复旦大学2012-2013数学分析B下B卷
- 格式:docx
- 大小:179.93 KB
- 文档页数:5
高等数学下_复旦大学出版_习题十答案详解习题十21. 根据二重积分性质,比较与的大小,其中:ln()dxy,,[ln()]dxy,,,,,,DD(1)D表示以(0,1),(1,0),(1,1)为顶点的三角形;(2)D表示矩形区域. {(,)|35,02}xyxy,,,,解:(1)区域D如图10-1所示,由于区域D夹在直线x+y=1与x+y=2之间,显然有图10-112,,,xy从而 0ln()1,,,xy2故有 ln()[ln()]xyxy,,,2所以 ln()d[ln()]dxyxy,,,,,,,,,DD(2)区域D如图10-2所示.显然,当时,有. (,)xyD,xy,,3图10-2 从而 ln(x+y)>12故有 ln()[ln()]xyxy,,,2所以 ln()d[ln()]dxyxy,,,,,,,,,DD2. 根据二重积分性质,估计下列积分的值: (1); IxyDxyxy,,,,,,,4d,{(,)|02,02},,,D22(2); IxyDxyxy,,,,,,sinsind,{(,)|0,π,0π},,D 2222(3). IxyDxyxy,,,,,,(49)d,{(,)|4},,,D 解:(1)因为当(,)xyD,时,有, 02,,y 02,,x206因而 . 04,,xy从而 2422,,,xy故 2d4d22d,,,,,,xy,,,,,,DDD即 2d4d22d,,,,,,xy,,,,,,DDD而 (为区域D的面积),由=4 σσd,,,,,D得 . 84d82,,,xy,,,D22(2) 因为,从而 0sin1,0sin1,,,,xy22 0sinsin1,,xy22故 0dsinsind1d,,,,,xy,,,,,,DDD22即 0sinsindd,,,xy,,,,,,,DD2而 ,,π222所以 0sinsind,,xy,π,,D22(3)因为当时,所以 (,)xyD,04,,,xy2222 9494()925,,,,,,,xyxy22故 9d(49)d25d,,,,,,,xy,,,,,,DDD22即 9(49)d25,,,,,,,xy,,D2而 ,,,,π24π22所以 36π,,,,(49)d100xy,π,,D3. 根据二重积分的几何意义,确定下列积分的值:22222(1) ()d,{(,)|};axyDxyxya,,,,,,,,D222222(2) axyDxyxya,,,,,d,{(,)|}.,,,D22解:(1)在几何上表示以D为底,以z轴为轴,以(0,0,a)为顶点的圆锥的体积,所以()d,axy,,,,,D2071223 axya,,,,()dπ,,D3222(2)在几何上表示以原点(0,0,0)为圆心,以a为半径的上半球的体积,故axy,,d,,,D22223 axya,,,,dπ.,,D312224. 设f(x,y)为连续函数,求.fxyDxyxxyyr,,,,,,lim(,)d,{(,)|()()}00,,2Dr,0rπ解:因为f(x,y)为连续函数,由二重积分的中值定理得,使得,,(,),,,D2 fxyfrf(,)d(,),,,,,,,,,,π(,),,D又由于D是以(x)为圆心,r为半径的圆盘,所以当时,,y(,)(,),,,,xyr,00000112fxyrff,,,,,,,,lim(,)dlimπ(,)lim(,)22,,Drrr,,,000rrππ于是: ,,ffxylim(,)(,),,00,,,xy(,)(,)005. 画出积分区域,把化为累次积分: fxy(,)d,,,D(1); Dxyxyyxy,,,,,,{(,)|1,1,0}2(2) Dxyyxxy,,,,{(,)|2,}2(3) Dxyyyxx,,,,{(,)|,2,2}x解:(1)区域D如图10-3所示,D亦可表示为. yxyy,,,,,,11,0111,y所以 fxyyfxyx(,)dd(,)d,,,,,,Dy01,22(2) 区域D如图10-4所示,直线y=x-2与抛物线x=y的交点为(1,-1),(4,2),区域D可表示为 . yxyy,,,,,,2,12图10-3 图10-422y,所以 fxyyfxyx(,)dd(,)d,,2,,,,Dy,122(3)区域D如图10-5所示,直线y=2x与曲线的交点(1,2),与x=2的交点为(2,4),曲线与x=2的交点为(2,1),区域Dy,y,xx2082可表示为 ,,,,yxx2,12.x图10-522x所以. fxyxfxyy(,)dd(,)d,,2,,,,D1x6. 画出积分区域,改变累次积分的积分次序:22yelnx(1); (2) ; d(,)dyfxyxd(,)dxfxyy2,,,,0y10πsinx132,y(3) ; (4) ; d(,)dxfxyyd(,)dyfxyxx,,,,,0sin0y21233yy,(5) . d(,)dd(,)dyfxyyyfxyx,,,,,00102解:(1)相应二重保健的积分区域为D:如图10-6所示. 02,2.,,,,yyxy图10-6xD亦可表示为: 04,.,,,,xyx2224yx所以d(,)dd(,)d.yfxyxxfxyy, x2,,,,00y2(2) 相应二重积分的积分区域D:1e,0ln.,,,,xyx如图10-7所示.图10-7209yD亦可表示为: 01,ee,,,,,yxeln1ex所以 d(,)dd(,)dxfxyyyfxyx,y,,,,100e(3) 相应二重积分的积分区域D为:如图10-8所示. 01,32,,,,,,yyxy图10-8 D亦可看成D与D的和,其中 122D: 01,0,,,,,xyx11D: 13,0(3).,,,,,xyx2212,,yxx13213(3)2所以. d(,)dd(,)dd(,)dyfxyxxfxyyxfxyy,,,,,,,,y00010 x(4) 相应二重积分的积分区域D为:如图10-9所示. 0,,,,,xyxπ,sinsin.2图10-9 D亦可看成由D与D两部分之和,其中 12D: ,,,,,,10,2arcsinyyxπ;1D: 01,arcsin,,,,,yyxyπarcsin.2πsin0xyπ1π,arcsin所以d(,)dd(,)dd(,)dxfxyyyfxyxyfxyx,,x,,,,,,0sin12arcsin0arcsin,,,yy2(5) 相应二重积分的积分区域D由D与D两部分组成,其中 12D:01,02,,,,,yxy D:13,03.,,,,,yxy 12如图10-10所示.210图10-10xD亦可表示为: 02,3;,,,,,xyx2123323yyx,,所以 d,dd(,)dd(,)dyfxyxyfxyxxfxyy,,,,x,,,,,,0010027. 求下列立体体积:2222(1)旋转抛物面z=x+y,平面z=0与柱面x+y=ax所围;222(2)旋转抛物面z=x+y,柱面y=x及平面y=1和z=0所围.解:(1)由二重积分的几何意义知,所围立体的体积2222V=其中D: {(,)|}xyxyax,,()ddxyxy,,,D22由被积函数及积分区域的对称性知,V=2, ()ddxyxy,,,D1其中D为D在第一象限的部分.利用极坐标计算上述二重积分得 1acos,πππacos,11334444222. Vrrraa,,,,,,,,2dd2dcosdπ,,,,000042320(2) 由二重积分的几何意义知,所围立体的体积22 Vxyxy,,()dd,,,D2其中积分区域D为xOy面上由曲线y=x及直线y=1所围成的区域,如图10-11所示.图10-112D可表示为: ,,,,,11,1.xxy112222所以 Vxyxyxxyy,,,,()ddd()d2,,,,Dx,111111188,,23246 xyyxxxxx,,,,,,,d()d.,,,,,,112333105,,x8. 计算下列二重积分:2112x1(1) dd,:12,;xyDxyx,,,,,,2Dyxxy2(2) D由抛物线y=x,直线x=0与y=1所围; edd,xy,,D22(3) D是以O(0,0),A(1,-1),B(1,1)为顶点的三角形; xyxy,dd,,,D . (4) cos()dd,{(,)|0xyxyDxyxxy,,,,,,π,π},,Dx222222xxxx3解:(1) ddddddxyxyxxxx,,,,,,,1,,,,,,22111Dyyy1xx2119,,42 ,,,xx.,,424,,1(2) 积分区域D如图10-12所示.图10-122D可表示为: 01,0.,,,,yxyxxx2211yyxyyy所示 edddedded()xyyxyy,,,,,,,,0000Dy2yx1111yyy ,,,,,yyyyyyyyed(e1)dedd,,,,000001111111yyy2 ,,,,,,yyyyyydedeed.,,,0000220(3) 积分区域D如图10-13所示.212图10-13 D可表示为: 01,.,,,,,xxyxx211x,,xyy222222所以ddddarcsindxyxyxxyyxyx,,,,,,,,,,,,,,00Dx22x,,,x11ππ1π23 ,,,,xxxd.,022360ππππ(4)cos()dddcos()d[sin()]dxyxyxxyyxyx,,,,,x,,,,,Dx00ππ,,,,,,[sin(πxxxxxx)sin2]d(sinsin2)d ,,00π11,,,,.coscos2xx,,,2,,209. 计算下列二次积分:1ysinx(1)dd;yx,,0yx yy1yy1xx2(2)dedded.yxyx,111,,,,y224sinx解:(1)因为求不出来,故应改变积分次序。
2014 -——2015学年度第二学期《数学分析2》A试卷学院班级学号(后两位)姓名一.判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉)1。
若在连续,则在上的不定积分可表为().2.若为连续函数,则()。
3。
若绝对收敛,条件收敛,则必然条件收敛().4。
若收敛,则必有级数收敛( )5. 若与均在区间I上内闭一致收敛,则也在区间I上内闭一致收敛().6. 若数项级数条件收敛,则一定可以经过适当的重排使其发散于正无穷大().7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().二.单项选择题(每小题3分,共15分)1.若在上可积,则下限函数在上( )A.不连续B. 连续C。
可微D。
不能确定2。
若在上可积,而在上仅有有限个点处与不相等,则()A。
在上一定不可积;B. 在上一定可积,但是;C。
在上一定可积,并且;D. 在上的可积性不能确定。
3.级数A。
发散 B.绝对收敛 C.条件收敛 D. 不确定4。
设为任一项级数,则下列说法正确的是( )A.若,则级数一定收敛;B。
若,则级数一定收敛;C。
若,则级数一定收敛;D. 若,则级数一定发散;5。
关于幂级数的说法正确的是( )A. 在收敛区间上各点是绝对收敛的;B. 在收敛域上各点是绝对收敛的;C。
的和函数在收敛域上各点存在各阶导数;D。
在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题5分,共10分)1。
2。
四. 判断敛散性(每小题5分,共15分)1.2.3.五. 判别在数集D上的一致收敛性(每小题5分,共10分)1。
2。
六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面角向斜上方切割,求从圆柱体上切下的这块立体的体积。
(本题满10分)七. 将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。
WORD 格式整理2014 ---2015 学年度第二学期 《数学分析 2》A 试卷学院 班级学号(后两位)姓名题号一二三四五六七八总分核分人得分一. 判断题(每小题 3 分,共 21 分)( 正确者后面括号内打对勾,否则打叉 )1.若 f x 在 a,b 连续,则 f x 在 a,b 上的不定积分 f x dx 可表为x af t dt C ( ).2. 若 f x ,g x 为连续函数,则 f x g x dx f x dx g x dx ( ).3. 若f x dx 绝对收敛,g x dx 条件收敛,则 [ f x g x ]dx 必aaa然条件收敛().4. 若f x dx 收敛,则必有级数f n 收敛( ) 1n 15. 若 f n 与 g n 均在区间 I 上内闭一致收敛,则 f ng n 也在区间 I上内闭一致收敛().6. 若数项级数a 条件收敛,则一定可以经过适当的重排使其发散 n n 1于正无穷大( ).7. 任何幂级数在其收敛区间上存在任意阶导数, 并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同().专业资料值得拥有WORD 格式整理二. 单项选择题(每小题 3 分,共 15 分)8.若 f x 在 a,b 上可积,则下限函数axf x dx 在 a,b 上()A.不连续B. 连续C. 可微D. 不能确定9.若g x 在 a,b 上可积,而f x 在 a,b 上仅有有限个点处与g x 不相等,则()A. f x 在 a,b 上一定不可积;B. f x 在 a,b 上一定可积, 但是babf x dxg x dx;aC. f x 在 a,b 上一定可积,并且babf x dxg x dx;aD. f x 在 a,b 上的可积性不能确定 .10.级数n1 1 12nn 1nA. 发散B. 绝对收敛C. 条件收敛D. 不确定11.设u n 为任一项级数,则下列说法正确的是()uA. 若lim u n 0 ,则级数nn一定收敛;un 1B. 若lim 1,则级数u n 一定收敛;n unun 1C. 若N,当n N时有,1,则级数u n 一定收敛;un专业资料值得拥有WORD 格式整理u n 1D. 若 N,当nN 时有, 1,则级数u n 一定发散;u n12. 关于幂级数na n x 的说法正确的是()A. na n x 在收敛区间上各点是绝对收敛的; B. na n x 在收敛域上各点是绝对收敛的;C. na n x 的和函数在收敛域上各点存在各阶导数;D.na n x 在收敛域上是绝对并且一致收敛的;三. 计算与求值(每小题 5 分,共 10分)1 1.lim nnnn 1 n 2nn专业资料值得拥有WORD 格式整理ln sin x13.dx2cos x四. 判断敛散性(每小题 5 分,共 15 分)3 x 12.dx0 1 2x x专业资料值得拥有14.n1 n! n n15.n 1nn1 2nn 1 2专业资料值得拥有五. 判别在数集D上的一致收敛性(每小题 5 分,共 10 分)sin nx16.f n , 1,2 , ,x n Dn专业资料值得拥有WORD 格式整理2n17. D , 2 2,nx六.已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面30 角向斜上方切割,求从圆柱体上切下的这块立体的体积。
复旦大学数学分析答案【篇一:复旦大学2009年数学分析考研真题】s=txt>一.填空题xln(1?x)=_____x?01?cosxy(1?x)(2)微分方程y=的通解是____,这是变量可分离方程x(1)lim(3)设?是锥面(0?z?1)的下侧,则???xdyd?z2ydz?d3x(?1z)d?xdy____(4)点(2,1,0)到平面3x+4y+5z=0的距离d=____ (5)设a=? ?21??,2阶矩阵b满足ba=b+2e,则b=____??12?(6)设随机变量x与y相互独立,且均服从区间?0,3?上的均匀分布,则p{max(x,y)?1}?____ 一、选择题(1)设函数y?f(x)具有二阶导数,且f(x)?0,f(x)?0,?x为自变量x在x,处的增量,?y与dy分别为f(x)在点x处对应的增量与微分,若?x?0,则()(a)0?dx??y (b)0??y?dy (c)?y?dy?0 (d)dy??y?0 (2)设f(x,y)为连续函数,则(a)(c)??d??f(rcos?,rsin?)rdr等于()1nxf(x,y)dy(b)0f(x,y)dy f(x,y)dx0yf(x,y)dx(d)0(3)若级数?an?1??收敛,则级数()(a)?an?1?n收敛(b)?(?1)a收敛nnn?1??(c)?anan?1收敛(d)?n?1an?an?1收敛 2n?1(4)设f(x,y)和?(x,y)均为可微函数,且?y(x,y)?0,已知(x0,y0)是f(x,y)在约束条件?(x,y)?0下的一个极值点,下列选项正确的是()(a)若fx(x0,y0)?0,则fy(x0,y0)?0(b)若fx(x0,y0)?0,则fy(x0,y0)?0 (c)若fx(x0,y0)?0,则fy(x0,y0)?0 (d)若fx(x0,y0)?0,则fy(x0,y0)?0(5)设?1,?2,?,?s都是n维向量,a是m?n矩阵,则()成立(A)若?1,?2,?,?s线性相关,则a?1,a?2,?a?s线性相关(B)若?1,?2,?,?s线性相关,则a?1,a?2,?a?s线性无关(C)若?1,?2,?,?s线性无关,则a?1,a?2,?a?s线性相关(D)若?1,?2,?,?s线性无关,则a?1,a?2,?a?s线性无关(6)设A是3阶矩阵,将a的第2列加到第1列上得b,将b的第一列的?1倍加到?110???第2列上得c,记p??010?,则()?001???(a)c?pap(b)c?pap (c)c?pap(d)c?pap(7)设a,b为随机事件,p(b)?0,p?a|b??1,则必有()(a)p?a?b??p(a)(b)p?a?b??p(b) (c)p(a?b)?p(a)(d)p(a?b)?p(b)2(8)设随机变量x服从正态分布n(?1,?1),y服从正态分布n(?2,?2),且2tt?1?1p{x??1?1}?py??2?1},则()(a)?1??2 (b)?1??2 (c)?1??2 (D)?1??2三、简答题(1)设区域d?{(x,y)|x2?y2?1,x?0},计算二重积分i?1?xy22??1?x?yd(2)设数列{xn}满足0?x1??,xn?1?sinxn(n=1,2?),求:(i)证明limxn存在,并求之x??1(ii)?xn?1?xn2计算lim?? x???xn?(3)设函数f(u)在(0,?)内具有二阶导数,且z?f满足等式?2?0 2?x?y(i)f(u)?0 验证f(u)?u(ii)若f(1)?0,f(1)?1,求函数f(u)的表达式(4)设在上半平面d?{(x,y)|y?0}内,函数f(x,y)是有连续偏导数,且对任意2的t?0都有f(tx,ty)?tf(x,y)证明:对l内的任意分段光滑的有向简单闭曲线L,都有?lyf(x,y)dx?xf(x,y)dy?0(5)已知非齐次线性方程组?x1?x2?x3?x4??1??4x1?3x2?5x3?x4??1有3个线性无关的解?ax?x?3x?bx?134?12(I)证明方程组系数矩阵A的秩 r(a)?2 (ii)求 a , b 的值及方程组的通解(6)设3阶实对称矩阵a的各行元素之和均为3,向量?1?(?1,2,?1)t,?2?(0,?1,1)t实线性方程组ax?0的两个解,(i)求a的特征值与特征向量(ii)求:正交矩阵Q与对角矩阵A,使得qaq?at?1?2,?1?x?0??1(7)随机变量x的概率密度为fx(x)??,0?x?2令y?x2,f(x,y)为二维随机变?4?0,其他??量(x,y)的分布函数(I)求Y的概率密度fy(y) (ii)f???1???,0?x?1?(8)设总体x的概率密度f(x,0)??1??,1?x?2其中?实未知参数(0???1),?0,其他?x1,x2,?,xn为来自总体x的简单随即样本,记n为样本值x1,x2,?,xn中小于1的个数,求?的最大似然估计【篇二:复旦《数学分析》答案第四章1、2节】题 4.1 微分和导数⒈半径为1cm的铁球表面要镀一层厚度为0.01cm的铜,试用求微?43?r3,每只球镀铜所需要铜的质量为2m???v?4??r?r?1.12g。
题目一二三四五六七八九得分阅卷人上 海 海 事 大 学 试 卷--------------------------------------------------------------------------------------装 订 线------------------------------------------------------------------------------------2012 — 2013 学年第一学期期末考试《 高等数学B(一)》(A卷)(本次考试不能使用计算器)班级 学号 姓名 总分一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中)(本大题分4小题, 每小题2分, 共8分)1、在x →0时,下面说法中错误的是 ( )(A )xsinx 是无穷小;(B ); (C)sin 是无穷大 ; (D)是无穷大2、(A) 0 (B) 1 (C) 4 (D) 24、定积分的值是( )(A )、0 ; (B )、 ; (C )、4 ; (D)、.二、填空题(将正确的最简答案填在横线上)(本大题分4小题, 每小题3分, 共12分)1、=2、3、=4、三计算题(必须有解题过程)(本大题共10小题,每题6分,共60分) 1、(本小题6分)求2、(本小题6分)3、(本小题6分)4、(本小题6分)5、 ( 本小题6分 )6、 ( 本小题6分 )讨论的单调区间,凹凸区间及拐点。
7、( 本小题6分 )8、 ( 本小题6分 )9、( 本小题6分 )如果10、( 本小题6分 )四、应用题(必须有解题过程)(本大题共14分)1、( 本小题7分 )求2、( 本小题7分 )体积为V的圆柱体,如果其表面积最小,求其直径和高的比值五、证明题( 本小题6分 )设,在连续且可导,;证明:存在,使。
2012-2013复旦大学数学分析B(II)B 卷一、严格表述题(每题3分,共3题 ,共9分)1. 请用N -ε语言表述:h x n n =∞→lim 。
2. n 元函数的中值定理。
3. 第二类曲面积分。
二、填空题(每题4分,共7题,共28分)1. 曲面xy e z z+=在点)0,1,1(-处的法线方程为 。
2. 设方程x y y x arctan ln22=+确定函数)(x y ,则=dxdy。
3. )ln(xy y z =,则=z d 2。
4. 函数⎩⎨⎧-∈∈=)0,[,0),0[,)(ππx x x x f 的Fourier 级数为 。
5. 级数∑∞=+12)1(n nn x 的收敛域为 。
6. 向量场k j i a )1ln(),,(22z x ye xy z y x z +++=在点)0,1,1(的散度为a div = 。
7. 已知dx dy y dx y d 4422=+,则)(x y = 。
三、判断简答题(判断下列命题是否正确,如果正确的,请回答“是”,并给予简要证明;如果错误的,请回答“否”,并举反例。
)(每题5分,共3题,共15分)1. 设级数∑∞=1n n x 收敛, 1lim =∞→nnn y x , 则级数∑∞=1n n y 收敛。
2. 函数项级数∑∞=+-12)1(n nxn 在实数域上一致收敛。
3. 设函数),(y x f z =在点),(00y x 处的所有方向导数均存在,则),(y x f z =在点),(00y x 处可微。
四、计算题(每题6分,共5题,共30分)1. 求级数∑∞=+1)1(n nn n x 的收敛域,并写出其和函数。
2. 设vu z =,其中22lny x u +=,xyv arctan =,求dz 。
3. 计算⎰⎰-Ddxdy y x )2(,其中D 为直线1=y ,032=+-y x 与03=-+y x 所围成的闭区域。
4. 求⎰-+++-Ldy y x dx y x )653()42(,其中L 是顶点为)0,0(,)0,3(和)2,3(的三角形正向边界。
课程编号:A071001复旦大学2017-2018学年第二学期2017级数值分析期末试题(A)一.解下列各题(每小题6分)1.设直线nz y a x L 2112:-=+=-在平面0823:=-+-z y x π上,求a 与n 的值.2.设)((22y x x y xf z ++=ϕ,其中ϕ,f 二阶可导,求yx z ∂∂∂2.3.设D 是由直线x y =,x y 2=,1=y 所围成的均匀薄片(面密度为1),求D 对于y 轴的转动惯量.4.设有级数∑∞=-11sin1)1(n p nnn ,指出p 在什么范围内取值时级数绝对收敛,p 在什么范围内取值时级数条件收敛,p 在什么范围内取值时级数发散(要说明理由).二.解下列各题(每小题7分)1.已知n 是曲面522222=++z y x 在点)2,1,1(处指向x 增大方向的单位法向量,)1ln(22z y e u x +++=,求)1,1,0(nu∂∂.2.设S 是球面4222=++z y x 位于平面1=z 上方的部分,计算曲面积分⎰⎰=SdS z I 1.3.计算⎰⎰⎰Ω+=dV y x I 22,其中Ω是球面z z y x 2222=++所围成的立体.4.求二元函数xy y x z 223-+=的极值点与极值.三.(8分)设x x f 2)(-=π,ππ≤≤-x ,将)(x f 展开成以π2为周期的傅里叶级数.四.(8分)求幂级数∑∞=-13)1(n n nn x 的收敛域与和函数.五.(8分)计算第二类曲面积分⎰⎰-+=Sdxdy z yzdzdx xzdydz I 22,其中S 是曲面22y x z +=)10(≤≤z 的上侧.六.(8分)将)25ln()(x x f -=展开成1-x 的幂级数,确定其收敛域,并求)1()5(f 的值.七.(10分)设)(x ϕ是),(+∞-∞内不取零值的可微函数,已知dy y x x dx y y x xy x ))((32)((2232++++ϕϕ是某二元函数),(y x u 的全微分.(1)求)(x ϕ满足的微分方程及)(x ϕ的表达式;(2)求),(y x u 的表达式.八.(6分)设0>t ,以)(t Ω表示由曲面22y x z +=与平面t z =围成的有界闭区域.已知)(x f 在),0[+∞内连续,又设⎰⎰⎰+=)(22)()(t dxdydz y x f t F Ω.(1)求证:)(t F 在),0(+∞内连可导,并求)(t F '的表达式;(2)若0>∀t ,有⎰-=-tt dx x f e t F 0)()(1π,且1)0(=f ,试求)(x f 的表达式.2017级第二学期期末数值分析试题(A 卷)参考解答(2017.7)一.1.4}1,2,3{},1,2{=+=-⋅n n …………………………..(2分)4-=n …………………………..(3分)将点)2,1,(-a 代入平面方程得043=-a ….………………………..(5分)34=a .…………………………..(6分)2.)(2)()(22y x x x yf x y x y f x z +'+'-=∂∂ϕ…………………………..(3分))(4)(2222y x xy x yf xy y x z +''+''-=∂∂∂ϕ…………………………..(6分)3.⎰⎰=Dy dxdyx I 2…………………………..(2分)⎰⎰=yy dxx dy 2210…………………………..(4分)967247103==⎰dy y .…………………………..(6分)4.当21->P ,有nn p n 1sin 1)1(-~211+p n ,………………………..(1分)当21>P ,∑∞=+1211n p n收敛,原级数绝对收敛……………………..(2分)当2121≤<-P ,∑∞=+1211n p n发散,但当n 充分大时nn p1sin 1单调减少趋于0,原级数条件收敛…….……..(4分)当21-≤p ,01sin 1)1(lim ≠-∞→nn p p n ,级数发散……………………..(6分)二.1.曲面在点)2,1,1(处的法向量为}2,4,2{},4,2{)2,1,1(=z y x }61,62,61{=n …….………………..(2分)x e x u=∂∂2212z y y y u ++=∂∂2212z y z z u ++=∂∂……………………..(5分)在点)1,1,0(1=∂∂x u 32=∂∂y u 32=∂∂z u ……………………..(6分)6362326232611)1,1,0(=⋅+⋅+⋅=∂∂nu ………………………..(7分)2.⎰⎰⎰⋅=ϕππϕϕϕθcos 2022020sin sin dr r r d d I ..……………………..(3分)⎰=2042cos sin 8πϕϕϕπd …………………………..(6分)42π=..………………………..(7分)3.dxdyz dxdy z y z x dS 212222=++=…………………………..(2分)⎰⎰⎰⎰--=xyD S dxdy y x dS z 22421…………………………..(4分)⎰⎰-=3022042ρρρθπd d …………………………..(6分)4ln 2π=…………………………..(7分)4.0232=-=∂∂y x x z022=-=∂∂x y yz…………………………..(1分)解得0==y x 或32==y x …………………………..(3分)x x z622=∂∂22-=∂∂∂y x z222=∂∂y z在点)0,0(,,0=A 2-=B ,2=C 042<-=-B AC ,故)0,0(不是极值点…………………………..(5分)在点32,32(,,4=A 2-=B ,2=C 042>=-B AC ,且0>A ,故)32,32(是极小值点极小值274)32,32(-=z …………………………..(7分)三.)2(20=-=⎰πππdx x a …………………………..(2分)⎰-=πππ0cos )2(2nxdxx a n …………………………..(3分)π2))1(1(4n n --=…………………………..(5分)⎪⎩⎪⎨⎧-=-==12)12(8202k n k k n π∑∞=--=12)12cos()12(18)(n x n n x f π)(ππ≤≤-x ..…………………..(8分)或∑∞=--=12cos )1(14)(n nnx nx f π)(ππ≤≤-x ..…………………..(8分)四.令31-=x t ,得∑∞=1n nnt (1)…..…………………..(1分)11lim lim1=+=∞→+∞→n na a n nn n 1=t R 1-=t 时级数(1)收敛,1=t 时级数(1)发散级数(1)的收敛域为)1,1[-∈t ………………………..(3分)由1311<-≤-x 得原级数收敛域42<≤-x ………………………..(4分)∑∞==1)(n nnt t S tt t S n n -=='∑∞=-11)(11…………………………..(6分)t t S --=1ln )(…..……………………..(7分)311ln 3)1(1---=⋅-∑∞=x nx n nn ...………………………..(8分)五.⎰⎰⎰⎰---+-=+1122S S S dxdyz yzdzdx xzdydz I …………………………..(2分)⎰⎰⎰⎰⎰----=12S Vdxdyz zdV …………………………..(4分)⎰⎰⎰-=11020ρπρρθzdz d d ⎰⎰≤+-122y x dxdy….………………………..(6分)πππ454-=--=…………………………..(8分)六.))1(23ln()(--=x x f ))1(321ln(3ln --+=x ……………………..(2分)∑∞=----+=11))1(32()1(3ln n nn x n ∑∞=-⋅-+=1)1(323ln n nnn x n .………………………..(5分)由1)1(321≤--<-x ,得收敛域2521<≤-x ………………………..(7分)由55)5(352!5)1(⋅-=f,得!432()1(5)5(-=f.………………………..(8分)七.(1)由yXx Y ∂∂=∂∂,得)2)(()(2))((2222y x x x x x y x x ++=++'ϕϕϕ.……………………..(3分))()(x x ϕϕ='…………………………..(4分)dx x x d =)()(ϕϕxCe x =)(ϕ…………………………..(6分)(2)1),()0,0(2232)()32(),(C dy y x Ce dx y y x xy Ce y x u y x x x+++++=⎰……………..(7分)10220)(0C dy y x Ce dx yx x+++=⎰⎰…………………………..(9分)1323(C y y x Ce x++=…...……………………..(10分)八.(1)⎰⎰⎰=tt dzd f d t F 2220)()(ρπρρρθ⎰⎰-=t t d f d f t 03202)(2)(2ρρρπρρρπ………………………..(2分)ρρ)(2f 与32)(ρρf 连续,故⎰t d f 02)(ρρρ与⎰t d f 032)(ρρρ可导,因此)(t F 可导⎰='t d f t F 02)(2)(ρρρπ…………………………..(4分)(2)由⎰-=-ttdx x f e t F 0)()(1π对t 求导得)()(202t f e d f t t --=-⎰ρρρte tf t f -=+')()(…………………………..(5分)解得)()(C t e t f t +=-由1)0(=f ,得1=C )1()(+=-x e x f x …………………………..(6分)或(1)⎰⎰⎰=z td f d dz t F 0220)()(ρρρθπ⎰⎰=z t d f dz 020)(2ρρρπ…………………………..(2分)由于ρρ)(2f 连续,故⎰z d f 02)(ρρρ可导,因此)(t F 可导⎰='t d f t F 02)(2)(ρρρπ…………………………..(4分)(2)由⎰-=-t tdx x f e t F 0)()(1π对t 求导得)()(202t f e d f t t --=-⎰ρρρte tf t f -=+')()(…………………………..(5分)解得)()(C t e t f t +=-由1)0(=f ,得1=C )1()(+=-x e x f x …………………………..(6分)。
习题七1. 在空间直角坐标系中,定出下列各点的位置:A(1,2,3); B(-2,3,4); C(2,-3,-4);D(3,4,0); E(0,4,3); F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2. xOy坐标面上的点的坐标有什么特点yOz面上的呢zOx面上的呢答: 在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3. x轴上的点的坐标有什么特点y轴上的点呢z轴上的点呢答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4. 求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2) s==(3) s=(4) s==.5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).s==故222(44)(30)(50)34x s =-+--+-=2224(33)541y s =+-++=2224(3)(55)5z s =+-+-=.6. 在z 轴上,求与两点A (-4,1,7)和B (3,5,-2)等距离的点.解:设此点为M (0,0,z ),则222222(4)1(7)35(2)z z -++-=++--解得 149z = 即所求点为M (0,0,149). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形.证明:因为|AB |=|AC |=7.且有|AC |2+|AB |2=49+49=98=|BC |2.故△ABC 为等腰直角三角形.8. 验证:()()++=++a b c a b c .证明:利用三角形法则得证.见图7-1图7-19. 设2, 3.=-+=-+-u a b c v a b c 试用a , b , c 表示23.-u v解:232(2)3(3)2243935117-=-+--+-=-++-+=-+u v a b c a b c a b c a b c a b c10. 把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=--c a 2225D A BA BD =-=--c a 3335D A BA BD =-=--c a 444.5D A BA BD =-=--c a 11. 设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影. 解:设M 的投影为M ',则1Pr j cos604 2.2u OM OM =︒=⨯= 12. 一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x , y , z ),则{4,4,7}{2,1,7}AB x y z =-=----解得x =-2, y =3, z =0故A 的坐标为A (-2, 3, 0).13. 一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1) 12PP 在各坐标轴上的投影; (2) 12PP 的模;(3) 12PP 的方向余弦; (4) 12PP 方向的单位向量.解:(1)12Pr j 3,x x a PP ==12Pr j 1,y y a PP == 12Pr j 2.z z a PP ==-(2) 12(7PP == (3) 12cos 14xa PP α==12cos 14ya PP β==12cos 14za PP γ==(4) 12012{14PP PP===-e j . 14. 三个力F 1=(1,2,3), F 2=(-2,3,-4), F 3=(3,-4,5)同时作用于一点. 求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)||==Rcos coscos αβγ=== 15. 求出向量a = i +j +k ,b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e来表达向量a ,b ,c .解:||==a||==b ||3==c, , 3. a b c ==a b c e16. 设m =3i +5j +8k , n =2i -4j -7k , p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量.解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =则有cos (1,1)3x a ia a i a iπ⋅====⋅ 求得12x a =.设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则222cos 4a ba b π⋅=⇒=⋅ 则214y a = 求得12y a =± 又1,a =则2221x y z a a a ++= 从而求得11{,,}222a =±或11{,,}222-± 18. 已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x , y , z }12{2,5,3}{3,2,5}M M x y z MM x y z =--+=----因为,123M M MM = 所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19. 已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x , y , z ), 2222||(12)49PA x y z =++-= 得2229524x y z z ++=-+ 126570cos 6,749z z γ==⇒== 又122190cos 2, 749x x α==⇒==123285cos 3, 749y y β==⇒== 故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20. 已知a , b 的夹角2π3ϕ=,且3,4==b a ,计算: (1) a ·b ; (2) (3a -2b )·(a + 2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2) (32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b2223||44||334(6)41661.=+⋅-=⨯+⨯--⨯=-a a b b 21. 已知a =(4,-2, 4), b =(6,-3, 2),计算:(1)a ·b ; (2) (2a -3b )·(a + b ); (3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2) (23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b 222222222||3||2[4(2)4]383[6(3)2]23638349113=-⋅-=⨯+-+--+-+=⨯--⨯=-a a b b(3) 222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b 36238499=-⨯+=22. 已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}Pr j CD AB CD AB CD ⋅=4.7==- 23. 若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角. 解: (a +3b )·(7a -5b ) =227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b ) = 227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 24. 设a =(-2,7,6),b =(4, -3, -8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直.证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4, -2}a-b ={-6,10,14}又(a +b )·(a-b )= 2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a-b ).25. 已知a =3i +2j -k , b =i -j +2k ,求:(1) a ×b ; (2) 2a ×7b ;(3) 7b ×2a ; (4) a ×a .解:(1) 211332375122111--⨯=++=----a b i j k i j k(2) 2714()429870⨯=⨯=--a b a b i j k(3) 7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4) 0⨯=a a .26. 已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1) |(a +b )×(a -b )|;(2) |(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a bπ2||||sin 242=⋅⋅=a b(2) |(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b aπ734sin 842=⨯⨯⨯= 27. 求垂直于向量3i-4j-k 和2i-j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||26θ⨯===⨯a b a b . 28. 一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++l l i j k12||||==l l 所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.29. 已知三点A (2,-1,5), B (0,3,-2), C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为31(1,1,), (1,3,), (0,1,3)22M N P -- {2,2,2}MN =--3{1,0,}2MP =- {4,4,4}AC =--{2,0,3}BC =-22222235233100122MN MP ----⨯=++=++--i j k i j k 44444412208033220AC BC ---⨯=++=++--i j k i j k故 1()4MN MP AC BC ⨯=⨯. 30.(1)解: x yz x y z ij k a b a a a b b b ⨯==-+-+-y z z y z x x z x y y x a b a b i a b a b j a b a b k ()()()则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()()x y z xy z x y za a ab b b C C C = 若,,C a b 共面,则有 a b ⨯后与 C 是垂直的. 从而C 0a b ⨯⋅=() 反之亦成立. (2)C x y z x y z xy z a a a a b b b b C C C ⨯⋅=()a x y z x y z xy z b b b b C C C C a a a ⨯⋅=() b xy z x y z xy zC C C C a a a a b b b ⨯⋅=() 由行列式性质可得:xy z x y z x y z x y z x y z x y z xy z x y z x y za a ab b b C C C b b b C C C a a a C C C a a a b b b ==故C a ?b a b b C C a ⨯⋅=⨯⋅=⨯⋅()()()31. 四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A , B , C , D .{0,1,2}, {2,2,1}AB AD ==-则由A ,B ,D 三点所确定三角形的面积为111|||542|222S AB AD =⨯=+-=i j k .同理可求其他三个三角形的面积依次为12故四面体的表面积122S =+. 32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则 13BCD V S h =⋅⋅, 而11948222BCD S BC BD i j k =⨯=--+= 又BCD ∆所在的平面方程为:48150x y z +-+=则43h == 故1942323V =⋅⋅= 33. 已知三点A (2,4,1), B (3,7,5), C (4,10,9),证:此三点共线. 证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34. 一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程. 解:设动点为M (x , y , z )0{1,1,1}M M x y z =---因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y-1)-4(z-1)=0整理得:2x +3y-4z-1=0即为动点M 的轨迹方程.35. 求通过下列两已知点的直线方程:(1) (1,-2,1), (3,1,-1); (2) (3,-1,0),(1,0,-3). 解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==- 或 311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==-- 或 13213x y z -+==-- 36. 求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程. 解:所给直线的方向向量为12311223719522335--=⨯=++=----s n n i j k i j k另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:7171719x y z --==-- 且直线的参数方程为:771719x t y t z t =⎧⎪=-⎨⎪=-⎩37. 求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.38. 求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程. 解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=039. 设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有121122b b b-++= 得b =2. 故所求平面方程为1424x y z ++= 40. 求过(1,1,-1), (-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 代入三已知点,有1112121*********x y z --+----+=---+ 化简得x -3y -2z =0即为所求平面方程.41. 指出下列各平面的特殊位置,并画出其图形:(1) y =0; (2) 3x -1=0;(3) 2x-3y-6=0; (4) x–y =0;(5) 2x-3y+4z=0.解:(1) y =0表示xOz坐标面(如图7-2)(2) 3x-1=0表示垂直于x轴的平面.(如图7-3)图7-2 图7-3(3) 2x-3y-6=0表示平行于z轴且在x轴及y轴上的截距分别为x=3和y =-2的平面.(如图7-4)(4) x–y=0表示过z轴的平面(如图7-5)(5) 2x-3y+4z=0表示过原点的平面(如图7-6).图7-4 图7-5 图7-642. 通过两点(1,1,1,)和(2,2,2)作垂直于平面x+y-z=0的平面.解:设平面方程为Ax+By+Cz+D=0则其法向量为n={A,B,C}已知平面法向量为n1={1,1,-1}过已知两点的向量l={1,1,1}由题知n·n1=0, n·l=0即0,.A B CC A B A B C+-=⎧⇒==-⎨++=⎩所求平面方程变为Ax-Ay+D=0又点(1,1,1)在平面上,所以有D=0故平面方程为x-y=0.43. 决定参数k的值,使平面x+ky-2z=9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x-3y+z=0成π4的角.解:(1)因平面过点(5,-4,6)故有 5-4k-2×6=9得k=-4.(2)两平面的法向量分别为n1={1,k,-2} n2={2,-3,1}且1212πcos cos||||4θ⋅====n nn n解得2k=±44. 确定下列方程中的l和m:(1) 平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2) 平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3}, n2={m,-6,-1}12232,18613lm lm⇒==⇒=-=--n n(2) n1={3, -5, l }, n2={1,3,2}12315320 6.l l⊥⇒⨯-⨯+⨯=⇒=n n45. 通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面.解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1}, n2={2,1,1}12203203A C A B C A B C C B ⎧=-⎪⊥⇒-+=⎪⇒⎨⊥⇒++=⎪=⎪⎩n n n n 又(1,-1,1)在所求平面上,故A -B +C +D =0,得D =0故所求平面方程为2033C Cx y Cz -++= 即2x -y -3z =046. 求平行于平面3x -y +7z =5,且垂直于向量i -j +2k 的单位向量.解:n 1={3,-1,7}, n 2={1,-1,2}.12,⊥⊥n n n n 故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n =+-e i j k 47. 求下列直线与平面的交点: (1)11126x y z -+==-, 2x +3y +z -1=0; (2) 213232x y z +--==, x +2y -2z +6=0. 解:(1)直线参数方程为1126x t y t z t =+⎧⎪=--⎨⎪=⎩代入平面方程得t =1故交点为(2,-3,6).(2) 直线参数方程为221332x t y t z t =-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0.故交点为(-2,1,3).48. 求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩ 和 2223038180x y z x y z +-+=⎧⎨++-=⎩;(2)2314123x y z ---==- 和 38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5, -3,3}×{3, -2,1}=533321ij k --={3,4, -1}s 2={2,2, -1}×{3,8,1}=221381i j k-={10, -5,10}由s 1·s 2=3×10+4×(-5)+( -1) ×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2) 直线2314123x y z ---==-的方向向量为s 1={4, -12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2, -1}×{1,0,0}={0, -1, -2},于是1212cos 0.2064785θθ⋅==≈⋅'≈︒s s s s 49. 求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直;(2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为 s ={3,-1,2}故过点(2,-3,4)的直线方程为234312x y z -+-==- (2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量12102{2,3,1}013=⨯==--i j ks n n 故过点(0,2,4)的直线方程为24231x y z --==- (3)所求直线与已知直线平行,故其方向向量可取为s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50. 试定出下列各题中直线与平面间的位置关系:(1)34273x y z ++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8; (3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含. 因为直线的方向向量为s ={-2,-7,3}平面的法向量n ={4,-2,-2},所以(2)4(7)(2)3(2)0⋅=-⨯+-⨯-+⨯-=s n于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2) 因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3) 直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上.51. 求过点(1,-2,1),且垂直于直线23030x y z x y z -+-=⎧⎨+-+=⎩ 的平面方程. 解:直线的方向向量为12123111-=++-ij k i j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-=即x +2y +3z =0.52. 求过点(1,-2,3)和两平面2x -3y +z =3, x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3)故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+=解得λ=-4.故所求平面方程为2x +15y +7z +7=053. 求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x t y t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t =- 于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54. 求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量 即11133211==-=---ij k n s j k故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-= 即13(1,,)22-为平面与直线的垂足于是点到直线的距离为2d == 55. 求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x t y t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t =. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d == 即为点到平面的距离. 56. 建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57. 一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ),由题意知222222(2)(0)(3) 3.(4)(6)(6)x y z x y z -+-++=-+++- 化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0即为动点的轨迹方程.58. 指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=; (2)22149x y -+=; (3)22194x z +=; (4)20y z -=; (5)220x y -=; (6)220x y +=. 解:(1)母线平行于z 轴的抛物柱面,如图7-7.(2)母线平行于z 轴的双曲柱面,如图7-8.图7-7 图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9.(4)母线平行于x 轴的抛物柱面,如图7-10.图7-9 图7-10(5)母线平行于z 轴的两平面,如图7-11.(6)z 轴,如图7-12.图7-11 图7-12 59. 指出下列方程表示怎样的曲面,并作出图形:(1)222149y zx++=; (2)22369436x y z+-=;(3)222149y zx--=; (4)2221149y zx+-=;(5)22209zx y+-=.解:(1)半轴分别为1,2,3的椭球面,如图7-13.(2) 顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13 图7-14(3) 以x轴为中心轴的双叶双曲面,如图7-15.(4) 单叶双曲面,如图7-16.图7-15 图7-16(5) 顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760. 作出下列曲面所围成的立体的图形: (1) x 2+y 2+z 2=a 2与z =0,z =2a(a >0); (2) x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3) z =4-x 2, x =0, y =0, z =0及2x +y =4; (4) z =6-(x 2+y 2),x =0, y =0, z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18 图7-19图7-20 图7-21 61. 求下列曲面和直线的交点:(1) 222181369x y z ++=与342364x y z --+==-;(2) 22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为334624x t y t z t =+⎧⎪=-⎨⎪=-+⎩代入曲面方程解得t =0,t =1.得交点坐标为(3,4,-2),(6,-2,2). (2) 直线的参数方程为4324x ty tz t =⎧⎪=-⎨⎪=-+⎩代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62. 设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有2295x y z ⎧+=⎨=±⎩即为所求圆的方程.63. 试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1) 平面x =2; (2) 平面y =0; (3) 平面y =5; (4) 平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧==⎩为平面y =5上的一个椭圆.(4) 截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64. 求曲线x 2+y 2+z 2=a 2, x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为2222a x y +=故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65. 建立曲线x 2+y 2=z , z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题八1. 判断下列平面点集哪些是开集、闭集、区域、有界集、无界集并分别指出它们的聚点集和边界:(1) {(x , y )|x ≠0}; (2) {(x , y )|1≤x 2+y 2<4}; (3) {(x , y )|y <x 2};(4) {(x , y )|(x -1)2+y 2≤1}∪{(x , y )|(x +1)2+y 2≤1}. 解:(1)开集、无界集,聚点集:R 2,边界:{(x , y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x , y )|1≤x 2+y 2≤4},边界:{(x , y )|x 2+y 2=1}∪{(x , y )| x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x , y )|y ≤x 2}, 边界:{(x , y )| y =x 2}.(4)闭集、有界集,聚点集即是其本身,边界:{(x , y )|(x -1)2+y 2=1}∪{(x , y )|(x +1)2+y 2=1}. 2. 已知f (x , y )=x 2+y 2-xy tanxy,试求(,)f tx ty . 解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3. 已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f ( x + y , x -y , x y ) =( x + y )xy+(x y )x +y +x -y=(x + y )xy +(x y )2x.4. 求下列各函数的定义域:2(1)ln(21);z y x =-+ (2)z=(3)z = (4)u =(5)z =(6)ln()z y x =-+(7)u =解:2(1){(,)|210}.D x y y x =-+>(2){(,)|0,0}.D x y x y x y =+>->22222(3){(,)|40,10,0}.D x y x y x y x y =-≥-->+≠(4){(,,)|0,0,0}.D x y z x y z =>>> 2(5){(,)|0,0,}.D x y x y x y =≥≥≥ 22(6){(,)|0,0,1}.D x y y x x x y =->≥+< 22222(7){(,,)|0,0}.D x y z x y x y z =+≠+-≥5. 求下列各极限:10y x y →→ 22001(2)lim;x y x y →→+00x y →→x y →→00sin (5)lim ;x y xy x →→2222221cos()(6)lim.()ex y x y x y x y +→→-++解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=001.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x yx y ++→→→→++==+6. 判断下列函数在原点O (0,0)处是否连续:33222222sin(),0,(1)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩33333333sin(),0,(2)0,0;x y x y z x y x y ⎧++≠⎪=+⎨⎪+=⎩(3) 222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y ++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y z z →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uz z u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y ) 沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y ) 沿直线y =-x 趋于(0,0)点,则22222220000()lim lim lim 0()44x x x y x x x x z x x x x →→→=-→-===⋅-++ 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7. 指出下列函数在向外间断:(1) f (x ,y )=233x y x y -+;(2) f (x ,y )=2222y xy x+-;(3) f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续.(2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续.(3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续.(4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.120lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8. 求下列函数的偏导数:(1)z = x 2y +2xy;(2)s =22u v uv+;(3)z = x(4)z = lntan x y; (5)z = (1+xy )y; (6)u = z xy; (7)u = arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+ 2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+222.z xy x y y x y ∂==∂+(4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂222122sec ()csc .tan z x x x x x y y y y yy∂=⋅⋅-=-∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y yy x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+ []ln(1)(1)(1)ln(1)1ln(1)(1).1y y y y x z xy yxy xy y xy xy y xy xy xy xy ∂⎡⎤'++=+⋅=++⎢⎥+∂⎣⎦⎡⎤++=+⎢⎥+⎣⎦(6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- 112222()(1)().1[()]1()()ln()()ln().1[()]1()z z z z z zz z u z x y z x y y x y x y u x y x y x y x y z x y x y --∂-⋅--==-∂+-+-∂----==∂+-+-(8)1.yzu y x x z-∂=∂ 2211ln ln .ln ln .y yz z yy z zu x x x x y z zu y y x x x x z z z ∂=⋅=∂∂⎛⎫=⋅=-- ⎪∂⎝⎭9.已知22x y u x y =+,求证:3u uxy u x y∂∂+=∂∂. 证明: 222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++.由对称性知 22322()u x y yx y x y ∂+=∂+. 于是 2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明: 11112211e e x y x y z x x x ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得1121ex y z y y⎛⎫+- ⎪⎝⎭∂=∂ 故 11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y ) = x +(y,求f x (x ,1) .解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1. 故α=π4. 13.求下列函数的二阶偏导数: (1)z = x 4+ y 4-4x 2y 2; (2)z = arctan y x; (3)z = y x ;(4)z = 2ex y+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知22222128.16.z z y x xy y y x∂∂=-=-∂∂∂ (2)222211zy y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭, 2222222222222222222222222222222222222222()022,()()11,12,()()2,()()2.()()z x y y x xyx x y x y z x y x x y y x z xyy x y z x y y y y x x y x y x y z x y x x y x y x x y x y ∂+⋅-⋅=-=∂++∂=⋅=∂+⎛⎫+ ⎪⎝⎭∂=-∂+∂+-⋅-=-=∂∂++∂+-⋅-=-=∂∂++ (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ 21222112111,(1),1ln (1ln ),ln (1ln ).x x x x x x x x z z xy x x y y y z y xy y y x y x y y zy x y y y x y y x-------∂∂==-∂∂∂=⋅+=+∂∂∂=+⋅⋅=+∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 222222222e 22e 22e (21),e ,2e ,2e .x y x y x y x y x y x yz x x x xz z z x x y x y y x++++++∂=⋅⋅+⋅=+∂∂∂∂===∂∂∂∂∂14.设f (x , y , z ) = xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f -解:2(,,)2x f x y z y zx =+22(,,)2,(0,0,1)2,(,,)2(,,)2,(0,1,0)0,(,,)2(,,)2(,,)0,(2,0,1)0.xx xx y yz yz z zz zzx zzx f x y z z f f x y z xy z f x y z z f f x y z yz x f x y z yf x y z f ===+=-==+===15.设z = x ln ( x y ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 232223221,0,11,.z y zx xy x x y z x z x y xy y x y y∂∂===∂∂∂∂∂===-∂∂∂∂16.求下列函数的全微分:(1)22exy z +=;(2)z =(3)zy u x =;(4)y zu x =.解:(1)∵2222e 2,e 2x y x y z z x y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )xy xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭2223/2()z x yx y ∂==∂+ ∴ 223/2d (d d ).()xz y x x y x y =--+(3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ 2ln ln y z ux x y y z∂=⋅⋅⋅∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yz u y x x z-∂=∂1ln yz u x x y z∂=⋅⋅∂ ln y z u y x x z z 2∂⎛⎫=⋅⋅- ⎪∂⎝⎭∴121d d ln d ln d .y y yz zz y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17. 求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-=d (2)(4) 1.6z x y x x y y =-∆+-+∆=(2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=d e e e ()0.25e xy xy xy z y x x y y x x y =∆+∆=∆+∆=18.利用全微分代替全增量,近似计算:(1) 3·2;(3).解:(1)设f (x ,y )=x 3·y 2,则223(,)3,(,)2,x y f x y x y f x y x y ==故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =,d y =,则3·2=f ,≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×+2×12×]=1.(2)设f (x ,y ,则(,)(,)x y f x y f x y ===故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则d 0.05d 0.07(4.05,2.93)(4,3)d (4,3)0.053(0.07)]15(0.01)54.998x y f f f ==-=≈+=⨯+⨯-=+⨯-=(3)设f (x ,y )=x y,则d f (x ,y )=yx y -1d x +x yln x d y , 取x =2,y =1,d x =,d y =,则1.05d 0.03d 0.05(1.97)(1.97,1.05)(2,1)d (2,1)20.0393 2.0393.x y f f f =-==≈+=+=19.矩型一边长a =10cm ,另一边长b =24cm, 当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则d d ).l l x x y y ==+当x =10,y =24,d x =,d y =时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm. 20.解:因为圆锥体的体积为21.3V r h π=⋅ 0030,0.1,60,0.5r r h h ====- 而221.33V V V dV r h yh r r h r h ππ∂∂≈=⋅+⋅=⋅+⋅∂∂0030,0.1,60,0.5r r h h ====-时, 2213.1430600.130(0.5)33V π≈⨯⨯⨯⨯+⨯⨯- 230()cm =-21.解:设水池的长宽深分别为,,x y z 则有:V xyz = 精确值为:50.242 2.850.22 3.6 2.80.2V =⨯⨯+⨯⨯⨯+⨯⨯⨯ 313.632()m = 近似值为:V dV zx y xy z ≈=+0.4,0.4,0.2x y z ===430.4530.4540.2V dV ≈=⨯⨯+⨯⨯+⨯⨯ 314.8()m =22. 求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,zv∂∂; (2)z =arc tanx y , x =u +v ,y =u -v , 求z u ∂∂,z v∂∂; (3)ln(e e )xyu =+, y =x 3, 求d d ux; (4) u =x 2+y 2+z 2, x =e cos tt , y =e sin tt , z =e t, 求d d ut. 解:(1)222(2)cos (2)sin 3sin cos (cos sin )z z x z y xy y v x xy v u x u y u u v v v v ∂∂∂∂∂=⋅+⋅=-⋅+-∂∂∂∂∂=-223333(2)sin (2)cos 2sin cos (sin cos )(sin cos ).z z x z yxy y u v x xy u v v x v y v u v v v v u v v ∂∂∂∂∂=⋅+⋅=--⋅+-⋅∂∂∂∂∂=-+++(2)222222211111x z z x z y y x v y u x u y uyx y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭2222222111(1)11.x z z x z y y v x v y vyx x y y y x ux y u v -∂∂∂∂∂⎛⎫=⋅+⋅=⋅+⋅⋅- ⎪∂∂∂∂∂⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭+==++ (3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e ex y xx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23. 设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =- (2),;x y u f y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ 1212(2)e 2e .xy xy uf y f x yf x f y∂''''=⋅-+⋅⋅=-+∂ (2)1111u f f x y y∂''=⋅=∂ 121222222211..x u x f f f f y y z y z u y y f f z z z ∂⎛⎫''''-=⋅+⋅=-+ ⎪∂⎝⎭∂⎛⎫''=⋅=-- ⎪∂⎝⎭(3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 12323330,.uf f x f xz xf xzf yuf xy xyf z∂'''''=⋅+⋅+⋅=+∂∂''=⋅=∂24.设(),,()yz xy xF u u F u x=+=为可导函数,证明: .z z xy z xy x y∂∂+=+∂∂ 证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭1()().z x xF u x F u y x∂''=+⋅=+∂ 故[]()()()()()()().z z F u y xy x y x F u F u y x y x xF u xy yF u xy yF u xy xF u xy z xy '∂∂⎡⎤'+=+++-⎢⎥∂∂⎣⎦''=+-++=++=+25. 设22()yz f x y =-,其中f (u )为可导函数,验证: 211z z zx x y y y∂∂+=∂∂. 证明:∵ 2222z yf x xyf x f f''∂⋅=-=-∂, 222(2)2z f y f y f y f y f f''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26. 22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 222222224,224,z f x xf f x f xzxf y xyf x y∂''''''=+⋅=+∂∂''''=⋅=∂∂由对称性知,22224.z f y f y∂'''=+∂27. 设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x z f y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y += 解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x∂''''=⋅+⋅=+∂ ()()22222211122122432221112222222244,zy yf xy f y f xy f y f xy x yf y f xy f x y f ∂'''''''''=++⋅+⋅⋅+⋅∂'''''''=+++()()()()222212111221223322121122122212122222121112212212222222225,22,22222zyf y xf xy f xy f x f xy f x x yyf xf xy f x yf x y f zf xy f x xyf x f yzxf xy x f xy f x f xy f x yxf ∂''''''''''=+++⋅+⋅⋅+⋅∂∂''''''''=++++∂''''=⋅+⋅=+∂∂'''''''''=++⋅+⋅⋅+⋅∂'=223411122244.x y f x yf x f ''''''+++(3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂。
习题七1.在空间直角坐标系中,定出下列各点的位置:A(1,2,3);B(-2,3,4);C(2,-3,-4);D(3,4,0);E(0,4,3);F(3,0,0).解:点A在第Ⅰ卦限;点B在第Ⅱ卦限;点C在第Ⅷ卦限;点D在xOy面上;点E在yOz面上;点F在x轴上.2.xOy坐标面上的点的坐标有什么特点?yOz面上的呢?zOx面上的呢?答:在xOy面上的点,z=0;在yOz面上的点,x=0;在zOx面上的点,y=0.3.x轴上的点的坐标有什么特点?y轴上的点呢?z轴上的点呢?答:x轴上的点,y=z=0;y轴上的点,x=z=0;z轴上的点,x=y=0.4.求下列各对点之间的距离:(1)(0,0,0),(2,3,4);(2)(0,0,0),(2,-3,-4);(3)(-2,3,-4),(1,0,3);(4)(4,-2,3),(-2,1,3).解:(1)s=(2)s==(3)s==(4)s==5.求点(4,-3,5)到坐标原点和各坐标轴间的距离.解:点(4,-3,5)到x轴,y轴,z轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5).故s==5zs==.6.在z轴上,求与两点A(-4,1,7)和B(3,5,-2)等距离的点.解:设此点为M(0,0,z),则解得149 z=即所求点为M(0,0,149).7.试证:以三点A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有|AC|2+|AB|2=49+49=98=|BC|2.故△ABC为等腰直角三角形.8.验证:()()++=++a b c a b c .证明:利用三角形法则得证.见图7-1图7-19.设2, 3.=-+=-+-u a b c v a b c 试用a ,b ,c 表示23.-u v解:10.把△ABC 的BC 边分成五等份,设分点依次为D 1,D 2,D 3,D 4,再把各分点与A 连接,试以AB =c ,BC =a 表示向量1D A ,2D A ,3D A 和4D A . 解:1115D A BA BD =-=--c a 11.设向量OM 的模是4,它与投影轴的夹角是60°,求这向量在该轴上的投影.解:设M 的投影为M ',则12.一向量的终点为点B (2,-1,7),它在三坐标轴上的投影依次是4,-4和7,求这向量的起点A 的坐标.解:设此向量的起点A 的坐标A (x ,y ,z ),则解得x =-2,y =3,z =0故A 的坐标为A (-2,3,0).13.一向量的起点是P 1(4,0,5),终点是P 2(7,1,3),试求:(1)12PP 在各坐标轴上的投影;(2)12PP 的模;(3)12PP 的方向余弦;(4)12PP 方向的单位向量.解:(1)12Pr j 3,xx a PP ==(2)12(7PP == (3)12cos 14x a PP α==12cos 14z a PP γ==(4)12012{14PP PP ===+e j . 14.三个力F 1=(1,2,3),F2=(-2,3,-4),F 3=(3,-4,5)同时作用于一点.求合力R 的大小和方向余弦.解:R =(1-2+3,2+3-4,3-4+5)=(2,1,4)15.求出向量a =i +j +k ,b =2i -3j +5k 和c =-2i -j +2k 的模,并分别用单位向量,,a b c e e e 来表达向量a ,b ,c . 解:||==a16.设m =3i +5j +8k ,n =2i -4j -7k ,p =5i +j -4k ,求向量a =4m +3n -p 在x 轴上的投影及在y 轴上的分向量. 解:a =4(3i +5j +8k )+3(2i -4j -7k )-(5i +j -4k )=13i +7j +15k在x 轴上的投影a x =13,在y 轴上分向量为7j .17.解:设{,,}x y z a a a a =则有 求得12x a =. 设a 在xoy 面上的投影向量为b 则有{,,0}x y b a a =则222cos 42a ba b π⋅=⇒=⋅则214y a =求得12y a =± 又1,a =则2221x y z a a a ++= 从而求得11{,,}222a =±或11{,,}222-± 18.已知两点M 1(2,5,-3),M 2(3,-2,5),点M 在线段M 1M 2上,且123M M MM =,求向径OM 的坐标.解:设向径OM ={x ,y ,z }因为,123M M MM =所以,11423(3)153(2) 433(5)3x x x y y y z z z ⎧=⎪-=-⎧⎪⎪⎪-=--⇒=-⎨⎨⎪⎪+=-⎩=⎪⎪⎩故OM ={111,,344-}. 19.已知点P 到点A (0,0,12)的距离是7,OP 的方向余弦是236,,777,求点P 的坐标. 解:设P 的坐标为(x ,y ,z ),2222||(12)49PA x y z =++-= 得2229524x y z z ++=-+又122190cos 2, 749x x α==⇒==故点P 的坐标为P (2,3,6)或P (190285570,,494949). 20.已知a ,b 的夹角2π3ϕ=,且3,4==b a ,计算: (1)a ·b ;(2)(3a -2b )·(a +2b ). 解:(1)a ·b =2π1cos ||||cos3434632ϕ⋅⋅=⨯⨯=-⨯⨯=-a b (2)(32)(2)3624-⋅+=⋅+⋅-⋅-⋅a b a b a a a b b a b b21.已知a =(4,-2,4),b =(6,-3,2),计算:(1)a ·b ;(2)(2a -3b )·(a +b );(3)2||-a b解:(1)46(2)(3)4238⋅=⨯+-⨯-+⨯=a b(2)(23)()2233-⋅+=⋅+⋅-⋅-⋅a b a b a a a b a b b b(3)222||()()2||2||-=-⋅-=⋅-⋅+⋅=-⋅+a b a b a b a a a b b b a a b b22.已知四点A (1,-2,3),B (4,-4,-3),C (2,4,3),D (8,6,6),求向量AB 在向量CD 上的投影.解:AB ={3,-2,-6},CD ={6,2,3}23.若向量a +3b 垂直于向量7a -5b ,向量a -4b 垂直于向量7a -2b ,求a 和b 的夹角.解:(a +3b )·(7a -5b )=227||1615||0+⋅-=a a b b ①(a -4b )·(7a -2b )=227||308||0-⋅+=a a b b ② 由①及②可得:222221()1||||2||||4⋅⋅⋅==⇒=a b a b a b a b a b 又21||02⋅=>a b b ,所以1cos ||||2θ⋅==a b a b , 故1πarccos 23θ==. 24.设a =(-2,7,6),b =(4,-3,-8),证明:以a 与b 为邻边的平行四边形的两条对角线互相垂直. 证明:以a ,b 为邻边的平行四边形的两条对角线分别为a +b ,a -b ,且a +b ={2,4,-2}a -b ={-6,10,14}又(a +b )·(a -b )=2×(-6)+4×10+(-2)×14=0故(a +b )⊥(a -b ).25.已知a =3i +2j -k ,b =i -j +2k ,求:(1)a ×b ;(2)2a ×7b ;(3)7b ×2a ;(4)a ×a .解:(1)211332375122111--⨯=++=----a b i j k i j k(2)2714()429870⨯=⨯=--a b a b i j k(3)7214()14()429870⨯=⨯=-⨯=-++b a b a a b i j k(4)0⨯=a a .26.已知向量a 和b 互相垂直,且||3, ||4==a b .计算:(1)|(a +b )×(a -b )|;(2)|(3a +b )×(a -2b )|.(1)|()()|||2()|+⨯-=⨯-⨯+⨯-⨯=-⨯a b a b a a a b b a b b a b(2)|(3)(2)||362||7()|+⨯-=⨯-⨯+⨯-⨯=⨯a b a b a a a b b a b b b a27.求垂直于向量3i -4j -k 和2i -j +k 的单位向量,并求上述两向量夹角的正弦. 解:411334555111221----⨯=++=--+--a b i j k i j k与⨯a b平行的单位向量)||⨯==--+⨯a b e i j k a b||sin ||||θ⨯===⨯a b a b . 28.一平行四边形以向量a =(2,1,-1)和b =(1,-2,1)为邻边,求其对角线夹角的正弦. 解:两对角线向量为13=+=-l a b i j ,232=-=+-l a b i j k因为12|||2610|⨯=++=l l i j k所以1212||sin 1||||θ⨯===l l l l . 即为所求对角线间夹角的正弦.29.已知三点A (2,-1,5),B (0,3,-2),C (-2,3,1),点M ,N ,P 分别是AB ,BC ,CA 的中点,证明:1()4MN MP AC BC ⨯=⨯. 证明:中点M ,N ,P 的坐标分别为故1()4MN MP AC BC ⨯=⨯. 30.(1)解:x yz x y z i j k a b a a a b b b ⨯=则 C=-C +-+-y z z y x z x x z y x y y x y a b a b a b a b a b C a b a b C ⨯⋅()()()()若,,C a b 共面,则有 a b ⨯后与 C 是垂直的. 从而C 0a b ⨯⋅=()反之亦成立. (2) C xy z x y z xy z a a a a b b b b C C C ⨯⋅=() 由行列式性质可得:故 C a ?b a b bC C a ⨯⋅=⨯⋅=⨯⋅()()()31.四面体的顶点在(1,1,1),(1,2,3),(1,1,2)和(3,-1,2)求四面体的表面积. 解:设四顶点依次取为A ,B ,C ,D.则由A ,B ,D 三点所确定三角形的面积为111|||542|22S AB AD =⨯=+-=i j k 同理可求其他三个三角形的面积依次为12故四面体的表面积12S =+32.解:设四面体的底为BCD ∆,从A 点到底面BCD ∆的高为h ,则13BCD V S h =⋅⋅, 而11948222BCD S BC BD i j k =⨯=--+= 又BCD ∆所在的平面方程为:48150x y z +-+=则43h == 故1942323V =⋅⋅= 33.已知三点A (2,4,1),B (3,7,5),C (4,10,9),证:此三点共线.证明:{1,3,4}AB =,{2,6,8}AC =显然2AC AB =则22()0AB AC AB AB AB AB ⨯=⨯=⨯=故A ,B ,C 三点共线.34.一动点与M 0(1,1,1)连成的向量与向量n =(2,3,-4)垂直,求动点的轨迹方程.解:设动点为M (x ,y ,z )因0M M n ⊥,故00M M n ⋅=.即2(x -1)+3(y -1)-4(z -1)=0整理得:2x +3y -4z -1=0即为动点M 的轨迹方程.35.求通过下列两已知点的直线方程:(1)(1,-2,1),(3,1,-1);(2)(3,-1,0),(1,0,-3).解:(1)两点所确立的一个向量为s ={3-1,1+2,-1-1}={2,3,-2}故直线的标准方程为:121232x y z -+-==-或311232x y z --+==- (2)直线方向向量可取为s ={1-3,0+1,-3-0}={-2,1,-3}故直线的标准方程为:31213x y z -+==--或13213x y z -+==-- 36.求直线234035210x y z x y z +--=⎧⎨-++=⎩的标准式方程和参数方程.解:所给直线的方向向量为另取x 0=0代入直线一般方程可解得y 0=7,z 0=17于是直线过点(0,7,17),因此直线的标准方程为:且直线的参数方程为:37.求过点(4,1,-2)且与平面3x -2y +6z =11平行的平面方程.解:所求平面与平面3x -2y +6z =11平行故n ={3,-2,6},又过点(4,1,-2)故所求平面方程为:3(x -4)-2(y -1)+6(z +2)=0即3x -2y +6z +2=0.38.求过点M 0(1,7,-3),且与连接坐标原点到点M 0的线段OM 0垂直的平面方程.解:所求平面的法向量可取为0{1,7,3}OM ==-n故平面方程为:x -1+7(y -7)-3(z +3)=0即x +7y -3z -59=039.设平面过点(1,2,-1),而在x 轴和z 轴上的截距都等于在y 轴上的截距的两倍,求此平面方程.解:设平面在y 轴上的截距为b 则平面方程可定为122x y z b b b++= 又(1,2,-1)在平面上,则有得b =2. 故所求平面方程为1424x y z ++= 40.求过(1,1,-1),(-2,-2,2)和(1,-1,2)三点的平面方程.解:由平面的三点式方程知 代入三已知点,有1112121*********x y z --+----+=---+化简得x -3y -2z =0即为所求平面方程.41.指出下列各平面的特殊位置,并画出其图形:(1)y =0;(2)3x -1=0;(3)2x -3y -6=0;(4)x –y =0;(5)2x -3y +4z =0.解:(1)y =0表示xOz 坐标面(如图7-2)(2)3x -1=0表示垂直于x 轴的平面.(如图7-3)图7-2图7-3(3)2x -3y -6=0表示平行于z 轴且在x 轴及y 轴上的截距分别为x =3和y =-2的平面.(如图7-4)(4)x –y =0表示过z 轴的平面(如图7-5)(5)2x -3y +4z =0表示过原点的平面(如图7-6).图7-4图7-5图7-642.通过两点(1,1,1,)和(2,2,2)作垂直于平面x +y -z =0的平面.解:设平面方程为Ax +By +Cz +D =0则其法向量为n ={A ,B ,C }已知平面法向量为n 1={1,1,-1}过已知两点的向量l ={1,1,1}由题知n ·n 1=0,n ·l =0即0 0, .0A B C C A B A B C +-=⎧⇒==-⎨++=⎩所求平面方程变为Ax -Ay +D =0又点(1,1,1)在平面上,所以有D =0故平面方程为x -y =0.43.决定参数k 的值,使平面x +ky -2z =9适合下列条件:(1)经过点(5,-4,6);(2)与平面2x -3y +z =0成π4的角. 解:(1)因平面过点(5,-4,6)故有5-4k -2×6=9得k =-4.(2)两平面的法向量分别为n1={1,k,-2}n2={2,-3,1}且1212πcos cos||||4θ⋅====n nn n解得k=±44.确定下列方程中的l和m:(1)平面2x+ly+3z-5=0和平面mx-6y-z+2=0平行;(2)平面3x-5y+lz-3=0和平面x+3y+2z+5=0垂直.解:(1)n1={2,l,3},n2={m,-6,-1}(2)n1={3,-5,l},n2={1,3,2}45.通过点(1,-1,1)作垂直于两平面x-y+z-1=0和2x+y+z+1=0的平面. 解:设所求平面方程为Ax+By+Cz+D=0其法向量n={A,B,C}n1={1,-1,1},n2={2,1,1}又(1,-1,1)在所求平面上,故A-B+C+D=0,得D=0故所求平面方程为即2x-y-3z=046.求平行于平面3x-y+7z=5,且垂直于向量i-j+2k的单位向量.解:n1={3,-1,7},n2={1,-1,2}.故1217733152122111--=⨯=++=+---n n n i j k i j k则2).n=+-e i j k47.求下列直线与平面的交点:(1)11126x y z-+==-,2x+3y+z-1=0;(2)213232x y z+--==,x+2y-2z+6=0.解:(1)直线参数方程为1126x ty tz t=+⎧⎪=--⎨⎪=⎩代入平面方程得t=1故交点为(2,-3,6).(2)直线参数方程为221332x ty tz t=-+⎧⎪=+⎨⎪=+⎩代入平面方程解得t =0.故交点为(-2,1,3).48.求下列直线的夹角:(1)533903210x y z x y z -+-=⎧⎨-+-=⎩和2223038180x y z x y z +-+=⎧⎨++-=⎩; (2)2314123x y z ---==-和38121y z x --⎧=⎪--⎨⎪=⎩ 解:(1)两直线的方向向量分别为:s 1={5,-3,3}×{3,-2,1}=533321ij k --={3,4,-1}s 2={2,2,-1}×{3,8,1}=221381i j k-={10,-5,10}由s 1·s 2=3×10+4×(-5)+(-1)×10=0知s 1⊥s 2 从而两直线垂直,夹角为π2. (2)直线2314123x y z ---==-的方向向量为s 1={4,-12,3},直线38121y z x --⎧=⎪--⎨⎪=⎩的方程可变为22010y z x -+=⎧⎨-=⎩,可求得其方向向量s 2={0,2,-1}×{1,0,0}={0,-1,-2},于是 49.求满足下列各组条件的直线方程:(1)经过点(2,-3,4),且与平面3x -y +2z -4=0垂直;(2)过点(0,2,4),且与两平面x +2z =1和y -3z =2平行;(3)过点(-1,2,1),且与直线31213x y z --==-平行. 解:(1)可取直线的方向向量为s ={3,-1,2}故过点(2,-3,4)的直线方程为(2)所求直线平行两已知平面,且两平面的法向量n 1与n 2不平行,故所求直线平行于两平面的交线,于是直线方向向量故过点(0,2,4)的直线方程为(3)所求直线与已知直线平行,故其方向向量可取为s ={2,-1,3}故过点(-1,2,1)的直线方程为121213x y z +--==-. 50.试定出下列各题中直线与平面间的位置关系:(1)34273x y z++==--和4x -2y -2z =3; (2)327x y z ==-和3x -2y +7z =8;(3)223314x y z -+-==-和x +y +z =3. 解:平行而不包含.因为直线的方向向量为s ={-2,-7,3} 平面的法向量n ={4,-2,-2},所以 于是直线与平面平行.又因为直线上的点M 0(-3,-4,0)代入平面方程有4(3)2(4)2043⨯--⨯--⨯=-≠.故直线不在平面上.(2)因直线方向向量s 等于平面的法向量,故直线垂直于平面.(3)直线在平面上,因为3111(4)10⨯+⨯+-⨯=,而直线上的点(2,-2,3)在平面上. 51.求过点(1,-2,1),且垂直于直线 的平面方程.解:直线的方向向量为12123111-=++-ij ki j k , 取平面法向量为{1,2,3},故所求平面方程为1(1)2(2)3(1)0x y z ⨯-+++-= 即x +2y +3z =0.52.求过点(1,-2,3)和两平面2x -3y +z =3,x +3y +2z +1=0的交线的平面方程. 解:设过两平面的交线的平面束方程为233(321)0x y z x y z λ-+-++++= 其中λ为待定常数,又因为所求平面过点(1,-2,3) 故213(2)33(13(2)231)0λ⨯-⨯-+-++⨯-+⨯+= 解得λ=-4. 故所求平面方程为2x +15y +7z +7=053.求点(-1,2,0)在平面x +2y -z +1=0上的投影.解:过点(-1,2,0)作垂直于已知平面的直线,则该直线的方向向量即为已知平面的法向量,即s =n ={1,2,-1}所以垂线的参数方程为122x ty t z t =-+⎧⎪=+⎨⎪=-⎩将其代入平面方程可得(-1+t )+2(2+2t )-(-t )+1=0 得23t=-于是所求点(-1,2,0)到平面的投影就是此平面与垂线的交点522(,,)333-54.求点(3,-1,2)到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离.解:过点(3,-1,2)作垂直于已知直线的平面,平面的法向量可取为直线的方向向量即11133211==-=---ij kn s j k 故过已知点的平面方程为y +z =1.联立方程组102401x y z x y z y z +-+=⎧⎪-+-=⎨⎪+=⎩解得131,,.22x y z ==-=即13(1,,)22-为平面与直线的垂足于是点到直线的距离为d ==55.求点(1,2,1)到平面x +2y +2z -10=0距离.解:过点(1,2,1)作垂直于已知平面的直线,直线的方向向量为s =n ={1,2,2}所以垂线的参数方程为12212x ty t z t =+⎧⎪=+⎨⎪=+⎩将其代入平面方程得13t=. 故垂足为485(,,)333,且与点(1,2,1)的距离为1d ==即为点到平面的距离.56.建立以点(1,3,-2)为中心,且通过坐标原点的球面方程.解:球的半径为R ==设(x ,y ,z )为球面上任一点,则(x -1)2+(y -3)2+(z +2)2=14 即x 2+y 2+z 2-2x -6y +4z =0为所求球面方程.57.一动点离点(2,0,-3)的距离与离点(4,-6,6)的距离之比为3,求此动点的轨迹方程.解:设该动点为M (x ,y ,z ) 3.=化简得:8x 2+8y 2+8z 2-68x +108y -114z +779=0 即为动点的轨迹方程.58.指出下列方程所表示的是什么曲面,并画出其图形:(1)22()()22a a x y -+=;(2)22149x y -+=; (3)22194x z +=;(4)20y z -=; (5)220x y -=;(6)220x y +=.解:(1)母线平行于z 轴的抛物柱面,如图7-7. (2)母线平行于z 轴的双曲柱面,如图7-8.图7-7图7-8(3)母线平行于y 轴的椭圆柱面,如图7-9. (4)母线平行于x 轴的抛物柱面,如图7-10.图7-9图7-10(5)母线平行于z 轴的两平面,如图7-11. (6)z 轴,如图7-12.图7-11图7-1259.指出下列方程表示怎样的曲面,并作出图形:(1)222149y z x ++=;(2)22369436x y z +-=; (3)222149y z x --=;(4)2221149y z x +-=; (5)22209z x y +-=. 解:(1)半轴分别为1,2,3的椭球面,如图7-13. (2)顶点在(0,0,-9)的椭圆抛物面,如图7-14.图7-13图7-14(3)以x 轴为中心轴的双叶双曲面,如图7-15. (4)单叶双曲面,如图7-16.图7-15图7-16(5)顶点在坐标原点的圆锥面,其中心轴是z 轴,如图7-17.图7-1760.作出下列曲面所围成的立体的图形:(1)x 2+y 2+z 2=a 2与z =0,z =2a(a >0);(2)x +y +z =4,x =0,x =1,y =0,y =2及z =0; (3)z =4-x 2,x =0,y =0,z =0及2x +y =4;(4)z =6-(x 2+y 2),x =0,y =0,z =0及x +y =1. 解:(1)(2)(3)(4)分别如图7-18,7-19,7-20,7-21所示.图7-18图7-19 图7-20图7-2161.求下列曲面和直线的交点:(1)222181369x y z ++=与342364x y z --+==-; (2)22211694x y z +-=与2434x y z +==-. 解:(1)直线的参数方程为 代入曲面方程解得t =0,t =1.得交点坐标为(3,4,-2),(6,-2,2). (2)直线的参数方程为 代入曲面方程可解得t =1, 得交点坐标为(4,-3,2).62.设有一圆,它的中心在z 轴上,半径为3,且位于距离xOy 平面5个单位的平面上,试建立这个圆的方程.解:设(x ,y ,z )为圆上任一点,依题意有 即为所求圆的方程.63.试考察曲面22219254x y z -+=在下列各平面上的截痕的形状,并写出其方程. (1)平面x =2;(2)平面y =0; (3)平面y =5;(4)平面z =2.解:(1)截线方程为2212x ⎧=⎪⎪⎨⎪⎪=⎩ 其形状为x =2平面上的双曲线.(2)截线方程为221940x z y ⎧+=⎪⎨⎪=⎩为xOz 面上的一个椭圆.(3)截线方程为2215y ⎧+==⎩为平面y =5上的一个椭圆.(4)截线方程为2209252x y z ⎧-=⎪⎨⎪=⎩为平面z =2上的两条直线.64.求曲线x 2+y 2+z 2=a 2,x 2+y 2=z 2在xOy 面上的投影曲线. 解:以曲线为准线,母线平行于z 轴的柱面方程为故曲线在xOy 面上的投影曲线方程为22220a x y z ⎧+=⎪⎨⎪=⎩65.建立曲线x 2+y 2=z ,z =x +1在xOy 平面上的投影方程. 解:以曲线为准线,母线平行于z 轴的柱面方程为x 2+y 2=x +1即2215()24x y -+=. 故曲线在xOy 平面上的投影方程为2215()240x y z ⎧-+=⎪⎨⎪=⎩习题八1.判断下列平面点集哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点集和边界: (1){(x ,y )|x ≠0}; (2){(x ,y )|1≤x 2+y 2<4}; (3){(x ,y )|y <x 2};(4){(x ,y )|(x -1)2+y 2≤1}∪{(x ,y )|(x +1)2+y 2≤1}.解:(1)开集、无界集,聚点集:R 2,边界:{(x ,y )|x =0}. (2)既非开集又非闭集,有界集, 聚点集:{(x ,y )|1≤x 2+y 2≤4}, 边界:{(x ,y )|x 2+y 2=1}∪{(x ,y )|x 2+y 2=4}. (3)开集、区域、无界集, 聚点集:{(x ,y )|y ≤x 2}, 边界:{(x ,y )|y =x 2}.(4)闭集、有界集,聚点集即是其本身, 边界:{(x ,y )|(x -1)2+y 2=1}∪{(x ,y )|(x +1)2+y 2=1}. 2.已知f (x ,y )=x 2+y 2-xy tanxy,试求(,)f tx ty .解:222(,)()()tan(,).tx f tx ty tx ty tx ty t f x y ty=+-⋅= 3.已知(,,)w u vf u v w u w+=+,试求(,,).f x y x y xy +-解:f (x +y ,x -y ,xy )=(x +y )xy +(xy )x +y +x -y =(x +y )xy +(xy )2x . 4.求下列各函数的定义域:解:2(1){(,)|210}.D x y y x =-+> 5.求下列各极限: 解:(1)原式0ln 2.=(2)原式=+∞. (3)原式=01.4x y →→=-(4)原式=002.x y →→=(5)原式=00sin lim100.x y xyy xy →→⋅=⨯=(6)原式=22222222222()00001()2lim lim 0.()e 2ex y x y x x y y x y x y x y ++→→→→++==+6.判断下列函数在原点O (0,0)处是否连续:(3)222222222,0,(2)()0,0;x y x y z x y x y x y ⎧+≠⎪=+-⎨⎪+=⎩解:(1)由于3333333322223333sin()sin()sin()0()x y x y x y x y y x x y x y x y x y++++≤=≤+⋅++++ 又00lim()0x y y x →→+=,且3333000sin()sin lim lim 1x u y x y ux y u →→→+==+, 故0lim 0(0,0)x y zz →→==.故函数在O (0,0)处连续. (2)000sin lim lim1(0,0)0x u y uzz u→→→==≠=故O (0,0)是z 的间断点.(3)若P (x ,y )沿直线y =x 趋于(0,0)点,则2222000lim lim 10x x y x x x z x x →→=→⋅==⋅+, 若点P (x ,y )沿直线y =-x 趋于(0,0)点,则 故00lim x y z →→不存在.故函数z 在O (0,0)处不连续.7.指出下列函数在向外间断:(1)f (x ,y )=233x y x y -+;(2)f (x ,y )=2222y xy x+-;(3)f (x ,y )=ln(1-x 2-y 2);(4)f (x ,y )=222e ,0,0,0.x y x y yy -⎧⎪≠⎨⎪=⎩解:(1)因为当y =-x 时,函数无定义,所以函数在直线y =-x 上的所有点处间断,而在其余点处均连续. (2)因为当y 2=2x 时,函数无定义,所以函数在抛物线y 2=2x 上的所有点处间断.而在其余各点处均连续. (3)因为当x 2+y 2=1时,函数无定义,所以函数在圆周x 2+y 2=1上所有点处间断.而在其余各点处均连续. (4)因为点P (x ,y )沿直线y =x 趋于O (0,0)时.1200lim (,)lime x x y x xf x y x-→→=→==∞. 故(0,0)是函数的间断点,而在其余各点处均连续. 8.求下列函数的偏导数:(1)z =x 2y +2xy;(2)s =22u v uv+;(3)z =x;(4)z =lntan x y; (5)z =(1+xy )y ; (6)u =z xy ;(7)u =arctan(x -y )z; (8)y zu x =.解:(1)223122,.z z x xy x x y y y∂∂=+=-∂∂ (2)u v s v u =+2211,.s v s u u v u v v u∂∂=-=-+∂∂(3)2222212ln(),2z x x x x y x x y ∂==++∂+(4)21122sec csc ,tan z x x x x y y y yy∂=⋅⋅=∂ (5)两边取对数得ln ln(1)z y xy =+故[]221(1)(1)(1).ln(1)1y y y x z y xy xy y xy y xy x xy-∂'=+⋅=+⋅=++∂+ (6)1ln ln xy xy xy u u uz z y z z x xy z x y z-∂∂∂=⋅⋅=⋅⋅=⋅∂∂∂ (7)11221()().1[()]1()z z z z u z x y z x y x x y x y --∂-=⋅-=∂+-+- (8)1.yz u y x x z-∂=∂ 9.已知22x y u x y =+,求证:3u uxy u x y ∂∂+=∂∂. 证明:222223222()2()()u xy x y x y x y xy x x y x y ∂+-+==∂++. 由对称性知22322()u x y yx y x y ∂+=∂+. 于是2223()3()u u x y x y x y u x y x y ∂∂++==∂∂+. 10.设11ex y z ⎛⎫+- ⎪⎝⎭=,求证:222z z xy z x y∂∂+=∂∂. 证明:11112211e e x y x y z x x x ⎛⎫⎛⎫++-- ⎪ ⎪⎝⎭⎝⎭∂⎡⎤⎛⎫=-=- ⎪⎢⎥∂⎝⎭⎣⎦, 由z 关于x ,y 的对称性得故11111122222211e e 2e 2.x y x y x y z z x y x y z x y x y⎛⎫⎛⎫⎛⎫+++--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∂∂+⋅=⋅+⋅==∂∂11.设f (x ,y )=x +(yf x (x ,1).解:1(,)1(x f x y y y =+- 则(,1)101x f x =+=.12.求曲线2244x y z y ⎧+=⎪⎨⎪=⎩在点(2,4,5)处的切线与正向x 轴所成的倾角.解:(2,4,5)1,1,2z z x x x ∂∂==∂∂ 设切线与正向x 轴的倾角为α, 则tan α=1.故α=π4. 13.求下列函数的二阶偏导数: (1)z =x 4+y 4-4x 2y 2; (2)z =arctany x; (3)z =y x;(4)z =2exy+.解:(1)2322224812816z z z x xy x y xy x x x y∂∂∂=-=-=-∂∂∂∂ ,, 由x ,y 的对称性知 (2)222211z y y xx y x y x ∂⎛⎫=⋅=-- ⎪∂+⎝⎭⎛⎫+ ⎪⎝⎭, (3)222ln ,ln ,xx z z y y y y x x∂∂==∂∂ (4)22e 2,e ,x y x y z zx x y++∂∂=⋅=∂∂ 14.设f (x ,y ,z )=xy 2+yz 2+zx 2,求(0,0,1),(0,1,0),(2,0,1).xx yz zzx f f f - 解:2(,,)2x f x y z y zx=+15.设z =x ln(xy ),求32z x y ∂∂∂及32zx y ∂∂∂.解:ln()1ln(),z yx xy xy x xy∂=⋅+=+∂ 16.求下列函数的全微分: (1)22ex y z +=;(2)z =;(3)zy u x=;(4)yzu x =.解:(1)∵2222e 2,e 2x y x y z zx y x y++∂∂=⋅=⋅∂∂ ∴222222d 2e d 2e d 2e (d d )x y xy xy z x x y y x x y y +++=+=+(2)∵22223/21()z xy y x y x x y ∂⎛⎫-=⋅=- ⎪+∂+⎝⎭ ∴223/2d (d d ).()xz y x x y x y =--+ (3)∵11,ln z z z y y z u u y x x x zy x y--∂∂==⋅⋅∂∂ ∴211d d ln d ln ln d .z z zy y z y z u y x x x x zy y x x y y z --=+⋅+⋅⋅⋅(4)∵1yzu y x x z-∂=∂ ∴121d d ln d ln d .y y yz z z y y u x x x x y x x z z z z -⎛⎫=+⋅⋅+⋅⋅- ⎪⎝⎭17.求下列函数在给定点和自变量增量的条件下的全增量和全微分: (1)222,2,1,0.2,0.1;z x xy y x y x y =-+==-∆=∆=- (2)e ,1,1,0.15,0.1.xy z x y x y ===∆=∆=解:(1)22()()()2()9.688 1.68z x x x x y y y y z ∆=+∆-+∆+∆++∆-=-= (2)()()0.265ee e(e 1)0.30e.x x y y xy z +∆+∆∆=-=-=18.利用全微分代替全增量,近似计算:(1)(1.02)3·(0.97)2; (3)(1.97)1.05.解:(1)设f (x ,y )=x 3·y 2,则故d f (x ,y )=3x 2y 2d x +2x 3y d y =xy (3xy d x +2x 2d y ) 取x =1,y =1,d x =0.02,d y =-0.03,则(1.02)3·(0.97)2=f (1.02,0.97)≈f (1,1)+d f (1,1)d 0.02d 0.03x y ==-=13×12+1×1[3×1×1×0.02+2×12×(-0.03)]=1.(2)设f (x ,y 则故d (,)d d )f x y x x y y =+取4,3,d 0.05,d 0.07x y x y ====-,则 (3)设f (x ,y )=x y ,则d f (x ,y )=yx y -1d x +x y ln x d y , 取x =2,y =1,d x =-0.03,d y =0.05,则19.矩型一边长a =10cm ,另一边长b =24cm,当a 边增加4mm ,而b 边缩小1mm 时,求对角线长的变化.解:设矩形对角线长为l ,则 当x =10,y =24,d x =0.4,d y =-0.1时,d 0.4240.1)0.062l =⨯-⨯=(cm)故矩形的对角线长约增加0.062cm. 20.解:因为圆锥体的体积为21.3V r h π=⋅ 而221.33V V V dV r h yh r r h r h ππ∂∂≈=⋅+⋅=⋅+⋅∂∂0030,0.1,60,0.5r r h h ====-时,21.解:设水池的长宽深分别为,,x y z 则有:V xyz = 精确值为: 近似值为:22.求下列复合函数的偏导数或全导数:(1)22,cos ,sin ,z x y xy x u v y u v =-==求z u ∂∂,z v∂∂; (2)z =arc tan xy,x =u +v ,y =u -v ,求z u ∂∂,z v∂∂;(3)ln(e e )x y u =+,y =x 3,求d d u x; (4)u =x 2+y 2+z 2,x =e cos t t ,y =e sin t t ,z =e t ,求d d u t. 解:(1) (2)222222211111x z z x z y y x v y u x u y uyx y u v x x y y ∂∂∂∂∂--⎛⎫-=⋅+⋅=⋅+⋅== ⎪∂∂∂∂∂++⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭(3)33222d d d 11e 3e e 3e e e 3.d d d e e e e e e e exyxx x y x y x y x y x x u u x u y x x x x x x y x ∂∂++=⋅+⋅=⋅+⋅⋅==∂∂++++ (4)d d d d d d d d u u x u y u z t x t y t z t∂∂∂=⋅+⋅+⋅∂∂∂ 22(e cos e sin )2(e sin e cos )2e 4e t t t t t t x t t y t t z =-+++⋅=.23.设f 具有一阶连续偏导数,试求下列函数的一阶偏导数: (1)22(,e );xyu f x y =- (2),;x y uf y z ⎛⎫= ⎪⎝⎭(3)().,,u f x xy xyz = 解:(1)12122e 2e .xy xy uf x f y xf y f x∂''''=⋅+⋅⋅=+∂ (2)1111u f f x y y∂''=⋅=∂ (3)1231231,uf f y f yz f yf yzf x∂''''''=⋅+⋅+⋅=++∂ 24.设(),,()yz xy xF u u F u x=+=为可导函数,证明:证明:2()()()()z y y y xF u F u F u y F u x x x ∂⎛⎫''=+⋅+=+-- ⎪∂⎝⎭故 25.设22()yz f x y =-,其中f (u )为可导函数,验证:211z z zx x y y y∂∂+=∂∂. 证明:∵2222z yf x xyf x f f ''∂⋅=-=-∂,222(2)2z f y f y f y f y f f ''∂-⋅⋅-+==∂, ∴22222112211z z yf f y f y zx x y y f yf yf f y y ''∂∂++=-+==⋅=∂∂⋅ 26.22()z f x y =+,其中f 具有二阶导数,求22222,,.z z zx x y y ∂∂∂∂∂∂∂ 解:2,2,z zxf yf x y∂∂''==∂∂ 由对称性知,22224.z f y f y∂'''=+∂27.设f 具有二阶偏导函数,求下列函数的二阶偏导数: (1),;x x zf y ⎛⎫= ⎪⎝⎭(2)()22;,z f xy x y =(3)().sin ,cos ,e x y z f x y +=解:(1)1212111,z f f f f x y y∂''''=⋅+⋅=+∂ 2212211121112222221222122222222222222222223211121,1111,,2z f f f f f f f y x y y y yx x z x f f f f f f y y y x y y y y yx z x f f y y y z x x f f y y y ∂⎛⎫''''''''''''''+⋅=+⋅+=+⋅+ ⎪∂⎝⎭∂⎛⎫⎛⎫⎛⎫''''''''''--+=⋅-+⋅=-- ⎪ ⎪ ⎪∂∂⎝⎭⎝⎭⎝⎭∂⎛⎫''-==- ⎪∂⎝⎭∂''=-∂22222342.x x x f f y yy ⎛⎫''''-⋅=+ ⎪⎝⎭,(2)22121222,zf y f xy y f xyf x ∂''''=⋅+⋅=+∂ (3)1313cos e cos e ,x y x y zf x f xf f x++∂''''=⋅+⋅=+∂()()1321113313322()311113332312133233sin cos e e cos e cos e e sin cos 2e cos e ,cos e e (sin )e (sin )x y x y x y x y x y x y x y x y x y x y z xf x f f x f f x f x f xf xf xf f z x f f y f f y f x y++++++++++∂''''''''''=-+++⋅+⋅+⋅∂''''''''=-+++∂'⎡⎤''''''=++⋅⋅-+⋅⋅-+⎣⎦∂∂2()3121332332323223222233233e e cos sin e cos e sin e ,(sin )e sin e ,cos sin e e (sin )e (sin )e x y x y x y x y x y x y x y x y x y x y x y f x yf xf yf f zf y f yf f yz yf y f f y f f y f y+++++++++++⎡⎤''⋅⎣⎦'''''''''=-+-+∂''''=-+=-+∂∂''⎡⎤⎡''''''''=--++-+⋅-+⋅⎣⎦∂22()32222333e cos sin 2e sin e .x y x y x y f yf yf yf f +++⎤⎣⎦''''''''=-+-+28.试证:利用变量替换1,3x y x y ξη=-=-,可将方程化简为20uξη∂=∂∂. 证明:设1(,),3u f f x y x y ξη⎛⎫==-- ⎪⎝⎭2222222222222222222222221411(1)(1)3333u u u u ux x x u u u u u u u ux x x x x u u u uuu u x y ξηξηξηξηξηξξηηξηξξηηξξηηξηξξη∂∂∂∂∂∂∂=⋅+⋅=+∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=⋅+⋅+⋅+⋅=++∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫⎛⎫=+⋅-+⋅+⋅-=----- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭22u η∂∂222222222222222222222222211(1)33111211(1)(1)33933343142433u u u u u y u u u uuu u u y u u u x x y yu u u u ξηξηξξηηξηξξηηξξηηξ∂∂∂∂∂⎛⎫=⋅+⋅-=--- ⎪∂∂∂∂∂⎝⎭∂∂∂∂∂∂∂∂⎛⎫⎛⎫=-⋅-⋅--⋅-⋅-=++-- ⎪ ⎪∂∂∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭∂∂∂++∂∂∂∂∂∂∂∂∂=+++--∂∂∂∂∂2222222221239340.3u u u u u u ξηηξξηηξη⎛⎫⎛⎫∂∂∂∂+-++ ⎪ ⎪∂∂∂∂∂∂∂⎝⎭⎝⎭∂=-=∂∂故20.uξη∂=∂∂29.求下列隐函数的导数或偏导数:(1)2sin e 0xy xy +-=,求d d y x ;(2)ln arctan y x =,求d d y x;(3)20x y z ++-=,求,z zx y∂∂∂∂; (4)333z xyz a -=,求22,z z x y∂∂∂∂. 解:(1)[解法1]用隐函数求导公式,设F (x ,y )=sin y +e x -xy 2, 则2e ,cos 2,x xy F y F y xy =-=-故22d e e d cos 2cos 2x xx y F y y y x F y xy y xy--=-=-=--. [解法2]方程两边对x 求导,得故2e .cos 2xy y y xy-'=- (2)设()221(,)arctanln arctan ,2y y F x y x y x x==-+ ∵222222121,21xxx y y F x y x y x y x +⎛⎫=-⋅=- ⎪++⎝⎭⎛⎫+ ⎪⎝⎭∴d .d x y F y x y x F x y+=-=- (3)方程两边求全微分,得则d ,zx y =+故z z x y ∂∂==∂∂ (4)设33(,,)3F x y z z xyz a =--,则223,33x z F z yz yz x F z xy z xy∂-=-=-=∂-- 30.设F (x ,y ,z )=0可以确定函数x =x (y ,z ),y =y (x ,z ),z =z (x ,y ),证明:1x y zy z x∂∂∂⋅⋅=-∂∂∂.证明:∵,,,y x z x y zF F F x y zy F z F x F ∂∂∂=-=-=-∂∂∂ ∴ 1.y z x y z x F F F x y z F F F y z x ⎛⎫⎛⎫∂∂∂⎛⎫---⋅⋅=⋅⋅=- ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭31.设11,0F y z x y ⎛⎫++= ⎪⎝⎭确定了函数z =z (x ,y ),其中F 可微,求,z z x y ∂∂∂∂.解:12122110x F F F F x x ⎛⎫'''=⋅+⋅=--⎪⎝⎭32.求由下列方程组所确定的函数的导数或偏导数:(1)22222,2320,z x y x y z ⎧=+⎪⎨++=⎪⎩求:d d ,;d d y z x x(2)1,0,xu yv yu xv +=⎧⎨-=⎩求:,,,;u v u v x x y y ∂∂∂∂∂∂∂∂ (3)2(,),(,),u f ux v y v g u x v y =+⎧⎨=-⎩其中f ,g 具有连续偏导数函数,求,;u vx x ∂∂∂∂ (4)e sin ,e cos ,uux u v y u v ⎧=+⎪⎨=-⎪⎩求,,,.u u v vx y x y∂∂∂∂∂∂∂∂ 解:(1)原方程组变为 方程两边对x 求导,得 当2162023y Jyz y y z-==+≠(2)设(,,,)1,(,,,),F x y u v xu yv G x y u v yu xv =+-=-故22x vx v F F u yG G v x uux yv x J J x y--∂-+=-=-=∂+ (3)设(,,,)(,),F u v x y f ux v y u =+-则121221121(1)(21),21u v uvF F xf f J xf yvg f gG G g vyg ''-''''===---''-故12121221122121(21),(1)(21)x v xvuf f F F G G g yvg uf yvg f g u xJJ xf yvg f g ''''''''-----∂=-=-=∂''''---(4)(,),(,)u u x y v v x y ==是已知函数的反函数,方程组两边对x 求导,得整理得(e sin )cos 1,(e cos )sin 0,uu u v v u v x xu v v u v x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪-+=⎪∂∂⎩解得sin e (sin cos )1u u v x v v ∂=∂-+ 方程组两边对y 求导得整理得(e sin )cos 0(e cos )sin 1uu u v v u v y y u v v u v y y ∂∂⎧++=⎪∂∂⎪⎨∂∂⎪-+=⎪∂∂⎩解得cos sin ,.e (sin cos )[e (sin cos )1]u u u u v v v e y v v y u v v ∂-∂+==∂-∂-+ 33.设e cos ,e sin ,uux v y v z uv ===,试求,.z zx y∂∂∂∂ 解:由方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩可确定反函数(,),(,)u u x y v v x y ==,方程组两边对x 求导,得解得cos sin ,e e u u u v v v x x ∂∂==-∂∂ 所以cos sin e uz u v v v u v v u x x x ∂∂∂-=+=∂∂∂ 方程组两边对y 求导,得 解得sin cos ,e e u u u v v v x y ∂∂==∂∂ 所以sin cos eu z u v v v u v v u y y y ∂∂∂+=+=∂∂∂. *34.求函数322(,)51054f x y x x xy y x y =--+++-在(2,-1)点的泰勒公式.解:(2,1)2f -= 故*35.将函数(,)xf x y y =在(1,1)点展到泰勒公式的二次项. 解:(1,1)1,f =习题九1.求下曲线在给定点的切线和法平面方程: (1)x =a sin 2t ,y =b sin t cos t ,z =c cos 2t ,点π4t=; (2)x 2+y 2+z 2=6,x +y +z =0,点M 0(1,-2,1); (3)y 2=2mx ,z 2=m -x ,点M 0(x 0,y 0,z 0).解:2sin cos ,cos 2,2cos sin x a t t y b t z c t t '''===-曲线在点π4t=的切向量为 当π4t =时,,,222a b c x y z ===切线方程为2220a b cx y z a c---==-. 法平面方程为即22022a c ax cz --+=. (2)联立方程组它确定了函数y =y (x ),z =z (x ),方程组两边对x 求导,得 解得d d ,,d d y z x z x y x y z x y z--==-- 在点M 0(1,-2,1)处,00d d 0,1d d M M y zx x ==- 所以切向量为{1,0,-1}. 故切线方程为 法平面方程为1(x -1)+0(y +2)-1(z -1)=0即x -z =0.(3)将方程y 2=2mx ,z 2=m -x 两边分别对x 求导,得于是d d 1,d d 2y m z x y x z==- 曲线在点(x 0,y 0,z 0)处的切向量为0011,,2my z ⎧⎫-⎨⎬⎩⎭,故切线方程为 法平面方程为000001()()()02m x x y y z z y z -+---=. 2.t (0<t <2π)为何值时,曲线L :x =t -sin t ,y =1-cos t ,z =4sin2t在相应点的切线垂直于平面0x y +=,并求相应的切线和法平面方程。
复旦大学数学科学学院2011~2012学年第二学期期末考试试卷A 卷数学科学学院1.(本题满分42分,每小题7分)计算下列各题: (1)设4yx yx z -+=,求dz 。
(2)求曲线1)32()12(22=+++++y x y x 所围有界区域的面积。
(装 订 线 内 不 要 答 题 )(3)计算三重积分⎰⎰⎰Ω+dxdydz y x )(22,其中Ω为抛物面22y x z +=与平面hz =(0>h )所围的有界闭区域。
(4)计算第一类曲面积分⎰⎰∑dS y 2,其中∑是球面2222a z y x =++(0>a )。
(5)求幂级数∑∞=+1!1n nx n n 的和函数。
(6)求微分方程y x y xdx dy =-4(0>x ,0>y )的通解。
2.(本题满分8分)求函数222),,(z y x z y x f ++=在条件1=++cz by ax 下的最小值,其中a ,b ,c 为常数。
3.(本题满分10分)确定常数λ,使得右半平面}0|),({>x y x 上的向量值函数i r λ)(2),(24y x xy y x +=j λ)(242y x x +-为某二元函数),(y x u 的梯度,并求),(y x u 。
4.(本题满分10分)计算第二类曲面积分⎰⎰∑-+-zxdxdy xydzdx dydz x 48)1(22,其中∑是由Oxy 平面上的曲线2y e x =(10≤≤y )绕x 轴旋转一周而成的旋转曲面,且该曲面的法向量与x 轴正向的夹角不小于2π。
5.(本题满分10分)设)(x y n 是定解问题⎪⎩⎪⎨⎧='==--0)1(,0)1(,122y y x dxdyndx y d x n 的解( ,3,2=n )。
(1)求)(x y n ( ,3,2=n );(2)问级数∑∞=2ln )0(n n n y 是否收敛?请说明理由。
6.(本题满分12分)设πϕ<<0。
2012-2013复旦大学数学分析B(II)B 卷一、严格表述题(每题3分,共3题 ,共9分)1. 请用N -ε语言表述:h x n n =∞→lim 。
2. n 元函数的中值定理。
3. 第二类曲面积分。
二、填空题(每题4分,共7题,共28分)1. 曲面xy e z z+=在点)0,1,1(-处的法线方程为 。
2. 设方程x y y x arctan ln22=+确定函数)(x y ,则=dxdy。
3. )ln(xy y z =,则=z d 2。
4. 函数⎩⎨⎧-∈∈=)0,[,0),0[,)(ππx x x x f 的Fourier 级数为 。
5. 级数∑∞=+12)1(n nn x 的收敛域为 。
6. 向量场k j i a )1ln(),,(22z x ye xy z y x z +++=在点)0,1,1(的散度为a div = 。
7. 已知dx dy y dx y d 4422=+,则)(x y = 。
三、判断简答题(判断下列命题是否正确,如果正确的,请回答“是”,并给予简要证明;如果错误的,请回答“否”,并举反例。
)(每题5分,共3题,共15分)1. 设级数∑∞=1n n x 收敛, 1lim =∞→nnn y x , 则级数∑∞=1n n y 收敛。
2. 函数项级数∑∞=+-12)1(n nxn 在实数域上一致收敛。
3. 设函数),(y x f z =在点),(00y x 处的所有方向导数均存在,则),(y x f z =在点),(00y x 处可微。
四、计算题(每题6分,共5题,共30分)1. 求级数∑∞=+1)1(n nn n x 的收敛域,并写出其和函数。
2. 设vu z =,其中22lny x u +=,xyv arctan =,求dz 。
3. 计算⎰⎰-Ddxdy y x )2(,其中D 为直线1=y ,032=+-y x 与03=-+y x 所围成的闭区域。
4. 求⎰-+++-Ldy y x dx y x )653()42(,其中L 是顶点为)0,0(,)0,3(和)2,3(的三角形正向边界。
5. 求⎰⎰∑++dS z y x )(,其中∑为球面2222a z y x =++上)0(a h h z <<≥的部分。
五、证明题(共3题,共18分)1.(6分)已知0>n x ,0)1(lim 1>-+∞→n nn x x n ,试证明:级数∑∞=+-11)1(n n n x 收敛。
2.(6分)设10<<x ,+∞<<y 0,证明:ex yx y1)1(<-。
3.(6分)设立体Ω由旋转抛物面22:y x z +=∑与∑在点),,(22b a b a +)0,0(>>b a 处的切平面以及圆柱面222)()(r b y a x =-+-)0(>r 所围成,证明Ω的体积仅与圆柱面的半径r 相关,而与点),(b a 的位置无关。
答案一、1.答:εε->->∀∃>∀h x N n N n :,,0, 且}{n x 中有无穷多项满足ε<-h x n2. 答:设n 元函数)x ( f 在凸区域n D R ⊂上可微,则对于D 内任意两点0x 和x x 0∆+,:)1,0(∈∃θx )x x (grad )x ()x x (000 ∆•∆+=-∆+θ f f f 。
3. 答:设∑为定向的光滑曲面,曲面上的每一点指定了单位法向量)cos ,cos ,(cos γβα=n。
如果k z)y,,(j z)y,,(i z)y,,P(z)y,,(x R x Q x x f ++=是定义在∑上的向量值函数,称⎰⎰⎰⎰∑∑++=•dS x R x Q x dS n f ]z)cos y,,(z)cos y,,(z)cos y,,P([γβα为f 在∑上的第二类曲面积分。
二、 1.⎪⎩⎪⎨⎧=+=--01111z y x 。
2.y x y x -+ 3.dxdy x dy y dx xy 21222++-。
4.∑∑∞=+∞=-+--+1112sin )1(cos 1)1(4n n n n nx n nx n ππ。
5. [-2,0]。
6. 2 。
7.)(212x c c e x +。
三、1. 答:否。
反例: n x n n 1)1(+-=,n n y n n 1)1(1+-=+,则1lim =∞→n n n y x , 级数∑∞=1n n x 收敛, 但级数∑∞=1n n y 发散. 2. 答:是。
设21)(xn x a n +=,nn x b )1()(-=,则: )}({x a n 对任一固定的x 关于n 单调,且在实数域上一致收敛于0,同时1)(1≤∑∞=n n x b ,由Dirichlet 判别法,∑∞=+-12)1(n nx n 在实数域上一致收敛。
3. 答:否。
反例: ⎪⎩⎪⎨⎧=≠+==)0,0(),(0)0,0(),(2),(423y x y x y x xy y x f z),(y x f z =在点)0,0(处的所有方向导数为0,故0)0,0(=x f ,0)0,0(=y f ,但f 在点)0,0(处不可微。
四、1. 解: 级数∑∞=+1)1(n nn n x 的收敛半径为1,当1±=x 时级数收敛,故收敛域为]1,1[-。
设∑∞=+=1)1()(n n n n x x S ,∑∞=++==11)1()()(n n n n x x xS x f ,则x x x f n n -==∑∞=-11)(''11于是⎰--=-=xx dx x x f 0)1ln(11)(',,)1ln()11(1)('1)(0⎰---==x x x dx x f x x S )1,1[-∈x ;1)1(1)1(1=+=∑∞=n n n S 。
2. 解:22221ln yx y u u y x x vu x v v z x u u z x z vv +-+=∂∂∂∂+∂∂∂∂=∂∂- 22221ln y x x u u y x y vu y v v z y u u z y z v v +++=∂∂∂∂+∂∂∂∂=∂∂- dy yzdx x z dz ∂∂+∂∂=3. 解: 积分区域为D ={ 1≤y ≤3,y −32≤x ≤3−y }从而有∬(2x −y )dxdyD= ∫(∫(2x −y )dx 3−yy−32)31dy =94∫(y 2−4y +3)31dy = −34. 解: 由Green 公式,124)()653()42(==-=-+++-⎰⎰⎰⎰⎰DDy xLdxdy dxdy P Qdy y x dx y x5. 解: 222y x a z --=,∑在xOy 面上投影区域}|),{(2222h a y x y x D xy -≤+=,∑关于yOz 面和xOz 面均对陈,故0==⎰⎰⎰⎰∑∑ydS xdS)(1)(2222222222222h a a dxdy a dxdy yx a y y x a x yx a zdS dS z y x xyxyD D -==--+--+--==++⎰⎰⎰⎰⎰⎰⎰⎰∑∑π五、1. 证明: 设0)1(lim 1>=-+∞→γn nn x x n ,可知当n 充分大时1+>n n x x ,即数列}{n x 当n 充分大时单调减少. 取0>α,0>β,使得0>>>αβγ,当n 充分大时,成立:αααβnn n n x x n n )1()11(11+=+>+>+ , 从而n n x n x n αα<++1)1( 即数列}{n x n α当n 充分大时单调减少,故存在0>A 使得A x n n ≤α,即αnA x n ≤<0 故数列}{n x 趋于0,从而级数∑∞=+-11)1(n n n x 是Leibniz 级数,故收敛。
2. 证明: 设)1(),(x yx y x f y-=,令0)ln 1)(1(),(=+-=∂∂x y x x y y x f y 得xy ln 1-= 对于固定的)1,0(∈x ,)1(),(x yx y x f y-=极大值点为x y ln 1-=,极大值为xe x x ln )1()(--=ϕ。
可得xex xx x x 2ln ln 1)('+-=ϕ,记,ln 1)(x x x x g +-=)1,0(∈x ,则,0ln )('<=x x g ,0)1(,1)0(=-=+g g 故,0)(>x g 从而)(x ϕ严格单调增加。
再由11)(lim --→=e x x ϕ得: 1)(),(-<≤e x y x f ϕ,10<<x ,+∞<<y 0。
3. 证明:∑在点),,(22b a b a +)0,0(>>b a 处的法向量为)1,2,2(-=b a n,切平面方程为2222b a by ax z --+=Ω的体积:2)()()22(4202)()(22)()(2222222222r d d dxdy b y a x dxdy b a by ax y x V rr b y a x r b y a x πρρρθπ==-+-=++--+=⎰⎰⎰⎰⎰⎰≤-+-≤-+-故Ω的体积仅与圆柱面的半径r 相关,而与点),(b a 的位置无关。