盾构下穿既有隧道的风险及控制
- 格式:docx
- 大小:28.81 KB
- 文档页数:3
盾构隧道近距离下穿对既有运营隧道影响摘要:近年来城市轨道交通建设发展迅速,为人们出行带来极大便利.人口聚集的大城市如上海、北京、天津、广州、深圳等已形成复杂的地下交通网络,穿越既有隧道成为隧道建设的新常态,而新建盾构隧道近距离多次下穿施工会对既有隧道产生扰动致使其变形、应力叠加,进而影响既有线的安全运营.关键词:盾构隧道;近距离下穿;既有运营隧道;影响1盾构隧道下穿既有运营铁路的问题情况1.1地表和结构物沉降问题研究盾构隧道施工势必会对周围岩土体产生一定的扰动,造成地表沉降或隆起。
目前学术界通常采用数值模拟和现场监测数据相结合的方法,对地表沉降量的大小和施工对地表沉降的横向影响范围进行研究。
1.2主动加固方案效果评价针对盾构隧道下穿的各种类型的铁路结构物,学者和技术人员根据具体工程情况,采用了具有针对性的加固方案。
2盾构隧道下穿施工的影响分析2.1既有隧道拱底隆沉规律分析(1)两次下穿施工造成既有线发生不均匀沉降,最终沉降曲线均呈现不对称的双峰式,最大沉降位置为新建两线中间偏向第二次下穿施工的轴线位置.(2)第一次下穿施工(右线)时,当切口环距既有上行线轴线底部7.2m,由于盾构机的土舱压力对前方土体产生挤压,底部各测点呈现隆起状态;当切口环到达既有上行线正下方时既有隧道发生沉降,最大沉降位于右线轴线正上方,最大沉降为2.6mm,约占第一次下穿完成时最终沉降的80.5%;随着盾构机继续向前掘进,各测点继续沉降,但沉降幅度逐渐减小;第一次下穿完成时最终沉降达到3.23mm,约占最终沉降的40.2%.(3)第二次下穿施工(左线)时,当切口环距既有隧道7.2m时整线均隆起,隆起最大位置为新建左线正上方;当切口环到达既有隧道正下方时整线呈沉降状态,最大沉降为6.92mm,约占最终沉降的86.1%;随盾构机切口环继续向前掘进沉降继续增加,但沉降幅度有所减缓;两线施工完成时最大沉降为8.04mm.(4)下行线的最终沉降略小于上行线,而最大隆起略大于上行线;但最大隆起、沉降位置与上行线一致.当切口环通过既有下行线轴线底部7.2m时,下行线达到最大隆起;当切口环通过既有下行线轴线底部21.6m时,既有下行线最大沉降达到最终沉降的87%,最终沉降的最大值为7.1mm.2.2土舱压力对既有线沉降的影响(1)隧道工程的沉降不仅与土罐压力的大小密切相关,而且随着土罐压力的增大,营业线的最终沉降量先增大后减小。
盾构隧道近距离下穿既有地铁线路安全控制对策本文主要以盾构隧道近距离下穿既有地铁线路工程为背景,简单介绍了近距离穿越既有地铁线路工程的施工控制要求,并提出了几点施工安全控制措施,以仅供日后相关领域人员的参考借鉴。
标签:盾构隧道;近距离下穿;地铁;安全控制;既有线在地铁的实际施工过程中,工程体量大,且属于高风险建设工程,随着城市化进程的逐渐推进,地下环境中的结构设施越来越多,如何保证在盾构隧道下穿施工顺利开展的同时,又不会对既有地铁线路的正常运行带来影响,成为了相关领域人员不得不面对的问题之一。
1、施工控制要求在进行地铁施工建设的过程之中,主要需要加强控制的是区间隧道施工期间的变形问题,而就实际施工来说,其变形问题大致可划分成以下三个方面:(1)隧道周边土体结构的变形,会直接威胁到附近建筑体的安全性与稳定性;(2)既有结构附近土体的变形,情况严重时便会直接引起既有结构出现坍塌,严重威胁到人们的生命财产安全;(3)支护结构发生变形,会导致隧道施工存在较大安全风险。
此外,若是出现沉降问题也会对隧道施工带来影响:(1)地层沉降对隧道的影响。
盾构施工可能会使得附近土体受到扰动,从而在开挖断面上出现不均匀的沉降槽,对既有地铁线路的正常运营带来不良影响,成型隧道管片会随着沉降槽的形成而使得管片间的应力重新分布,导致管片见的重复挤压破损;(2)地层沉降对轨道的影响。
盾构施工会使得附近土体受到扰动,使得土体出现不均匀沉降,而一旦土体出现沉降,轨枕的支撑面会随之也发生一定的下沉,使得轨道多支座超静定系统也受到破坏。
并在列车动荷载作用之下,这些支撑面下沉的轨枕会连带轨道发生显著变形,使得轨道中应力大幅增高,当土体沉降较大时,甚至会使轨道断裂;(3)轨道差异沉降对列车运营的影响。
盾构施工近距离下穿既有地铁线路时,周边土体会受到扰动,使得地层发生差异沉降,轨道也会随之出现差异沉降。
而差异沉降会和列车自振结合起来,导致列车振幅变大,使列车出现摇摆运动。
收稿日期:2016-06-20;修回日期:2017-03-20作者简介:夏金春(1978—),男,河南信阳人,2002年毕业于合肥工业大学,交通土建工程专业,本科,高级工程师,主要从事地铁施工管理工作。
E-mail :upxjc@163.com 。
地铁盾构正交下穿隧道施工风险控制措施夏金春(中铁十六局集团有限公司,北京100018)摘要:为减小新建地铁盾构隧道下穿施工对既有运营市政隧道的影响,采取土体加固、加强底板配筋等前期预留措施,并在下穿过程中通过分析监测数据变化规律,进一步提出适时调整盾构掘进参数、注浆参数、进行土体改良等措施,达到保障既有运营隧道安全、确保地铁隧道施工安全和质量的目的。
关键词:地铁;盾构;下穿;市政隧道;风险控制DOI :10.3973/j.issn.1672-741X.2017.S1.018中图分类号:U 45文献标志码:B文章编号:1672-741X (2017)S1-0111-05Risk Control Technology for Construction of Metro ShieldTunnel Perpendicularly Crossing Underneath Existing TunnelXIA Jinchun(China Railway 16th Bureau Group Co.,Ltd.,Beijing 100018,China )Abstract :In order to minimize the influence of metro shield tunnel perpendicularly crossing underneath existing tunnel on running municipal tunnel ,a series of technologies ,i.e.ground consolidation ,floor reinforcement strengthening ,monitoring data analysis ,shield boring parameters and grouting parameters adjustment and ground conditioning ,are adopted.The safety of the municipal tunnel and the metro shield tunnel and the construction quality of the metro shield tunnel have been guaranteed.Keywords :metro ;shield ;underpass ;municipal tunnel ;risk control0引言近几年城市地铁建设发展迅猛,地铁隧道施工对已建市政隧道、既有构筑物的影响越来越大。
盾构隧道下穿既有线路施工参数控制及沉降分析1. 施工参数控制在盾构隧道下穿既有线路的施工过程中,需要控制一系列的施工参数,以确保施工的安全和对既有线路的影响最小。
1.1 掌握地层情况盾构隧道下穿既有线路时,需要事先了解既有线路下方的地层情况,包括地层岩性、地质构造、地下水位等信息,以确定盾构隧道的施工参数。
例如,在软土和淤泥环境下,需要采用冻土墙来控制隧道周围的土壤稳定;在岩石环境下,需要使用钻爆法和切削区间的选择等施工方式,根据地质情况选择正确的注浆剂和顶管适度,以确保盾构隧道下穿既有线路的地质完整性。
1.2 控制盾构工作面进度在盾构隧道下穿既有线路的施工过程中,需要控制盾构工作面的进度。
不能让盾构机的进度过快,否则会产生较大的隧道周围土壤变形,对既有线路造成影响。
同时,也不能让盾构机的进度太慢,否则也会影响施工周期和成本。
1.3 控制注浆压力在盾构隧道下穿既有线路的施工过程中,注浆是一个非常重要的工艺环节。
需要采用合适的注浆剂和充足的注浆压力,以控制隧道周围土体的收缩和避免隧道沉降超出允许范围。
1.4 控制机身转向在盾构隧道下穿既有线路的施工过程中,盾构机必须按照设计轨迹施工,以确保施工的稳定性和安全性。
需要及时调整盾构机的转向状态,使其与原有线路维持适当的间隔距离。
2. 沉降分析在盾构隧道下穿既有线路的施工过程中,会产生一定的隧道沉降,有必要进行沉降分析和控制。
2.1 数值模型分析数值模型分析是盾构隧道沉降分析的常用方法之一。
一般分析时采用三维有限元分析方法,建立复杂的土壤隧道模型,通过按照施工方案和盾构构件的尺寸进行分析,预测盾构隧道下穿既有线路的沉降情况。
2.2 监测预测分析监测预测分析是一种实地监测沉降,分析沉降趋势的方法。
一般先进行盾构隧道前后的地基状态监测,建立基准控制点,并对监测数据进行分析和处理,得出隧道下穿既有线路的沉降趋势。
2.3 评估方案制定在盾构隧道下穿既有线路的施工过程中,需要根据沉降分析结果进行隧道施工方案制定。
盾构施工下穿既有建筑物风险控制与安全管理摘要:随着地铁工程的不断发展,地铁区间隧道盾构施工相比传统施工方式具有很多优势,但盾构施工中也存在一些弊端,如设备投资大等,往往会由于不确定因素而存在各种风险。
近年来,我国地铁工程盾构施工发生多起安全事故,严重威胁了群众生命财产安全。
鉴于此,研究盾构施工安全管理方法是十分必要的。
本文查阅相关资料研究地铁盾构施工中安全风险管控对策,首先阐述地铁盾构施工安全风险管理理论,通过对地铁盾构施工安全风险识别评价,重点总结地铁盾构施工安全风险管控对策。
通过地铁盾构施工安全风险分析管控研究,为地铁工程盾构施工安全管理提供参考。
关键词:地铁施工;既有建筑物;风险控制;安全管理引言建筑工程项目是一个安全风险十分密集的领域,在经济全球化的背景下,建筑企业如何充分整合、利用所具有的资源,减少和控制生产中的风险,降低生产施工中各类安全事故的损失,已经成为建筑企业必须解决的现实问题。
除了项目前期立项的决策和设计阶段质量的不合格造成工程实体的安全隐患以外,施工阶段是建设项目全过程中安全风险最密集,发生安全事故最多的一个阶段。
近年来我国建筑施工安全事故频发,人员损失和财产损失巨大,因此针对建筑施工阶段的安全风险管理与防范的探讨和研究有着更加迫切的现实意义。
1地铁盾构施工安全风险管理理论风险是事件中失败的概率,工程项目风险是指影响工程项目不确定因素的集合。
因此风险事件就是指对事件发展的预测。
风险具有客观性、必然性等,构成要素包括风险因素、损失与事故,主要来源有自然、社会与经济风险等。
其中,内在风险是项目行为主体存在不可预测的风险因素,如业主支付能力不足导致资金无法及时到位产生的风险、项目管理者业务能力不达标导致的信誉风险等。
工程施工风险管理是工程管理人员在项目实施中从风险分析评价等方面严格控制工程施工潜在风险。
风险管理环节包括风险识别评估与应对。
可以从不同角度理解项目风险,并通过检验分析项目数据资料来明确各部门的工作职责,这不仅有利于规避风险,还可以针对风险发生制定相应的应对措施,以保证项目的正常进行。
盾构法施工在过江隧道中的风险及应对措施随着科技的进步,盾构法施工已在地下隧道施工中得到普及,同时关于盾构法施工在项目实施过程中对各种风险因素的掌控,特别是在穿越大江大河时对各种可能出现的风险因素的提前预测和掌控也成了广大建设者必须掌握的技术内容。
本文针对盾构法施工在过江隧道中可能产生的各种风险因素进行分析、总结,并依此提出应对每种风险的具体措施,与大家共勉。
标签:盾构法施工;过江隧道;风险;措施引言:随着科学技术的发展和人类施工技术的进步,盾构法施工已经在大型水利输水工程、城市轨道交通工程、铁路隧道工程等类工程中得到广泛的应用,同时,因盾构法施工地处地面以下相对较深处,特别是在穿越江河时,线路长、埋深深、地质条件复杂等,使施工难度加大,各种风险因素陡增。
施工中若不充分考虑到各种风险及其应对措施,很容易发生重大事故,从而造成重大经济损失及產生较大社会负面影响。
因而,科学的预测和处理施工风险就变得尤为重要,也是确保工程顺利进行并最终如期完工的前提。
一、盾构法施工概述盾构法施工主要是利用现有盾构机械完成地下隧道暗挖的一种施工技术。
其主要的隧洞挖掘工作靠盾构机来完成。
目前常用的盾构设备有土压平衡盾构和泥水平衡盾构两种。
两种设备除出渣(土)的原理不同外,其余工作的原理基本相同。
工程中可根据地质条件和地下水位情况选用相应的设备。
盾构法施工具有自动化程度高、施工速度快、一次成洞、施工时不受气候和地面交通影响、在水下施工时不影响水面交通等特点,在隧道洞线较长、埋深较大的情况下,盾构法施工更为经济合理。
该技术经过多年的发展,现已基本趋于成熟,但由于各工程地质条件的多样化及施工技术管理水平的高低,施工中还可能会出现各种各样的问题。
二、盾构法施工在过江隧道工程中可能遇到的风险及相应对策(一)盾构机适应性和可靠性风险及对策1.风险盾构机的选择是施工能否顺利推进的重要前提,是施工成败的关键。
另外,机械的可靠性和性能的稳定性也很大程度上影响着工程的推进,对设备的选择失误可能导致整个工程推进的失败。
盾构近距离下穿既有地铁施工风险综合控制技术0 引言随着我国城市轨道交通建设事业快速发展,城市交通枢纽错综复杂,盾构法的应用越来越广泛,尤其在城市地铁建设中线路设计不可避免地下穿高层建筑物、桥梁、既有运营地铁线及河流等,盾构隧道施工过程中技术措施不足易造成沉降超标、建(构)筑物开裂或倾斜、既有运营线停运、甚至塌方等安全事故,造成重大社会影响。
其中隧道近距离下穿既有运营线就是一类典型案例,因此为保证在建隧道施工与建(构)筑物、既有运营线等安全,有必要对施工阶段技术进行深入研究,采取科学合理的应对技术措施。
目前国内外行业内专家针对在建盾构地铁下穿既有地铁隧道安全风险进行评估,其中关继发[1]对安全风险及控制技术进行了深入研究;胡云龙等人[2]针对在建地铁施工对既有线的影响进行详细分析,其次参考了一些地铁盾构施工近距离下穿既有线施工[3]的类似案例以及上软下硬或全断面富水砂层盾构施工技术[4-6],采取的技术措施主要为冷冻法[7]、地面双液浆[8-9]注浆加固,洞内双液浆注浆加固[10-11]等,均在实际工程中得到了广泛的应用。
目前国内在建地铁在上软下硬地层条件下近距离下穿既有运营地铁线施工案例较少,技术措施方案还需提升,本文将依托广州市轨道交通22号线某盾构井区间下穿既有运营地铁3号线盾构区间,采用地面定向注浆、洞内从左线向右线定向钻注浆、洞内径向超前注浆结合对运营线路自动监测技术,成功完成下穿施工。
为今后此类工况工程面临的难题提供了新的解决技术方案。
1 工程概况1.1 工程简介广州市轨道交通22号线某盾构井区间长2.51 km。
在区间里程ZDK38+542.909~ZDK38+523.709、YDK38+564.327~YDK38+545.127段于光明北路与东环路十字路口下穿既有运营地铁3号线盾构区间,下穿长度19.2~20.8 m。
22号线隧顶埋深26.5 m,隧顶距既有3号线隧底净距约5.5 m,先下穿3号线右线,再下穿3号线左线,如图1所示。
盾构穿越重大风险风险及对策 (2)盾构穿越重大风险风险及对策 (2)精选2篇〔一〕盾构穿越重大风险主要包括地质风险、施工风险和平安风险。
针对这些风险,可以采取以下对策:1. 地质风险:盾构穿越地层时,可能遇到复杂的地质情况,比方地下水、地裂缝、软弱地层等。
在设计阶段,应充分进展地质勘察和风险评估,确定适宜的盾构机型和控制参数。
在实际施工中,可采用先进的地质预测技术和监测手段,及时发现地质异常,确保施工的可靠性和平安性。
2. 施工风险:盾构施工过程中,可能会遇到隧道坍塌、地面沉降、泥浆失稳等问题。
为减少这些风险,施工前需制定详细的施工方案,并根据详细情况选择适宜的盾构机和工艺。
在施工过程中,应不断监测地表和隧道变形、岩土压力等指标,及时调整工艺参数,确保施工的稳定性和平安性。
3. 平安风险:盾构机施工中,平安事故可能带来严重的人员伤亡和财产损失。
为保障工人的平安,应制定详细的施工平安措施和应急预案,并进展全员培训和平安意识教育。
同时,加强现场监视和管理,确保相关人员严格按照平安规程进展操作。
在施工过程中,对机械设备进展定期检修和维护,确保其正常运行和平安使用。
综上所述,盾构穿越重大风险的对策主要包括地质勘察和风险评估、地质预测和监测、制定详细的施工方案和平安措施、加强现场监视和培训等。
只有充分考虑和控制这些风险,才能确保盾构工程的平安顺利进展。
盾构穿越重大风险风险及对策 (2)精选2篇〔二〕盾构作为一种地下隧道掘进设备,穿越重大风险时可能面临以下风险:1. 地质风险:盾构在地下穿行时会遇到不同类型的地质层,如岩石、土壤等。
地质层的变化可能导致盾构机遭遇困难,如阻力增大、地质变形等。
对策是在前期进展详细的地质勘查和分析,确保对地质层的理解,并针对不同地质层采取相应的措施。
2. 地下水风险:地下水位的升高会给盾构作业带来困难。
盾构机工作时需要排出大量的水,假设地下水位过高,那么会导致水压增大,进而可能引发水涌、涌水灾害等问题。
盾构隧道施工中的地质风险及其管理措施随着城市化进程的加快,地下空间的开发和利用逐渐成为一个重要的趋势。
而盾构隧道作为地下工程的主要施工方法之一,具有施工速度快、效率高的特点,被广泛应用于地铁、交通隧道等项目中。
然而,在盾构隧道的施工过程中,地质风险是一个不可忽视的问题,如果不加以合理的管理和措施,将会引发严重的后果。
地质风险是指在工程施工过程中,由于地下地质条件的复杂性和不确定性所带来的一系列风险和挑战。
盾构隧道施工中常见的地质风险主要包括地层变形、水土流失、地下水涌入、地质灾害(如地震、滑坡)等。
这些地质风险对隧道的施工安全和质量都有着重要的影响,因此必须采取一系列的管理措施来降低风险。
首先,要在隧道施工前进行综合地质勘察,详细了解地下地质情况和特征,确定隧道所经过的地层和岩土性质。
通过勘察,可以判断地下是否存在脆弱地层和不稳定地质体,并在设计阶段进行相应的调整和预防措施的制定。
其次,要建立完善的地质监测系统。
在施工过程中,通过地质监测系统可以实时监测和分析地下地质的变化情况,及时发现异常情况并采取相应的措施,减少事故的发生。
盾构隧道施工中常用的地质监测技术包括地下水位监测、地表沉降监测、地质体位移监测等。
通过这些监测手段,可以对隧道施工中的地质风险进行有效的控制。
第三,要进行合理的施工方案制定。
在制定施工方案时,应充分考虑地下地质情况,采用适当的施工方法和技术,减少地质风险。
例如,在遇到复杂地质层时,可以采取分段推进或加固地质体等措施,以降低隧道施工中的风险。
此外,要加强施工人员的技术培训和安全意识教育。
施工人员应对地质风险有着全面的了解,掌握应对突发地质事件的能力,同时也要提高安全意识,严格按照施工规范和操作规程进行施工,以保证施工安全。
此外,要加强与地质专家和相关机构的合作。
地质专家和相关机构具有丰富的经验和专业知识,能够提供科学的建议和指导。
在隧道施工过程中,应与地质专家和相关机构保持紧密的沟通和合作,共同解决地质风险问题,确保施工的顺利进行。
盾构隧道施工中的风险因素及对策随着城市化进程的不断推进,地下空间的利用日益重要。
盾构隧道作为一种广泛运用于城市交通、供排水、通信等基础设施建设中的施工技术,具有快速、高效、对环境影响小等优势,然而,在施工过程中也伴随着一系列的风险因素。
本文将重点讨论盾构隧道施工中可能存在的风险因素,并提出相应的对策。
首先,地质情况是盾构隧道施工中最重要的风险因素之一。
地质情况的复杂性直接影响了盾构隧道施工的难度和安全性。
地质灾害,如地下水突涌、地层坍塌等,都可能给盾构隧道施工带来安全隐患。
因此,在施工前,必须进行详细的地质勘察,并根据实际情况选择合适的盾构机型和施工方法。
同时,可以采取预先注浆、支护等措施来应对地质风险。
其次,盾构隧道施工过程中的机械故障是另一个常见的风险因素。
盾构机是盾构隧道施工的核心设备,如果发生机械故障,将会导致施工停工,甚至造成严重的人员伤亡和财产损失。
为了降低机械故障的风险,首先需要选择可靠的盾构机供应商,并且要求供应商提供全面的售后服务。
同时,要定期进行设备维护和检修,及时更换老旧设备,确保设备的安全、稳定运行。
第三,盾构隧道施工中的人员安全是一个不可忽视的因素。
盾构施工作业过程中,要求工人长时间处于封闭环境下,环境空气可能存在污染物。
此外,隧道工程中狭窄的工作空间、高温、高湿度等因素也会对工人的身体健康造成一定风险。
为了保障人员的安全,应加强工人的安全教育培训,并配备适当的个人防护装备。
同时,要确保通风系统的有效运行,及时排除污染物,提供良好的工作环境。
第四,地下管线的存在也是盾构隧道施工中的风险因素之一。
在盾构施工过程中,如果没有充分考虑到地下管线的位置,可能会造成对管线的损坏,引发事故。
因此,在盾构隧道的设计和施工前,必须进行充分的管线调查和标注,并与相关部门进行沟通,确保施工过程中对管线的保护措施得到落实。
此外,施工过程中的监测与控制也是降低风险的重要手段。
通过对盾构隧道施工过程中的各项参数进行实时监测和控制,可以及时发现并解决潜在问题。
盾构隧道施工中的风险管理与安全控制盾构隧道施工是一项复杂而具有挑战性的工程,涉及到许多潜在的风险和安全隐患。
因此,进行有效的风险管理和安全控制是确保施工质量和工人安全的关键。
本文将介绍盾构隧道施工中的一些常见风险,并提供一些建议用于风险管理和安全控制的措施。
一、盾构隧道施工中的风险1. 地质风险:隧道施工过程中,地质条件常常难以预测,例如地下水位、岩层变化等。
这些地质风险可能导致隧道坍塌、水浸等意外情况,严重影响施工进度和工人安全。
2. 机械故障:盾构机是隧道施工的关键设备,机械故障可能导致施工停工、延误或甚至事故。
盾构机的维护和检修至关重要,定期进行维修保养和性能检测,确保其正常运行。
3. 突泥突水:地下水源丰富的地区,隧道施工中常常面临突泥突水的风险。
施工过程中,必须加强水文勘探和监测,在施工过程中采取相应的防水和排水措施。
4. 各种事故风险:隧道施工中还存在火灾、爆破、坍塌等各种事故的风险。
施工前必须进行详细的风险评估,制定相应的应急救援计划,并加强现场安全教育和培训,提高工人的安全意识。
二、风险管理和安全控制措施1. 严格遵守相关法规和标准:施工单位必须严格遵守国家和地方的法规和标准,包括相关的安全生产法规、施工规范等。
2. 预防性控制:在隧道施工前,进行详细的工程地质勘探和风险评估,制定详尽的施工方案和安全管理计划。
合理安排施工时间,避开恶劣气候条件,以预防意外情况的发生。
3. 严格的质量管理:加强材料的选用和质量监控,遵循施工规范和质量检验标准,确保使用的材料符合要求,减少质量问题带来的风险。
4. 安全培训和管理:组织全体工人进行安全培训,并建立完善的安全管理制度。
对工人进行定期的安全教育,提高他们的安全意识和应急处理能力。
5. 定期检查和维护:盾构机和其他施工设备需要定期进行检查和维护,确保其性能正常。
每天对隧道施工现场进行巡视,及时发现和处理安全隐患。
6. 建立应急救援机制:制定详细的应急救援计划,包括事故报告和应急处理流程。
地铁盾构施工安全风险管理与控制措施摘要:近年来,随着社会经济的高速发展以及城市化进程的加快,修建地铁已然成为缓解城市交通压力的重要方式。
地铁与其他交通工具相比,不仅能够缓解城市地面拥挤,还具有速度快,运量大,能耗低,污染少等优点,是我国各大城市,甚至世界各国积极推进的基础设施工程。
地铁隧道施工技术主要分为开挖式和盾构式,与开挖式施工技术相比,盾构掘进技术具有安全性强、自动化程度高、不影响地面交通及对周围临近建筑物危害较小等特点,已逐渐成为地铁隧道施工的首选。
本文主要对地铁盾构施工安全风险管理与控制措施做论述,详情如下。
关键词:地铁盾构;施工安全;风险管理;控制措施引言地铁隧道建设规模大、施工里程长,通常会跨越多个区域,难免会遇到含水量偏高的地层,若防水、堵漏施工不规范、管控不到位,接缝、孔洞等薄弱位置极易出现渗漏水,危及隧道结构的安稳承荷与使用寿命。
1地铁盾构施工中风险管理的重要性通过风险分析,可加深对项目风险的认识,从多个角度对项目的具体施工情况作出客观评价,可检验项目的关键数据,对其准确性作出判断。
风险管理能强化各部门员工的安全工作意识,使员工准确认识自身的工作职责,协同推进施工进程。
风险管理还是主动降低风险的重要手段,具有前瞻性,能预测后续可能出现的风险,制定防控措施,尽量从源头上消除安全隐患。
2地铁盾构施工安全风险管理与控制措施2.1优化盾构选型考虑地质及环境因素,王前区间采用泥水平衡盾构,工香、北朝区间采用土压平衡盾构。
泥水平衡盾构优势:①泥水压力传递速度快而均匀,对开挖面周边土体干扰少,开挖面平衡土压力和地面沉降量控制精度高;②刀具刀盘磨损小,易于长距离掘进;③在承压水中能规避突涌风险;④出土由泥水管道输送,速度快而连续,减少电机车运输量,施工进度快;⑤刀盘所受扭矩小,进一步较小土层扰动。
土压平衡盾构可减少泥浆处理设备及场地。
2.2对当前行业盾构机选型和管理铁隧道盾构行业经过蓬勃发展,常规盾构机的市场饱和度和老旧程度凸显,按照机械制造业的10年一个轮回周期的规律,本该是进入盾构机大量淘汰报废、更新换代阶段,但业内受行业竞争激烈和疫情等因素影响,造成资金紧缺问题凸显;所以,再制造的想法应运而生,而普遍再制造都是选择超龄、老旧盾构机,伴随产生故障高的问题,业内也就逐渐开始排斥,不接纳再制造。
地铁盾构隧道下穿既有公路施工管理与控制措施摘要:近年来城市轨道交通的极大发展使得地铁线路日益网络化、规模化,地铁线路与既有公路桥梁交叉的情况愈发常见。
一旦施工措施不到位,很有可能公路、桥梁等会发生塌陷、倒塌等各类安全问题,严重威胁到人民的生命财产安全,本文依托佛山市城市轨道交通4号线一期工程,采用资料调研对研究地铁盾构隧道下穿既有公路施工管理与控制措施进行阐述,在确保施工质量的同时,保证道路的安全性。
关键词:盾构机系统;盾构机设备;安装技术;调试技术近年来城市轨道交通的大规模发展,使得地铁线路与既有公路桥梁交叉的情况愈发常见。
盾构隧道下穿施工对周边地层不可避免地会产生影响,造成下穿区域地基承载力的降低。
这会对既有公路桥梁带来一定的不利影响,严重时甚至会导致上部结构发生失稳现象。
为了确保盾构下穿施工过程中既有桥梁的安全,必须探明盾构隧道下穿施工引起的地层变形、既有桥梁桩基础响应等规律,以便据此调整盾构施工参数、合理选用必要的防护技术措施。
一工程案例科技西路站~科普中路站区间从科技西路站出发,首先沿科技北路向东延伸,侧穿恒大翡翠华庭、保利茉莉公馆、1座信号塔、穆天子山庄广告牌、下穿佛清从高速路基段,并上跨规划广佛西环隧道,再沿科技东路向东敷设,下穿DN500高压燃气管,侧穿3座10kV高压电塔,最后到达科普中路站。
二地铁盾构隧道下穿的问题下穿施工面临的根本问题是变形控制。
,变形控制需要根据被下穿结构的特征,通过绝对量和相对量两个方面进行控制。
当绝对量控制得非常严格之后,相对量便自然满足要求。
当某些条件下绝对量难以严格控制时,相对量的控制就显得尤为重要。
相对量的控制要从随着盾构掘进动态移动的三维沉降来考虑差异沉降。
无论是绝对沉降还是差异沉降的控制,都要根据下穿对象的抗变形要求制定合理的控制值,这是下穿施工的关键。
合理变形控制值的确定是非常困难的,因为在此次下穿施工之前,难以确定之前有多少次工程行为对结构物产生影响,也就是说下穿施工之前结构的已有变形是个未知量,这需要对结构物的状态进行综合判断。
盾构法隧道下穿既有地铁线风险及其控制措施随着城市建设的不断推进,越来越多的地铁线路需要穿越城市的地下,而盾构法隧道成为了一种常见的建造方式。
然而,隧道下穿既有地铁线时,存在着一定的风险和挑战。
本文将探讨这些问题,并分析应对措施。
盾构法隧道是一种地下工程施工方法,其优点是效率高、施工精度高、交通影响小等。
然而,隧道下穿既有地铁线时,由于地下的空间有限,施工难度也就相应增加。
因此,在施工过程中,需要注意一些重要的风险和挑战。
首先,盾构施工过程中会产生振动和声音,这会对既有地铁线路造成影响。
振动可能会引起既有地铁线路的沉降和裂缝,甚至会造成地铁车站受损,长期如此,可能导致地铁线路不安全,最终危及人民群众的生命财产安全。
同时,大声的施工声音也会扰乱邻近居民的生活,导致投诉和不满。
其次,盾构施工的精度要求很高,因为一旦出现偏差,就会影响地铁线路的稳定性。
尤其是在邻近既有地铁线路的地方,由于地下土层的紧密度会受到地铁线路的影响,施工难度更大。
因此,监测和精度控制成为了关键步骤。
监测数据要准确,精度控制要达到0.5-1mm,否则可能会对既有地铁线路造成伤害。
为了解决这些问题,我们需要采取控制措施。
首先,需要选择合适的施工时间和施工技术,以尽量降低对既有地铁线路的振动和噪音影响。
盾构机可以采用弹性隔振支架来减少振动,同时采用静音风机和降噪墙等措施来减少噪音。
其次,需要进行严格的监测和控制。
监测点的设置要合理,施工期间进行实时监测,如果出现异常情况,需要采取及时的措施,例如调整施工方案,加强监测等。
最后,需要提前与地铁公司进行沟通和协调,以确保施工安全和既有地铁线路的正常运营。
总之,盾构法隧道下穿既有地铁线是一项复杂的工程,需要特别注意一些风险和挑战。
随着城市建设的不断推进,需要加强监测和控制,采取科学的施工方案和有效的措施,以确保地铁线路稳定和安全。
盾构下穿既有隧道的风险及控制
摘要:近年来,随着中国经济的高速发展,城市发展越来越大,对交通的要求
也越来越高,为解决交通问题,各地地铁建设及城轨建设如火如荼。
随着建设线
路的不断增加,不可避免地会出现各线路交叉的情况,同时由于各线路建设时间
或管理方不同,常常造成交叉处无法同时施工,存在新建线路下穿或上跨已建线
路的问题,对原建线路会造成质量及安全影响,这时对已有线路隧道的保护措施
就很重要,本文以某市城市轨道交通区间盾构隧道施工下穿已建某城轨环线隧道
为例,对盾构下穿既有隧道进行风险分析及采取的措施进行总结,为今后类似工
程提供参考。
关键词:盾构下穿;既有隧道;风险控制
一、工程概况
某城轨环线与某市城市轨道交通七号线西延线在陈村站换乘,两线交叉于某
市城市轨道交通七号线西延线YCK0-927.574~YCK0-909.116处。
承包商投入的盾构
机为直径Φ6280的泥水土压双模式盾构机,可根据需要随时进行切换掘进模式,
以满足已建隧道及地表沉降控制需要。
1、下穿段平纵断面图
1)下穿段平面布置图
某市城市轨道交通七号线西延线陈村~陈村北站区间右线盾构始发后,经过21.750m在里程YCK0-929.905处开始下穿,于YCK0-913.901处通过某城轨环线陈
村1号隧道结构边线;陈村~陈村北站区间左线盾构始发后,经过25.462m后在
里程ZCK0-926.193处开始下穿,于ZCK0-909.116处通过结构边线,平面相交夹角
约为77°。
2)下穿段纵断面图
陈村~陈村北站区间纵向曲线在YCK0-930.077处变坡,陈村站段为2‰上坡,韦涌方向为25‰下坡。
土建工程区间隧顶距离某城轨环线陈村1号隧道底最近竖直距离为0.578m,相对位置纵断面布置图如图1所示。
同时在某城轨环线上方存在一道过街通道与其正交(与陈村~陈村北站区间平行),盾构下穿时也应加强
监测。
图1 陈村~陈村北站区间左右线与广佛环位置关系图
3)某城轨环线陈村1号隧道概况
陈村1号隧道位于某市陈村镇,设计里程:DK30+333~DK30+748.5,隧道全
长415.5m,隧道起始点濒临鱼塘,在DK30+520~DK30+660段下穿赤花村居民区,于DK30+665~DK30+715段下穿白陈公路,其终点与陈村车站相接。
本工程明挖主体结构采用地下一层现浇钢筋混凝土矩形框架结构,单箱双室,结构总宽度
15.9m,总高10.065m,底板厚0.9m,顶板和侧墙厚0.8m,中隔墙厚0.6m,主体结构全长415.5m。
2、工程地质概况
下穿段地质条件较差,根据初勘钻孔显示,隧道洞身范围内为淤泥质土、粉
细砂层和粉质黏土,洞身范围以下存在较厚<7-3>全风化泥质粉砂岩,<7-3>粉砂
岩岩石组织结构已大部分破坏,但尚可清晰辨认,矿物成分已显著变化,节理裂
隙较发育,岩体较破碎,岩芯呈密实状,岩质较软,手捏易碎,局部节理裂隙面
可见铁锰质渲染,土状者遇水易软化崩解。
隧道拱顶至某城轨环线结构底板之间
为淤泥质土和淤泥,再往上为粉细砂层。
淤泥质土<2-1B>呈深灰~灰黑色,主要
由粘粒及有机质组成,具腐味,夹少量粉细砂、中粗砂,偶见贝壳碎片及腐木,
饱和,流塑,干强度及韧性低,全线广泛分布,呈层状或透镜体状分布于填土层
之下,常与薄层淤泥质砂构成互层。
洞顶以上存在较厚砂层,主要为淤泥质粉细砂、粉细砂,呈灰黑色、深灰色等,饱和,松散~稍密,颗粒级配良好,以石英
质为主,淤泥含量约占20~25%,局部夹薄层状淤泥质土或粘性土。
二、施工存在风险及控制措施
1、盾构下穿后造成某城轨环线明挖隧道位移施工风险及控制
1)重难点及施工风险分析
盾构掘进对周围地层会产生一定扰动,扰动程度与相对距离成正相关,即距
离越近影响越大,根据加固设计图可看出盾构外边线与板凳桩间距约1.5m,与某城轨环线隧道结构底板最小距离2.2m,因此盾构下穿某城轨环线时将可能会对隧道上方明挖结构产生明显影响,盾构如此近距离侧穿桩基和下穿箱涵对施工控制
水平提出较高要求。
2)对策分析
(1)掘进参数
掘进参数主要控制掘进模式、推力、掘进速度、刀盘转速、扭矩、土仓压力、渣土改良剂掺量、姿态控制、螺旋机转速等。
结合本标始发段地层,掘进模式采
取土压平衡模式最为有利,推力不大于1500T,在破地连墙时掘进速度控制在
10mm/min以内,土层中30mm/min以内,刀盘转速不宜过快,螺旋机转速需与
掘进速度密切结合,以达到维持土仓压力稳定为准。
姿态控制要细腻,特别是在
穿墙过程中,不能频繁纠偏,更不能过大纠偏,以免卡住盾体。
掘进各参数需要
根据现场实际确定,可适当调整。
同时本标配置的泥水土压双模式盾构机,在地质情况特殊的地段可即时转换
成泥水平衡模式,保证掌子面稳定。
(2)信息法施工
掘进过程中,不仅要加强参数控制,更要做好地面监测工作,包括地表沉降
监测、某城轨环线明挖段位移监测等,并采用监测数据自动采集系统,做到24
小时全过程把控,加强监测对掘进的指导作用。
合理设定监测预警值,一旦监测
数据超过预警值,立即停止掘进,分析原因,采取补救措施后才能恢复掘进。
2、造成过街通道沉降或上浮施工风险及控制
1)重难点及风险点分析
在某城轨环线挖隧道上方顺盾构轴线方向存在过街通道(陈村站C出入口),离隧道拱顶12m左右,下穿某城轨环线明挖隧道时已完成施工。
在下穿段,某城轨环线明挖段主体顶板为过街通道底板,沉降变形将基本与某城轨环线明挖段一致;在始发加固段过街通道直接位于盾构隧道上方,距离隧道拱顶12m左右,两者之间土层为淤泥质土和粉砂层,始发段地下水丰富,虽然经过搅拌桩加固,但
依然存在始发时漏浆或塌方,造成水土流失、结构底板架空的风险。
2)对策分析
过街通道在下穿段与某城轨环线明挖段连为一体且位于其上方,沉降及移位
受某城轨环线影响,控制措施基本与明挖段结构一致,需要同时控制。
在未过明
挖段之前始发段加固及过完明挖段之后,在加强掘进参数控制和测量监控的同时,
应做好加固注浆的应急准备,考虑到连续墙较深(大于12m),可在过街通道底板穿孔注浆。
3、盾构穿越连续墙时盾体卡住施工风险及控制
1)重难点分析
某城轨环线明挖隧道先于盾构施工,在盾构下穿时需穿过某城轨环线明挖隧道围护结构地下连续墙,为方便盾构通过,避免连续墙钢筋对盾构刀具甚至螺旋机产生破坏,设计文件提出在DK30+698.5~DK30+730.5段范围地下连续墙预留地铁七号线延长线通过条件,即在一定范围(高×宽=8.5m×11m)采用玻璃纤维筋,以便盾构掘进破除通过。
此处风险主要有两点:
1.下穿段处于盾构始发段,且处于上下变坡点的位置,盾构机的姿态不易控制,为顺利穿越连续墙增加了一定风险;
2.玻璃纤维筋局部替代钢筋考虑到钢筋笼施工质量,即是严格控制钢筋笼加工和混凝土浇筑,依然存在钢筋笼上浮的可能,此时非常有必要详细了解下穿段地基加固和围护结构的施工情况,以避免发生不必要的风险。
2)对策分析
经几何分析,盾构刀盘开挖直径6280mm,前盾6250mm,中盾6240mm,尾盾6230mm,连续墙厚1000mm。
经分析,前盾最大偏转角为0.86°,中盾最大偏转角为1.15°,尾盾最大偏转角为1.43°。
为了避免盾体被连续墙卡住,必须在盾构穿墙之前将盾构机姿态调正直,在下穿过程中要控制姿态的稳定,不能发生较大偏差,直至盾尾脱离连续墙。
三、结论
该案例中的盾构隧道区间已顺利下穿完成,通过严格按风险分析所制定的相应对策进行组织施工,施工过程中精细管理,严格监测,该线路左、右线区间盾构下穿完成后,某城轨环线隧道监测点最大沉降量为-2.94mm,达到理想的控制效果。