有关正方体的截面问题
- 格式:doc
- 大小:44.00 KB
- 文档页数:1
正方体截面的形状tf O结论如下:1、可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。
若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。
三:猜想及其他可能的证明:1•正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:由图示可知,水平方向截取正方体,得到的截面为正方形由图示可知,竖直方向截取正方体,得到的截面为正方形。
2. 矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。
》》》其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。
例如,正方体的六个对角面都是矩形。
3. 平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。
4. 三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下由上图可知,正方体可以截得三角形截面。
但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:》得到: 正三棱锥5. 猜想之外的截面形状:(1)菱形:女口下图所示,f A,B为所在棱的中点时,该截面为菱形:当(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:(4 )六边形:如图所示,可以截得六边形截面:==》》》(3 )五边形:如图所示,可以截得五边形截面:通过实践及资料查询可知,无法得到正五边形。
正方体的截面问题作者:陈斌来源:《读与写·教师版》2018年第12期摘要:近几年高考全国数学试卷涉及正方体的截面问题的试题,本文就正方体的截面形状及性质进行了归纳整理,并对几道高考试题提出了解法。
关键词:高考;理数;正方体;截面中图分类号:G634.6 文献标识码:A 文章编号:1672-1578(2018)12-0237-01正方体的截面就是用一个平面去截正方体,正方体的表面与这个平面的交线围成的平面图形。
1.正方体的截面形状正方体的截面可以是三角形,四边形,五边形或六边形,具体说:(1)截面三角形一定是锐角三角形;其中可以是等边三角形、等腰三角形、不等边三角形;但不能是直角三角形、钝角三角形;(2)截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;并且四边形中至少有一组对边平行;截面不能是直角梯形;(3)截面可以是五边形;截面五边形必有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形(因为必有两组对边平行);(4)截面可以是六边形;截面六边形必有分别平行的边,同时有两个角相等;截面六边形可以是等角(均为1200)的六边形,特别地,可以是正六边形。
2.正方体的截角面的性质所谓正方体的截角面就是沿正方体的某三个顶点截去它的一个角后的三角形截面。
如右图中的△A'BD。
(1)每个正方体都有八个截角面;(2)正方体的截角面垂直于它的一条体对角线,垂足是这条体对角线的一个三等分点。
(3)正方体的截角面与它的12条棱所成的角相等,也与它的六个面所成角相等。
由于截去的是正三棱锥,结合线面平行或面面平行的有关性质容易证明上述结论。
3.有关试题解法浅析(1)把正方体截去一个角,求证:截面三角形是锐角三角形。
分析:如图,应该从截去的部分入手,关注被截去棱的部分长AE、AF,AG对△EFG形状的影响。
解答:如图,设AE=a,AF=b,AG=c,则所以所以∠EFG所以为锐角;同理∠FGE,∠GEF都为锐角;故ΔEFG为锐角三角形。
有关正方体的截面问题
①截面可以是三角形:等边三角形、等腰三角形、一般三角形;
②截面三角形是锐角三角形;截面三角形不能是直角三角形、钝角三角形;
③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;
④截面不能是直角梯形;
⑤截面可以是五边形;截面五边形必有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形;
⑥截面可以是六边形;截面六边形必有分别平行的边,同时有两个角相等;
⑦截面六边形可以是等角(均为120°)的六边形,特别地可以是正六边形.
对应截面图形如下图中各图形所示.。
正方体的截面问题研究研究性学习报告——正方体的截面形状【课题】正方体的截面形状【作者】刘可歆岳新茹【摘要】探究正方体截面形状,通过实践和图示证明其结果,列举特例。
【研究方法】首先经过猜想,列举出猜想到的截面,其次进行画图和实践等方法证明猜想是否正确。
再通过网络查询资料,寻找未猜想到的情况。
【研究过程】探究1:当截面为三角形根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:====由上图可知,正方体可以截得三角形截面。
特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:====》正三棱锥探究2:当截面是四边形1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。
====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。
2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。
其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。
3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。
4.菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:5.梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》探究3:当截面是五边形6.五边形:如图所示,可以截得五边形截面:=》探究3:当截面是六边形7.六边形:如图所示,可以截得六边形截面:=》特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:【拓展探究】1. 正方体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。
2. 正方体最大面积的截面四边形:通过猜想及查询资料可知,正方体截面可能得到的四边形有:正方形、矩形、梯形、平行四边形。
关于正方体截面图形的研究报告问题背景:一天,妈妈在切胡萝卜做菜,突然问我:“成宇轩,这个胡萝卜块切成了什么形状,你知道吗?”我跑过去一看,笑着说“就是一个正方体”,妈妈说,“最近你的课外书上提到正方体截面的问题,你解决了吗?”我说,“还没有啊,我感觉答案有很多啊”,妈妈摇摇手中的胡萝卜说,“这个可以帮助你吗?”对啊,我一拍脑门,对了,可以动手实验一下。
研究目标:通过动手操作实践,研究将一个正方体切一刀,截面可能是几边形?研究过程:一、材料准备:用胡萝卜切成正方体形状二、实验步骤:1、胡萝卜切成小正方体。
2、将刀和正方体的三条边接触,使得截面成三角形。
还可以这样切,即切到三个对角时,截面是一个大的等边三角形。
3、将刀和正方体的四条边接触,使得截面成四边形,这两个四边形(如下图)。
这副图的截面是长方形:这副图的截面是正方形:4、还有截面是梯形的,这是将刀从上面两边切起到下面的两个顶点。
5、将刀和正方体的两条棱接触,即把正方体截成体积相等的两部分,使得截面成四边形。
6、将刀由上面的一条棱切起,并接触到下面的两条棱,使得截面成四边形。
7、将刀和正方体的五条棱接触,使得截面成五边形。
8、将刀和正方体的六条棱接触,使得截面成六边形,切的时候感觉为了容易一些,最好和每条棱的中点接触比较好。
三、实验结论:1、将正方体切一刀,可以得到三角形、长方形、正方形、梯形这样的四边形、五边形和六边形。
2、切的过程中,刀接触到几条边,截面就有几个角,形成的截面就是几条边,截面就是几边形。
3、特别发现两点:第一是若刚好切到三个对角时,截面是一个大的等边三角形。
六边形截面比较难切好,只要把刀接触到六条棱的中点,就很容易形成六边形截面。
实验感想:在妈妈的鼓励下,我通过自己动手实践解决了这个困扰我的问题,我感到很高兴。
通过这样的研究活动,我感到非常有收获,本来在我的头脑中很难想象出的五边形、六边形这样的图形,通过亲手切出来,我感觉现在我可以很轻松的想象出五边形和六边形截面图形。
结论如下:1、可能出现的:锐角三角型、等边、等腰三角形,正方形、矩形、非矩形的平行四边形、梯形、等腰梯形、五边形、六边形、正六边形2、不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形正方体的截面形状一:问题背景在家做饭时,切菜尤其是切豆腐时,发现截面有很多形状。
若用不同的截面去截一个正方体,得到的截面会有哪几种不同的形状?二:研究方法先进行猜想,再利用土豆和萝卜通过切割实验研究。
三:猜想及其他可能的证明:1.正方形:因为该立体几何图形是正方体,所以用从任意位置与该正方体上下底面平行的平面进行截取可以得到,或者和侧面平行进行截取,由下列图示证明:====》》》由图示可知,水平方向截取正方体,得到的截面为正方形。
====》》》由图示可知,竖直方向截取正方体,得到的截面为正方形。
2.矩形:因为正方形也属于矩形,所以对正方形的证明同适用于矩形。
其次,当长宽不等的矩形截面的图示如下:由上图所示可知,按不同角度截取正方体可以得到矩形。
例如,正方体的六个对角面都是矩形。
3.平行四边形:当平面与正方体的各面都不平行时,所得截面为平行四边形,图示如下:==》由上图所示可知,当截面不与正方体的各面平行时,所得截面可能为平行四边形。
4.三角形:根据一定角度过正方体的三条棱进行截取可以得到三角形的截面,图示如下:==》》》由上图可知,正方体可以截得三角形截面。
但一定是锐角三角形,包括等腰和等边三角形特别的,当截面刚好经过三个面的对角线时,所得的三角形截面为正三角形,图示如下:==》得到:正三棱锥5.猜想之外的截面形状:(1)菱形:如下图所示,当A,B为所在棱的中点时,该截面为菱形:(2)梯形:如图所示,当按一定角度使截面在正方体的上下底面上所存在的线段长短有异时,所得截面可能是梯形:==》》》(3)五边形:如图所示,可以截得五边形截面:=》通过实践及资料查询可知,无法得到正五边形。
(4)六边形:如图所示,可以截得六边形截面:=》特别的,当平面与正方体各棱的交点为中点时,截面为正六边形,如图所示:拓展探究:1.正方体最大面积的截面三角形 2.正方体最大面积的截面四边形3.最大面积的截面形状4.截面五边形、六边形性质1.正方体最大面积的截面三角形:如该图所示可证明,由三角面对角线构成的三角形。
正方体截面问题题型汇总开高 张文伟2019.11.28答案:B分析:12题除了直观解题法之外,还有另一种解法:(1)正方体的十二条棱长度相等,与平面的夹角相等,必有在平面上投影的长度相等。
(2)一个封闭的平面图形中有十二条相等的线段,必然想到正六边形的顶点与其中心的连线。
(3)所以说,投影是一个正六边形。
分析:面D1B1C与各个棱所处角相等,面A1DB与各个棱所处角相等,所以两个面与已知的平面α平行。
根据正方体的特性,体对角线AC1与两个面垂直,交点分别是M、N,且M、N是体对角线的三等分点,所以,棱与面所成角的正弦值为:三分之根号三。
向平面做投影,本质是几何体的顶点向射影面做垂线。
所以,点C1D1B1C向平面α做垂线,得到的是△D1B1C,点AA1DB向平面α做垂线,得到的是△A1DB,两个三角形重叠到一个平面,得到的就是右图,再连接端点直线,就得到一个正六边形。
由题意可得B1D1的长为根号二,所以高B1E就是二分之根号六,所以半径就是三分之根号六,即正六变形的边长是三分之根号六。
总结:1. 三条面对角线构成等边三角形所在的平面与正方体的每一个棱所成角都相等,2.正方体在体对角线垂直于投影面上的投影是一个正六面形;3.体对角线垂直于投影面,三条面对角线构成等边三角形,投影面积是这个等边三角形面积的两倍。
12.【2018全国一卷12】已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A B C D【答案】A【分析】最大是正六边形首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.【详解】根据相互平行的直线与平面所成的角是相等的,所以在正方体1111ABCD A B C D −中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的,同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,,所以其面积为26S ,故选A. 点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.8.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P ,Q ,R 分别为棱AA 1,BC ,C 1D 1的中点,经过P ,Q ,R 三点的平面为α,平面α被此正方体所截得截面图形的周长为A B . C D .分析:【解析】 是正六边形 11.棱长为2的正方体1111ABCD A B C D −中,E 为棱AD 中点,过点1B ,且与平面1A BE 平行的正方体的截面面积为( )A. 5B.。
正方体截面问题课题:正方体截面问题班级:高二(2)班小组:数学兴趣小组指导老师:王长喜组员:崔云鹏、庹元杰、张成昊、杨浩、陈一峰、尚世伟、彭世宇组长:张皓楠课题目的:探索正方体可能的截面形状,通过实践和图示来证明其结果,列举特例,拓展空间观念与全面考虑问题的能力。
探究方法:首先通过猜想,列举出预计猜想到的截面,其次进行画图和实践等方法证明猜想得正确与否。
再通过网络的资料查询,寻找未猜想到的情况。
大题小做::什么叫几何板的截面, 问题1答:一个几何和一个平面相交所得到的平面图形 (包含它的内部),叫做几何体的截面。
问题2:截面的边是如何得到的,答:截面的边是平面和几何体各面的交线。
问题3:正方体是立体几何中一个重要的模型,它是一种非常对称的几何体。
如果我们拿一个平面去截一个正方体那么会得到什么形状的截面图呢,截面图最多有几条边,答:因为正方形只有六个面,所以它与平面最多有六条交线,即所截到得截面图最都有六条边。
所以截图可能是三角形,四边形,五边形,六边形。
探究1:截面图为三角形时,有几种情况, 1.是否可以截出等腰三角形:(1)解析:A’aCcB bA如上图,一正方体被一平面所截后得到截面abc若截面三角形abc是以为bc底的等腰三角形,那么只要三角形Aba全等于三角形Aca就可以截到。
所以,截到等腰三角形的情况存在。
(2)做法:在一棱AA’上取a在棱AB.AC上取Ab.等于Ac.就可得到以bc为底的等腰三角abc。
(3)证明:因为角bAa等于角cAa, Aa边公用,Ab等于Ac,所以三角形全等于三角形。
所以ba等于ca,所以三角形abc是以为bc底的等腰三角形。
2.是否可以截出等边三角形: (1)解析A’aCcbBA一正方体被一平面截后得到三角形abc,若三角形abc是等边三角形,只要三角形aAb,aAc, bAc两两全等就可以得到。
所以,截到等边三角形的情况存在。
(2)做法:在棱AA’,AB.AC上分别取Aa等于Ab等于Ac 就可以得到三角形abc为等边三角形。
北师大版必修2《正方体截面的形状》教案及教学反思一、教学目标1.了解正方体的基本性质和特征。
2.了解正方体截面的形状、数量和位置。
3.掌握正方体截面的形状与位置的关系。
4.学会应用平行四边形的性质解决问题。
二、教学内容1.正方体截面的形状。
2.正方体截面的数量和位置。
3.正方体截面形状与位置的关系。
4.平行四边形的性质。
三、教学过程第一节:正方体截面的形状1.引入学习:以举例的方式介绍正方体的性质和特征,引导学生思考正方体的截面形状与正方体自身的关系,并展示相关资料和图片。
2.观察实验:让学生感知正方体截面形状的多样性,让学生对各类正方体截面形状有一个初步的认识。
3.思考讨论:让学生围绕一组正方体截面图像进行思考讨论,从中归纳出正方体截面形状与位置的关系,帮助学生更好地理解正方体截面的性质。
第二节:正方体截面的数量和位置1.引入学习:通过实物模型和横截面图像的展示,让学生认识正方体的截面数量和位置,并分析其特点。
2.同步练习:带领学生做相关练习,检测学生掌握正方体截面数量和位置的能力。
3.思维拓展:提供实际生活中的例子,引导学生思考正方体截面的应用场合,并探讨其可能的解决方案。
第三节:正方体截面的形状与位置的关系1.引入学习:引导学生首先考虑平面上的平行四边形,帮助他们理解平行四边形的性质。
2.探究实验:通过在正方体中找到各种平面的截面,让学生进一步了解正方体截面的性质。
3.应用实践:提供实际例子,帮助学生应用所学的知识解决实际问题,并强化学生对正方体截面形状与位置的关系的理解。
四、教学反思正方体截面的形状是初中数学中难度较大的一个知识点,需要学生对正方体的特征有很好的掌握,同时也需要学生具备分析、归纳、推理的能力。
在教学过程中,我采用了让学生从具体事例出发,逐渐理解抽象的知识点的方式。
通过引导学生观察实物模型、探究实验、应用拓展等方式,让学生在感性认识的基础上,逐渐过渡到理性认识。
同时,在教学中我也将同步练习贯穿始终,定期检测学生掌握的程度。
有关正方体的截面问题
①截面可以是三角形:等边三角形、等腰三角形、一般三角形;
②截面三角形是锐角三角形;截面三角形不能是直角三角形、钝角三角形;
③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;
④截面不能是直角梯形;
⑤截面可以是五边形;截面五边形必有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形;
⑥截面可以是六边形;截面六边形必有分别平行的边,同时有两个角相等;
⑦截面六边形可以是等角(均为120°)的六边形,特别地可以是正六边形.
对应截面图形如下图中各图形所示.。
数理化 解题研究2019年第28期总第449期正方体的截面问题武增明(云南省玉溪第一中学653100)摘要:正方体的截面问题,涉及到截面形状的判定、截面面积和周长的计算、截面图形的计数、截面图形 的性质的判定、截面图形的面积和周长的最值(取值范围)的求解.本文仅举例说明正方体的截面面积和周长 的最值(取值范围)的求解方法以及截面图形的性质的判定方法.关键词:正方体;截面;面积;最值;性质中图分类号:G 632文献标识码:A文章编号:1008 -0333(2019)28 -0010-03一个平面与一个正方体表面的交线围成的封闭平面 图形称为正方体的截面图形,简称正方体的截面.正方体 的截面,对三角形来说,可以是锐角三角形、等腰三角形、 等边三角形,但不可能是钝角三角形、直角三角形;对四 边形来说,可以是等腰梯形、平行四边形、菱形、矩形,但 不可能是直角梯形;对五边形来说,可以是任意五边形, 但不可能是正五边形;对六边形来说,可以是正六边形. 正方体的截面至多是六边形.判断正方体的截面的形状 的理论依据是,高中立体几何中确定平面的三个公理及 其三个推论.正方体的截面问题,涉及到截面形状的判定、截面面 积和周长的计算、截面图形的计数、截面图形的性质的判 定、截面图形的面积和周长的最值(取值范围)的求解.本 文仅介绍正方体的截面面积和周长的最值(取值范围)的 求解方法,以及截面图形的性质的确定方法.解决这三个 问题的关键都是截面形状的判定.下面举例说明.―、正方体的截面面积的最值问题例1 (2018年高考全国卷I .理12)已知正方体的棱长为1,每条棱所在直线与平面a 所成的角都相等,则 a 截此正方体所得截面面积的最大值为A . 了B •丁C .—D.y解析因为在正方体/^(^-^^",中,/^//^:/) //4,B , //C ,£», ,AD //BC //B , C j /AK D ,,A A j /B B j /CC , //所以当平面a 与棱所在的直线所成的角 相等时,正方体的所有棱所在的直线与平面a 所成的角都相等,由正方体的性质易得平面与棱所在的直线所成的角相等,则平面a //平面七BC ,或平面 a 为平面由图易得当平面a 过棱C ,£>,,的中点时,a 截此正方体所得截面面积最大,此时截面是边长为f的正六边形,如图1.则其面积为6x f x (f )2=手,故选 A .评注根据正方体的性质确定平面a 的位置是解题 的关键.图1图2例2 (2004年湖南省数学竞赛试题)过正方体4BCD的对角线仙,的截面面积为S ,记S ,和S 2分别为S 的最大值和最小值,则^为().V f#2/J2/6A . 2B . 2L . 3D . 3解析由已知可得如图2,设正方体的棱长为1,故当 M ,/V 分别为A 4,,(:(:,的中点时,截面的面积最小,最小为+勝xBZ ),•当截面为就时,截收稿日期:2019 - 07 - 05作者简介:武增明(1965. 5 -),男,云南省玉溪市易门县人,本科,中学高级教师,从事高中数学教学及其研究. —10—2019年第28期总第449期数理化解题研究面的面积最大,最大为1x W=力.故S,,于D, /!是从而选C.S23D;........2/D x C, Q Ax/-L/Z);-B i二、正方体的截面的周长问题例3在正方体/^(:£>-/1",/),中,若过/)1;8的平面截正方体所得的平面四边形的周长的最小值为则正方体的体积K=( )•A.27B. 16C.9D.8分析先由四边形是平行四边形将四边形的周长转化为2( BA/ + MD,),再将正方体的侧面 展开,得到BM+ MD,的最小值,由已知条件求得a的值即 可求解.解析设正方体的棱长为a,如图3,M,yv分别是平面四边形A与A4,,CC,的交点,由题意可知四边形是平行四边形,所以四边形BM Z),;V的周长为2(BM+ MD.).图3沿将正方体的侧面展开,在矩形B Z W,中,易知当且仅当三点共线时, + MD,取得最小值,为V§a.所以二4尽,得a=2, 所以 F= 23 =8.评注解答本题的关键是将正方体的侧面展开,找 到使得平面四边形的周长取得最小值时点M的位置.解析对于①,②,如图5,因为正方体4SCZ) - 的棱长为1,当时,,这时过P,P三点的截面与正方体表面交于点D,,= f,且,截面S为等腰梯形;当0 < C(?< ^■时,过/>,(?三点的截面与正方体表面的交点在棱上,截 面S为四边形,故①,②正确.对于③,④,⑤,如图6,延长(?/?交的延长线于点/V,连接4/V交4, £»,于点M,连接MC,.取/!£»的中点G,作C////PC»交DD,于点//,可得,GH// AN,R GH =专 AN.设 CQ(+<«吳1),则 = = 2i/ /!RC,「.当-时,可得C,f f:,故③正确.当+<t<l时,S为五,ND'D,R2tC,R1J\R=~2边形,故④错误.当《 = 1时,M为/l,D,的中点,S为菱形狀=尸c,,,:及』的面积=菱三、正方体截面图形的性质问题例4 (2013年高考安徽卷.文15理15)如图4,正方体/1BCZ)-义fi,C,/?,的棱长为1,P为6C的中点,()为 线段CC,上的动点,过点/I,P,((的平面截该正方体所得的截面记为S.则下列命题正确的是____(写出所有正确命题的编号).①当0<(^<士时,S为四边形;②当时,S为等腰梯形;③当C(?= |时,S与C,£>,的交点/?满足C,尺=+;④当|< 1时,S为六边形;⑤当〇?=丨时,S的面积为形 /1PC,A/ 的面积二 2S A C,抑=2x士 f,故⑤正确.故所有正确命题的编号为①,②,③,⑤.例5 (2005年全国高中数学联赛试题)如图7,已知正方体/1B C D任作平面《与对角线/1C,垂直,使得平面a与正方体的每个面都有公共点.记这样得到 的截面多边形的面积为S,周长为Z.则().A. S为定值,/不为定值B. S与/均为定值C. S不为定值,/为定值C.S与Z均不为定值解析先考察特殊情形.不妨设正方体棱长为1.如图7,取£,F,C,//,/,1/分别为六条棱的中—11—数理化 解题研究2019年第28期总第449期点,显然,正六边形是符合要求的截面,它的周长 =於,面积S , =¥.当截面为正W D 时,其周长/2 =3/5",面积 S 2=f .注意到= Z 2 ,S , #S 2,由此可以断定S 不为定值,而/ 有可能为定值.再考察一般情形•设六边形W, G ,//,/,为任意一个符合要求的截面,则此截面与前面两个特殊的截面平行.由相似三角形对应边成比例,得£丨尸,_B ,£,Z ),B ,所以=在A A=在B A ,J ,E , +E ,F , =^2(A ,E , +B lE l)—=^/2 .同理,另四边之和为2尽.因此,六边形■/,£,,(;,//,/,的周长为定值3^.故选C .评注解本题应用了由特殊到一般的思维方法,这 是求解复杂问题的常用方法之一.参考文献:[1]陆珂•截面[J ].中学数学教学参考(上旬),1995(4) :43 -45.[2] 傅钦志•立体几何中的截面问题[J ].中等数学,2007(3) :5 -9.[3] 蒋孝国•立体几何中的最值问题[J ] •数学通讯(上半月),2016(3) :40-43.[责任编辑:杨惠民]一个正三角形面积最值的求法探究许银伙(福建省泉州外国语中学362〇00)摘要:本文对一个正三角形的面积最值问题,分别运用坐标法、几何性质法、三角函数法、向量法、复数 法等多种知识,从不同角度和方法进行分析解决,提高知识应用能力.关键词:三角函数;坐标法;向量法;正三角形中图分类号:G 632文献标识码:A文章编号:丨008 -0333(2019)28 -0012 -03问题已知中,乙/l 〇e =90°,04=l ,O B =W , 等边A £F C 的三个顶点分别在A /10S 的三边上运动,求 A £F C 面积的最小值•分析一以边〇/1,所在直线分别为*,y 轴,建立 直角坐标系,通过正三角形的直观性质三边相等和已知 条件求出的长度关系,进而求出的最小值.解法一如图1,建立平面直角坐标系,则点/!(1,〇),B (0,万),设点 £(*。
关于一个正方体截面的小论文,500字
正方体是一种十分常见的几何体,不管是在题干中,还是在生活上,都已是我们眼中的常客。
但就是这么令人熟悉的物体,在它的背后仍然有许多有趣、深奥,甚至堪比未解之谜的问题待我们一一发掘、解答。
这不,正方体截面形状的多样性则是像这样一个趣味无穷的讨论点。
借助几何画板,我也发现了它其中的一些奥秘。
多次试验过后,我归纳出4种正方体的截面形状:三角形,四边形,五边形以及六边形。
下面,我们来讨论讨论这4种截面形状的产生条件。
三角形应该是我们最容易发现的截面形状之一了。
“很随便”地一截,就可以获得一个三角形截面。
当截面仅截过同一顶点的三条棱时,即可截得一对三角形截面。
二、四边形
四边形形状的截面也是比较容易发现的。
在此分以下两种情况讨论:
1. 当截面仅过四条相互平行的棱时,则有四边形截面出现。
2. 当截面仅过一个面内一对相交棱及其平行面内另一对完全相同的相交棱即可得到四边形截面。
四边形的出现和获得可由上述三角形某一顶点的运动,即截面绕棱旋转的角度推导而来。
运用这个顶点“一生二”的思路,我们应该很容易进行后面的探究。
若要得到面积最大的截面四边形,则可作以两条平行的面对角线为长,以对棱为宽的矩形。
三、五边形
五边形截面相对于前两种截面形状来说就不是那么能直观地看出来了——当然,我们借助前面顶点“一生二”的思想,也可较为容易地得到五边形的截面。
四、六边形
依据刚才所提出的思想,下面我们进行六边形的研究,将所得五边形在正方体底面上的棱所对顶点继续上移,即可得到六边形。
研究性学习报告
课题:正方体截面问题
班级:高一年级二班
指导老师:
组员:
用平面去截一个几何体,截面的情况可以帮助我们更好地认识几何体,对于一个几何体不同切截方式,所以得截面可能出现不同的情况.下面让我们来探索用平面截正方体所得截面的形状.
我们知道正方体有六个面,用一个平面去解正方体至少要经过三个面,最多经过六个面.所以出现的截面只可能是三角形、四边形、五边形和六边形.
一、截面是三角形
用一平面截正方体,当平面经过正方体的三个面时,所得的截面的形状为三角形.所得的三角形可能是锐角三角形(如图1);等腰三角形(如图2);等边三角形(如图3).其中等边三角形三个顶点是正方形的顶点.
图1 图2 图3
二、截面是四边形
用一个平面截正方体,当平面经过正方体的四个面时,所得截面可能是正方形、长方形、梯形.
①用平行于底面的一个平面去截正方体时,按图4方式得到的截面是正方形.
图4
②按图5或图6或图7的方式切截,得到的截面是长方形
图5 图6 图7 ③按图8的方式所得截面为梯形.
图8
三、截面是五边形
用平面截正方体,当平面经过正方体的五个面时,所得截面是五边形.如图9.
图9
图10
总结:用一个平面截正方体,由于正方体共有六个面,所以截面不可能是七边形.。
立体几何中截面问题(周长、面积、体积、长度)1.在正方体 ABCD - A 1B 1C 1D 1 中,E ,F 分别为棱 AB ,BC 的中点,过点 D 1 ,E ,F 作该正方体的截面,截面将正方体分成两部分,则较小部分与较大部分的体积的比值为 ( )2.已知正方体 ABCD - A 1B 1C 1D 1 的棱长为 2 ,直线 AC 1 ⊥ 平面α ,平面α 截此正方体所得截面中,正确的说法是( )A .截面形状可能为四边形B .截面形状可能为五边形C .截面面积最大值为32D .截面面积最大值为 233 3.正方体 ABCD -- A 1B 1C 1D 1,E 、F 分别是 AA 1 、CC 1 的中点,P 是CC 1 上的动点(包括 端点),过 E 、D 、P 作正方体的截面,若截面为四边形,则 P 的轨迹是( )A .线段C 1FB .线段CFC .线段CF 和一点C 1D .线段C 1F 和一点 C4.已知圆锥的高为 1,母线长为 5 ,则过此圆锥顶点的截面面积的最大值( )5.如下图,正方体 ABCD - A 1B 1C 1D 1 的棱长为 1,E ,F ,G 分别为棱 AB , A 1D 1,C 1D 1 的中点,经过 E ,F ,G 三点的平面被正方体所截,则截面图形的面积为( )6.如上图,在正方体 ABCD - A `B `C `D ` 中,平面 垂直于对角线 AC ,且平面 截得正方体的六个表面得到截面六边形,记此截面六边形的面积为 S ,周长为l ,则( )A . S 为定值, l 不为定值B . S 不为定值, l 为定值C . S 与l 均为定值D . S 与l 均不为定值7.已知正方体ABCD - A1B1C1D1 棱长为4,P 是AA1中点,过点D1作面α 满足CP ⊥ 平面α ,则平面α 与正方体ABCD - A1B1C1D1的截面周长为()第7题第8题第9题8.如图,在直三棱柱ABC - A1B1C1中,AC = BC = CC1= 6,AC ⊥ BC ,E、F 分別为BB1,A1C1中点,过点A、E、F 作三棱柱的截面交B1C1于M,则EM =9.在长方体A B C D - A1 B1C1 D1 中,AB = AD = 4, AA2 = 2 ,过点A1作平面α 与A B, A D 分别交于M,N 两点,若AA1与平面α 所成的角为45︒ ,则截面A1MN 面积的最小值是()10.已知圆锥SO1 的顶点和底面圆周均在球O 的球面上,且该圆锥的高为8. 母线SA =12 ,点B 在SA上,且SB = 2BA ,则过点B 的平面被该球O 截得的截面面积的最小值为()11.在直三棱柱ABC - A1B1C1 中,M 是BB1 上的点,AB = 3 ,BC = 4,AC = 5,CC1= 7 ,过三点A、M 、C1作截面,当截面周长最小时,截面将三棱柱分成的两部分的体积比为().12.已知正方体ABCD - A1B1C1D1 的体积为8,点M 在线段BC 上(点M 异于B、C 两点),点N 为线段CC1的中点,若平面AMN 截正方体ABCD - A1B1C1D1所得的截面为五边形,则线段BM 长度的取值范围是______.13.已知正方体ABCD - A1B1C1D1的棱长为1,E ,F ,G 分别是棱AB ,BC ,CC1的中点,过E ,F ,G 三点作该正方体的截面,点M 为底面ABCD 内一动点.若MD1与该截面平行,则直线MD1与CC1所成角的余弦值的最大值为______.答案:1、47252、D3、C4、25 5、433 6、B 7、2654 8、13 9、24 10、32π 11、1110 12、(1,2) 13、36。
有关正方体的截面问题
①截面可以是三角形:等边三角形、等腰三角形、一般三角形;
②截面三角形是锐角三角形;截面三角形不能是直角三角形、钝角三角形;
③截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形中至少有一组对边平行;
④截面不能是直角梯形;
⑤截面可以是五边形;截面五边形必有两组分别平行的边,同时有两个角相等;截面五边形不可能是正五边形;
⑥截面可以是六边形;截面六边形必有分别平行的边,同时有两个角相等;
⑦截面六边形可以是等角(均为120°)的六边形,特别地可以是正六边形.
对应截面图形如下图中各图形所示.。