2011 第七章扩散
- 格式:ppt
- 大小:927.00 KB
- 文档页数:35
第七章分子动理论第2节分子的热运动一、扩散现象1.对扩散现象的认识(1)扩散现象:不同物质能够彼此进入对方的现象。
(2)产生原因:由物质分子的运动产生。
(3)发生环境:物质处于固态、液态和气态时,都能发生扩散现象。
(4)意义:证明了物质分子永不停息地做无规则运动。
(5)规律:温度越高,扩散现象越明显。
(6)应用:在高温条件下通过分子的扩散在纯净的半导体材料中掺入其他元素来生产半导体器件。
2.影响扩散现象明显程度的因素(1)物态①物质的扩散现象最快、最显著。
②物质的扩散现象最慢,短时间内非常不明显。
③物质的扩散现象的明显程度介于气态与固态之间。
(2)温度:在两种物质一定的前提下,扩散现象发生的明显程度与物质的温度有关,温度越高,扩散现象越显著。
(3)浓度差:两种物质的浓度差越大,扩散现象越显著3.分子运动的两个特点(1)永不停息:不分季节,也不分白天和黑夜,分子每时每刻都在运动。
(2)无规则:单个分子的运动无规则,但大量分子的运动又具有规律性,总体上分子由浓度大的地方向浓度小的地方运动。
二、布朗运动1.对布朗运动的认识(1)概念:悬浮在液体(或气体)中的微粒不停地做。
(2)产生的原因:大量液体(或气体)分子对悬浮微粒撞击的不平衡造成的。
(3)布朗运动的特点:永不停息、无规则。
(4)影响因素:微粒越小,布朗运动越,温度越高,布朗运动越。
(5)意义:布朗运动间接地反映了液体(气体)分子运动的无规则性。
2.影响因素(1)微粒越小,布朗运动越明显:悬浮微粒越小,某时刻与它相撞的分子数越少,来自各方向的冲击力越不易平衡;另外微粒越小,其质量也就越小,相同冲击力下产生的加速度越大。
因此,微粒越小,布朗运动越明显。
(2)温度越高,布朗运动越激烈:温度越高,液体分子的运动(平均)速率越大,对悬浮于其中的微粒的撞击作用也越大,产生的加速度也越大,因此温度越高,布朗运动越激烈。
3.实质布朗运动不是分子的运动,而是固体微粒的运动。
第七章 扩散与固相反应1、名词解释:非稳定扩散:扩散过程中任一点浓度随时间变化;稳定扩散:扩散质点浓度分布不随时间变化。
无序扩散:无化学位梯度、浓度梯度、无外场推动力,由热起伏引起的扩散。
质点的扩散是无序的、随机的。
本征扩散:主要出现了肖特基和弗兰克尔点缺陷,由此点缺陷引起的扩散为本征扩散(空位来源于晶体结构中本征热缺陷而引起的质点迁移);非本征扩散:空位来源于掺杂而引起的质点迁移。
正扩散和逆扩散:正扩散:当热力学因子时,物质由高浓度处流向低浓度处,扩散结果使溶质趋于均匀化,D i >0。
逆扩散:当热力学因子 时,物质由低浓度处流向高浓度处,扩散结果使溶质偏聚或分相,D i <0。
2、简述固体内粒子的迁移方式有几种?答 易位,环转位,空位扩散,间隙扩散,推填式。
3、说明影响扩散的因素?化学键:共价键方向性限制不利间隙扩散,空位扩散为主。
金属键离子键以空位扩散为主,间隙离子较小时以间隙扩散为主。
缺陷:缺陷部位会成为质点扩散的快速通道,有利扩散。
温度:D=D 0exp (-Q/RT )Q 不变,温度升高扩散系数增大有利扩散。
Q 越大温度变化对扩散系数越敏感。
杂质:杂质与介质形成化合物降低扩散速度;杂质与空位缔合有利扩散;杂质含量大本征扩散和非本征扩散的温度转折点升高。
扩散物质的性质:扩散质点和介质的性质差异大利于扩散;扩散介质的结构:结构紧密不利扩散。
4、在KCl 晶体中掺入10-5mo1%CaCl 2,低温时KCl 中的K +离子扩散以非本征扩散为主,试回答在多高温度以上,K +离子扩散以热缺陷控制的本征扩散为主?(KCl 的肖特基缺陷形成能ΔH s =251kJ/mol ,R=8.314J/mo1·K ) 解:在KCl 晶体中掺入10-5mo1%CaCl 2,缺陷方程为:2'22KCl K K cl CaCl Ca V Cl ∙⨯−−−→++则掺杂引起的空位浓度为'710K V -⎡⎤=⎣⎦欲使扩散以热缺陷为主,则''K K V V ⎡⎤⎡⎤>⎣⎦⎣⎦肖 即7exp()102s H RT-∆-> 即7251000exp()1028.314T -->⨯ 解得T>936.5K5、(1)试述晶体中质点的扩散机构及方式。
【第六章微生物的营养】一、填空题1.培养基应具备微生物生长所需要的六大营养要素是碳源、氮源、能源、无机盐、生长因子和水。
2.按微生物所需的能源、氢供体和碳源来划分,微生物的营养类型可分为光能无机营养型,光能有机营养型,化能无机营养型和化能有机营养型四种。
微生物类型的可变性有利于提高微生物对环境条件变化的适应能力。
3.营养物质进入细胞的方式有单纯扩散、促进扩散、主动运输和基团移位,而金黄色葡萄球菌是通过主动运输方式运输乳糖,大肠杆菌又是通过基团移位方式运输嘌呤和嘧啶的。
4.培养基按用途分可分为基础培养基、增殖培养基、鉴别培养基和选择培养基四种类型。
5.若以所需碳源对微生物进行分类,则能利用有机碳源者称异养微生物,而利用无机碳源者则称自养微生物。
6.光能无机营养型微生物的能源是日光,氢供体是无机物,基本碳源是CO2,其代表性微生物如蓝细菌和藻类等。
7.光能有机营养型微生物的能源是光,氢供体是有机物,基本碳源是CO2和简单有机物,这类微生物的代表如红螺菌科得细菌等。
8.化能无机营养型微生物的能源是无机物,氢供体是无机物,基本碳源是CO2,这类微生物的代表如硝化细菌、硫化细菌、硫磺细菌、铁细菌和氢细菌等。
9.化能有机营养型细菌的能源是有机物,氢供体是有机物,基本碳源是有机物,其代表性微生物是多数细菌和全部真核微生物等。
10.微生物培养基中各营养要素的量有一定的比例,从含量最多的水开始,其他成分的次序是碳源(能源)、氮源、P、S,K、Mg和生长因子。
11.从整体上来看,细菌适合的pH条件是中性偏碱(7.0~7.5),放线菌为偏碱(7.5~8.0),真菌为较酸(4.0~6.0),藻类为中性偏酸(6.0~7.0),原生动物为近中性(6.0~8.0)。
12.实验室常用的培养细菌的天然培养基为牛肉膏蛋白胨培养基,培养酵母菌的天然培养基为麦芽汁培养基,培养放线菌的组合(合成)培养基为高氏1号培养基等,培养真菌的组合培养基为察氏培养基等。
第七章固体中的扩散【例7-1】什么叫扩散?在离子晶体中有几种可能的扩散机构?氧化物晶体中哪种扩散是主要的,为什么?【解】固体中的粒子(原子、离子或分子)由浓度高处迁移至浓度低处的现象称为扩散。
离子晶体中有五种可能的扩散机构:易位扩散、环形扩散、间隙扩散、准间隙扩散、空位扩散。
氧化物晶体中空位扩散是最主要的扩散,原因:空位扩散所需活化能最小。
【例7-2】试说明扩散系数的定义、物理意义及量纲。
【解】扩散系数:表征物质扩散本领大小的一个重要参量,是物质的一个多性指标。
物理意义:单位浓度梯度、单位时间内通过单位面积所扩散的物质的量。
量纲:L2T-1(cm2/秒)【例7-3】试分析具有肖特基缺陷的晶体中阴离子的扩散系数小于阳离子的扩散系数的原因。
【解】在晶体中,阴离子半径较大,还常作密堆积,形成结构骨架。
阳离子的半径较小,填充于空隙中。
则阳离子的肖氏缺陷(空位)的(形成能及)迁移能小于阴离子空位的(形成能及)迁移能。
由式中::缺陷形成能:缺陷迁移能因为Q增大所以D减小()Q阳<Q阴则D阳离子>D阴离子【例7-4】扩散系数与哪些因素有关?为什么?为什么可以认为浓度梯度大小基本上不影响D值,但浓度梯度大则扩散得快又如何解释?【解】影响扩散系数D的因素:(1)T增大,D增大;Q增大,D减小;(2)扩散物质的性质:扩散粒子性质与扩散介质性质间差异越大,D值越大。
扩散粒子半径越小,D值越大。
(3)扩散介质的结构:结构越致密,D越小。
(4)位错、晶界、表面:处于位错、晶界、表面处的质点,D较大。
D表面(10-7cm2/s)>D晶界(10-10 cm2/s)>D内部(10-14 cm2/s)(5)杂质(第三组元):第三组元与扩散介质形成化合物——对扩散离子产生附加键力,则D减小。
第三组元不与扩散介质形成化合物——使扩散介质晶格产生畸变,则D增大。
(6)粘度:r减小D增大式中:T—温度r—扩散粒子半径η—扩散介质系数η增大D减小即;扩散介质粘度越大,D越小。
高三物理上册第七章分子的热运动知识点归纳高三物理上册第七章分子的热运动知识点归纳知识点一扩散1、定义不同分子互相接触时,彼此进入对方的现象叫扩散。
其实质是分子(原子)的互相渗透。
2、扩散现象表明一切物质的分子都在做永不停息的无规则运动,也说明物质的分子间存在间隙。
3、影响因素温度越高,扩散越快4、理解扩散现象扩散现象只能发生在不同的物质之间。
不同物质只有相互接触时才能发生扩散现象。
扩散现象是两种物质的分子彼此进入对方。
不同状态的物体之间也可以发生扩散现象。
知识点二分子热运动一切物质的分子都在不停地做无规则运动。
由于分子的运动与温度有关,所以这种无规则的运动叫做分子的热运动。
温度越高,热运动越剧烈。
知识点三分子动理论1、分子动理论内容物质是由分子组成的,一切物质的分子都在不停地做无规则运动,分子间存在相互作用的引力和斥力。
2、分子间的作用力分子间同时存在相互作用的引力和斥力,当分子距离很小时,引力小于斥力,表现为斥力;当分子间距离稍大时,引力大于斥力,表现为引力;当分子间距离很大时,分子间作用力变得十分微小,可以忽略。
3、分子间作用力与物质状态的关系①固体中的分子距离非常小,相互作用力很大,分子只能在一定的位置附近振动,所以既有一定的体积,又有一定的形状。
②液体中分子距离较小,相互作用力较大,以分子群的形态存在,分子可以在某个位置附近振动,分子群可以互相滑过,所以液体有一定的体积,但有流动性,形状随容器而变。
③气体分子间的.距离很大,相互作用力很小,每个分子几乎都可以自由运动,所以气体既没有固定的体积,也没有固定的形状,可以充满它能够达到的整个空间。
④固体物质很难被拉伸,是因为分子间存在引力的缘故;液体物质很难被压缩,是因为分子间存在斥力的原因;液体物质能保持一定的体积是因为分子间存在引力的原因。
【高三物理上册第七章分子的热运动知识点归纳】。
第七章一、级联碰撞荷能离子产生的损伤与溅射1、级联碰撞的概念 荷能离子的核碰撞(即弹性碰撞)会使靶原子发 生移位,即,使一部分能量传递给靶中的晶格使其进 入间隙位置,这就是初级原子移位(PKA)。
一个PKA 的出现实际上是产生了一个空位和一个间隙原子 (Frenkel pair)。
使晶格原子移位的最小能量称为移 位能或移位阈能(displacement energy),用 Ed 表示 。
为了能够产生PKA, 所需中子能量> 1 keV, 电子能 量> 1 MeV, 离子能量> 100 eV。
1第七章荷能离子产生的损伤与溅射一般来讲,荷能离子与晶格原子碰撞会有两种 现象:一是传递给晶格原子的动能T<Ed,则被撞击 的原子不离开晶格位置,而是以声子的形式在格点 周围振动(局域热源);二是T>Ed,则被撞击的原 子就可能越过势垒而离开晶格位置。
移位能的确切 计算是很复杂的,它不仅与固体的性质有关,而且 与晶格原子的反冲方向有关。
在离子束应用范围内 ,对一般靶材料,可选取Ed=20-35eV(依赖于晶体 方向)。
2第七章荷能离子产生的损伤与溅射3第七章荷能离子产生的损伤与溅射单元素金属的移位能与升华能正相关。
4第七章荷能离子产生的损伤与溅射如果移位原子的能量大于(或远大于)Ed,这 样的初级移位原子就可能象入射离子一样通过电子 激发或电离损失其能量,或者通过弹性碰撞使得其 它晶格原子移位,产生次级移位原子。
这样的过程 可以不断进行下去,直至碰撞传递的能量不足以使 得晶格原子移位。
这样一种级联碰撞移位过程就称 为级联碰撞或级联移位(collision cascade,或者 displacement cascade),如下图。
5第七章荷能离子产生的损伤与溅射6第七章荷能离子产生的损伤与溅射TKA SKA线性级联碰撞PKA分形Energy per atom displacementsE 1E/2 2E/4 4E/2N 2N7第七章荷能离子产生的损伤与溅射2、移位原子数描述级联碰撞移位最重要的量是移位原子数。
1 第七章 扩散与固相反应 一、名词解释 1.扩散;2.扩散系数与扩散通量;3.本征扩散与非本征扩散; 4.自扩散与互扩散;5.无序扩散与晶格扩散;6.稳定扩散与不稳定扩散: 7.反常扩散(逆扩散);8.固相反应
二、填空与选择 1.晶体中质点的扩散迁移方式有 、 、 、 和 。 2.当扩散系数的热力学因子为 时,称为逆扩散。此类扩散的特征为 ,其扩散结果为使 或 。 3.扩散推动力是 。晶体中原子或离子的迁移机构主要分为两种: 和 。 4.恒定源条件下,820℃时钢经1小时的渗碳,可得到一定厚度的表面碳层,同样条件下,要得到两倍厚度的渗碳层需 小时. 5.本征扩散是由 而引起的质点迁移,本征扩散的活化能由 和 两部分组成,扩散系数与温度的关系式为 。 6.菲克第一定律适用于 ,其数学表达式为 ;菲克第二定律适用于 ,其数学表达式为 。 7.在离子型材料中,影响扩散的缺陷来自两个方面:(1)肖特基缺陷和弗仑克尔缺陷(热缺陷),(2)掺杂点缺陷。由热缺陷所引起的扩散称 ,而掺杂点缺陷引起的扩散称为 。(自扩散、互扩散、无序扩散、非本征扩散) 8.在通过玻璃转变区域时,急冷的玻璃中网络变体的扩散系数,一般 相同组成但充分退火的玻璃中的扩散系数。(高于、低于、等于) 9.在UO2晶体中,O2-的扩散是按 机制进行的。(空位、间隙、掺杂点缺陷) 10.杨德尔方程是基于 模型的固相方程,金斯特林格方程是基于 模型的固相方程。
三、浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么? 四、试分析离子晶体中,阴离子扩散系数-般都小于阳离子扩散系数的原因。 五、试从结构和能量的观点解释为什么D表面>D晶面>D晶内。 六、碳、氮氢在体心立方铁中扩散的激活能分别为84、75和13kJ/mol,试对此差异进行分析和解释。 七、欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)都是非本征扩散,要求三价杂质离子有什么样的浓度?试对你在计算中所作的各种特性值的估计作充分说明(已知CaO肖特基缺陷形成能为6eV)。 八、已知氢和镍在面心立方铁中的扩散系数为: 2