蚀性能。
控轧过程中的变形程度也对钢材的组织和性能产生重要影响。
通过控制变形程度,可以实现钢材的晶粒细化、相变和组织调控。
在轧制过程中,钢材受到外力的变形,晶粒会发生形变和细化,从而提高钢材的强度和韧性。
同时,变形程度还可以引起钢材中的相变,如奥氏体向铁素体的相变,进一步改善钢材的性能。
2. 控冷工艺原理控冷是指在钢材的冷却过程中,通过调整冷却速度和冷却方式等参数,控制其组织和性能的加工工艺。
控冷工艺的基本原理是通过控制冷却速度,调整钢材的组织和性能。
在控冷过程中,调整冷却速度可以影响钢材的相组成和组织形貌。
通过控制冷却速度的快慢,可以实现钢材中相的相变和组织的调控。
当冷却速度较快时,钢材中的相变会受到限制,从而形成细小的相和均匀的组织。
相反,当冷却速度较慢时,钢材中的相变会较为充分,形成较大的相和不均匀的组织。
不同的冷却速度会影响钢材的强度、硬度和韧性等性能。
控冷过程中的冷却方式也会对钢材的组织和性能产生影响。
不同的冷却方式,如空冷、水冷、油冷等,具有不同的冷却速度和冷却效果。
通过选择合适的冷却方式,可以实现钢材组织的定向调控,从而达到钢材性能的要求。
3. 控轧控冷工艺的应用控轧控冷工艺广泛应用于钢材的生产和加工过程中。
控轧与控冷一:名词解释控制轧制:是指在热轧过程中通加热制度,变形制度,温度制度的合理控制,使钢材具有优异综合理学性能的轧制新工艺。
控制冷却:是指控制轧后钢材的冷却速度达到改善组织和性能的目的。
金属强化:通过合金化,塑性变形,和热处理等手段提高金属材料的强度。
韧性:材料在断裂前在塑性变形和裂纹扩展时吸收能量的能力。
铁素体:铁或其内固溶体有一种或数种其他元素形成的体心立方固溶体。
奥氏体:γ铁内固溶有碳和其他元素的面立方固溶体。
贝氏体:钢在奥氏体化后被过冷到珠光体转变温度一下,马氏体转变温度以上这一中间温度区间,转变而成的有铁素体及其内分布着弥散的碳化物形成的亚稳定结构。
IF钢:又称无间隙,由于C,N含量低,在加入一定量TI,Nb使钢背固定成碳化物,氮化物或者碳氮化物,从而使钢无间隙存在。
不锈钢:在腐蚀介质中有良好的耐腐蚀性的钢。
双相钢:由马氏体或奥氏体基本两相组织构成的钢。
再结晶:经冷塑性变形的金属超过一定加热温度时,通过形核长大形成等轴晶粒无畸变新晶粒过程。
在线常化:在热轧无缝钢生产中,在轧管延伸工序后,将钢管按常化处理要求冷却到某一温度后,再进行加热炉生产,然后进行减轻轧制,按照一定冷却速度冷却至常温。
1·控制轧制与普通轧制的区别答:可以充分发挥微量元素的作用起沉淀强化,细化晶粒的作用;提高钢的强度的同时题干钢的韧性;降低了终轧温度,采用较低的卷曲温度,课消除或减少板卷头部,中部和尾部的强度差;采用低温大压下细化低碳钢的铁素体晶粒,提高强韧性。
2·控制冷却的目的答:节约冷床面积;防止或减轻转型材的翘曲和弯曲;降低残余应力;提高型材的力学性能及改善组织状态,简化生产工艺。
3·影响材料强韧性的因素答:化学成分;气体夹杂物;晶粒尺寸;沉淀析出;形变;相变组织等的影响。
其中气体夹杂物对韧性有害,晶粒越小,材料韧性越好。
4·提高材料强韧性的措施答:晶粒细化;冶炼:采用真空搅拌,减少有害成分;控扎:使形变强化,提高材料强韧性;热处理:阻止晶粒长大,使晶粒细化,提高强韧性。
绪论控轧、控冷的含义:控轧—控制钢的加热温度、速度,开、终轧温度,轧制变形率和变形速率,使塑性变形和动态相变相结合,又称形变热处理。
控冷—控制轧后冷却速度,使其通过相变得到所需的组织和晶粒度,以及第二相粒子的析出。
控轧、空冷相结合可提高钢的强度和韧性。
1. 控轧、控冷是挖掘钢的潜力,开发新产品的有利武器2. 控轧、控冷又叫形变热处理,不同于常规热处理,是形变和相变的有机结合,利用轧制余热在线热处理可节约能源,缩短工期,提高经济效益。
3. 是连铸连轧柔性生产系统的组成部分。
控轧控冷是一个系统工程,涉及钢的成份控制,纯净度控制,铸造组织控制,温度控制,变形控制,相变控制,必须系列优化综合考虑。
控轧、控冷的理论基础是传热学、塑性加工力学、塑性加工金属学、流体力学。
第一章钢的强化和韧性第一节钢的强化机制固溶强化、位错强化、沉淀强化、(晶界强化、亚晶强化)、细晶强化、相变强化钢的强化反映其内能的提高金属塑性变形机理是位错运动,位错运动阻力越大σs越高。
金属断裂是由于裂纹源的扩展,金属内部越致密,原子结合强度越高σb越高。
1、固溶强化铁和碳的相互作用表现为两方面:1、形成固溶体;2、形成化合物(1)固溶体:就是固体溶液,是溶质原子溶入溶剂中所形成的晶体,保持溶剂元素的晶体结构。
(2)固溶体的分类:置换固溶体和间隙固溶体晶格扭曲,内能增加,强度增加。
运动的位错和异质原子相互作用使强度提高。
(给位错移动增加点状障碍物)固溶强化的规律(1)溶质元素溶解量增加,固溶体的强度也增加例如:对于无限固溶体,当溶质原子浓度为50%时强度最大;而对于有限固溶体,其强度随溶质元素溶解量增加而增大(2)溶质元素在溶剂中的饱和溶解度愈小,其固溶强化效果愈好。
(3)形成间隙固溶体的溶质元素(如C、N、B等元素在Fe中)其强化作用大于形成置换固溶体(如Mn、Si、P等元素在Fe中)的溶质元素。
但对韧性、塑性的削弱也很显著,而置换式固溶强化却基本不削弱基体的韧性和塑性。
控轧与控冷1钢的强化和韧化1.1钢的强化机制通过合金化、塑性变形和热处理等手段提高金属强度的方法称为金属的强化。
金属学方面可应用的强化机制可以有以下几种:置换的或间隙固溶的异质原子以点状障碍物的形式起作用(固溶强化、激冷强化);位错以线状障碍物形式起作用(通过冷加工变形的强化);晶粒界作为面状的障碍物形式起作用(通过晶粒细化);非内聚的析出和内聚的析出显示为空间障碍物形式起作用(弥散强化、沉淀强化)。
1.1.1固溶强化要提高金属的强度可使金属与另一种金属(或非金属)形成固溶体合金。
固溶体合金或以固溶体为基的合金(如碳钢等)一般具有较纯金属高的强度。
这种采用添加溶质元素使固溶体强度升高的现象称为固溶强化。
钢中最主要的合金元素Mn、Si、Cr、Ni、Cu和P都能构成置换固溶体,并促使屈服强度和抗拉强度呈线性增加。
除了置换元素外,C、N等元素在Fe中形成间隙固溶体,但它们在铁中的溶解度都很低,而且随着温度的下降而大大下降。
因此C、N在固溶含量内对屈服强度和抗拉强度的增长影响都很小。
假定合金元素的叠加作用呈线性关系,就可以列出下式用以计算由化学成分引起的强度值。
屈服强度σS(MPa)=9.8{12.4+28C+8.4Mn+5.6Si+5.5Cr+4.5Ni+8.0Cu+55P+[3.0-0.2(h-5)]}抗拉强度σb(MPa)=9.8{23.0+70C+8.0Mn+9.2Si+7.4Cr+3.4Ni+5.7Cu+46P+[2.1-0.14(h-5)]}式中h为产品厚度,各元素含量以百分含量代入。
根据大量的实验结果可得到下表1-1的数据。
1.1.2位错强化图1-1表明实际晶体的强度比理论晶体小得多,但同时随着晶内缺陷或晶格崎变的程度的增加而使强度提高。
塑性变形意味着在位错运动之外还不断形成新的位错,因此位错密度值随着变形而不断提高,一直可达到1012/cm 2。
如果要继续塑性变形就要提高应力值,也就是说材料被加工硬化了。