第七章 扩散与固相反应
- 格式:doc
- 大小:324.58 KB
- 文档页数:13
第七章扩散与固相反应一、名词解释1.扩散;2.扩散系数与扩散通量;3.本征扩散与非本征扩散;4.自扩散与互扩散;5.无序扩散与晶格扩散;6.稳定扩散与不稳定扩散:7.反常扩散(逆扩散);8.固相反应二、填空与选择1.晶体中质点的扩散迁移方式有、、、和。
2.当扩散系数的热力学因子为时,称为逆扩散。
此类扩散的特征为,其扩散结果为使或。
3.扩散推动力是。
晶体中原子或离子的迁移机构主要分为两种:和。
4.恒定源条件下,820℃时钢经1小时的渗碳,可得到一定厚度的表面碳层,同样条件下,要得到两倍厚度的渗碳层需小时.5.本征扩散是由而引起的质点迁移,本征扩散的活化能由和两部分组成,扩散系数与温度的关系式为。
6.菲克第一定律适用于,其数学表达式为;菲克第二定律适用于,其数学表达式为。
7.在离子型材料中,影响扩散的缺陷来自两个方面:(1)肖特基缺陷和弗仑克尔缺陷(热缺陷),(2)掺杂点缺陷。
由热缺陷所引起的扩散称,而掺杂点缺陷引起的扩散称为。
(自扩散、互扩散、无序扩散、非本征扩散)8.在通过玻璃转变区域时,急冷的玻璃中网络变体的扩散系数,一般相同组成但充分退火的玻璃中的扩散系数。
(高于、低于、等于)9.在UO2晶体中,O2-的扩散是按机制进行的。
(空位、间隙、掺杂点缺陷)10.杨德尔方程是基于模型的固相方程,金斯特林格方程是基于模型的固相方程。
三、浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么?四、试分析离子晶体中,阴离子扩散系数-般都小于阳离子扩散系数的原因。
五、试从结构和能量的观点解释为什么D表面>D晶面>D晶内。
六、碳、氮氢在体心立方铁中扩散的激活能分别为84、75和13kJ/mol,试对此差异进行分析和解释。
七、欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)都是非本征扩散,要求三价杂质离子有什么样的浓度?试对你在计算中所作的各种特性值的估计作充分说明(已知CaO 肖特基缺陷形成能为6eV)。
第七章 扩散与固相反应1、名词解释:非稳定扩散:扩散过程中任一点浓度随时间变化;稳定扩散:扩散质点浓度分布不随时间变化。
无序扩散:无化学位梯度、浓度梯度、无外场推动力,由热起伏引起的扩散。
质点的扩散是无序的、随机的。
本征扩散:主要出现了肖特基和弗兰克尔点缺陷,由此点缺陷引起的扩散为本征扩散(空位来源于晶体结构中本征热缺陷而引起的质点迁移);非本征扩散:空位来源于掺杂而引起的质点迁移。
正扩散和逆扩散:正扩散:当热力学因子时,物质由高浓度处流向低浓度处,扩散结果使溶质趋于均匀化,D i >0。
逆扩散:当热力学因子 时,物质由低浓度处流向高浓度处,扩散结果使溶质偏聚或分相,D i <0。
2、简述固体内粒子的迁移方式有几种?答 易位,环转位,空位扩散,间隙扩散,推填式。
3、说明影响扩散的因素?化学键:共价键方向性限制不利间隙扩散,空位扩散为主。
金属键离子键以空位扩散为主,间隙离子较小时以间隙扩散为主。
缺陷:缺陷部位会成为质点扩散的快速通道,有利扩散。
温度:D=D 0exp (-Q/RT )Q 不变,温度升高扩散系数增大有利扩散。
Q 越大温度变化对扩散系数越敏感。
杂质:杂质与介质形成化合物降低扩散速度;杂质与空位缔合有利扩散;杂质含量大本征扩散和非本征扩散的温度转折点升高。
扩散物质的性质:扩散质点和介质的性质差异大利于扩散;扩散介质的结构:结构紧密不利扩散。
4、在KCl 晶体中掺入10-5mo1%CaCl 2,低温时KCl 中的K +离子扩散以非本征扩散为主,试回答在多高温度以上,K +离子扩散以热缺陷控制的本征扩散为主?(KCl 的肖特基缺陷形成能ΔH s =251kJ/mol ,R=8.314J/mo1·K ) 解:在KCl 晶体中掺入10-5mo1%CaCl 2,缺陷方程为:2'22KCl K K cl CaCl Ca V Cl ∙⨯−−−→++则掺杂引起的空位浓度为'710K V -⎡⎤=⎣⎦欲使扩散以热缺陷为主,则''K K V V ⎡⎤⎡⎤>⎣⎦⎣⎦肖 即7exp()102s H RT-∆-> 即7251000exp()1028.314T -->⨯ 解得T>936.5K5、(1)试述晶体中质点的扩散机构及方式。
第七章 扩散与固相反应例 题7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D =γr 2Γ形式写出其扩散系数(设点阵常数为a )。
(式中r 为跃迁自由程;γ为几何因子;Γ为跃迁频率。
)解:在面心立方晶体中,八面体空隙中心在晶胞体心及棱边中心。
相邻空隙连线均为[110]晶向,空隙间距为。
因而碳原子通过在平行的[110]晶面之间跳动完成扩散。
若取[110]为X 轴、]101[为Y 轴、[001]为Z 轴,则碳原子沿这三个轴正反方向跳动的机会相等。
因此碳原子在平行[110]晶面之间跳动的几率即几何因子γ=1/6。
在体心立方晶体中,八面体空隙中心在晶胞面心及核边中心,相邻空隙间距为a /2。
其连线为[110]晶向,可以认为碳原子通过在平行的[200]晶面之间来完成扩散,取[100]、[010]、[001]为X 、Y 、Z 轴。
碳原子沿这三个轴正反方向跳动机会均等,因而碳原子在平行的[200]晶面间跳动的几率γ=1/6。
在面心立方铁中2261==r γ代入2D r γ=Γ12)2(6122ΓΓa aD =⨯⨯=面心在体心立方铁中16γ=2r a =24)2(6122ΓΓa a D =⨯⨯=体心7-2 设有一种由等直径的A 、B 原子组成的置换型固溶体。
该固溶体具有简单立方的晶体结构,点阵常数a =,且A 原子在固溶体中分布成直线变化,在0.12mm 距离内原子百分数由增至。
又设A 原子跃迁频率Γ=10-6s -1,试求每秒内通过单位截面的A 原子数解:已知16s 101--⨯=Γ,16γ=;nm 30.==a r ;求扩散通量J 。
s cm 105110)1030(612226372---⨯=⨯⨯⨯==..r D Γγ每cm 3固溶体内所含原子数为322371073)1030(1个⨯=⨯-..2224222421201506337101481000121510148102210s cm ........dc dx J D dc dx ----=⨯⨯=-⨯=-=⨯⨯⨯=⨯7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。
第七章扩散与固相反应§7-1 晶体中扩散的基本特点与宏观动力学方程一、基本特点1、固体中明显的质点扩散常开始于较高的温度,但实际上又往往低于固体的熔点;2、晶体中质点扩散往往具有各向异性,扩散速率远低于流体中的情况。
二、扩散动力学方程1、稳定扩散和不稳定扩散在晶体A中如果存在一组分B的浓度差,则该组分将沿着浓度减少的方向扩散,晶体A作为扩散介质存在,而组分B则为扩散物质。
如图,图中dx为扩散介质中垂直于扩散方向x的一薄层,在dx两侧,扩散物质的浓度分别为c1和c2,且c1>c2,扩散物质在扩散介质中浓度分布位置是x的函数,扩散物质将在浓度梯度的推动下沿x方向扩散。
的浓度分布不随时间变的扩散过程稳定扩散:若扩散物质在扩散层dx内各处的浓度不随时间而变化,即dc/dt=0。
这种扩散称稳定扩散。
不稳定扩散:扩散物质在扩散层dx内的浓度随时间而变化,即dc/dt≠0。
这种扩散称为不稳定扩散。
2、菲克定律(1)菲克第一定律在扩散体系中,参与扩散质点的浓度因位置而异,且随时间而变化,即浓度是坐标x、y、z和时间t函数,在扩散过程中,单位时间内通过单位横截面积的质点数目(或称扩散流量密度)j之比于扩散质点的浓度梯度△cD:扩散系数;其量纲为L2T-1,单位m2/s。
负号表示粒子从浓度高处向浓度低处扩散,即逆浓度梯度的方向扩散,对于一般非立方对称结构晶体,扩散系数D为二阶张量,上式可写为:对于大部分的玻璃或各向同性的多晶陶瓷材料,可认为扩散系数D将与扩散方向无关而为一标量。
J x=-D J x----沿x方向的扩散流量密度J y=-D J y---沿Y方向的扩散流量密度J z=-D J z---沿Z方向的扩散流量密度适用于:稳定扩散。
菲克第二定律:是在菲克第一定律基础上推导出来的。
如图所示扩散体系中任一体积元dxdydz在dt时间内由x方向流进的净物质增量应为:同理在y、z方向流进的净物质增量分别为:放在δt时间内整个体积元中物质净增量为:若在δt时间内,体积元中质点浓度平均增量δc,则:若假设扩散体系具有各向同性,且扩散系数D不随位置坐标变化则有:适用范围:不稳定扩散。
第七章 扩散与固相反应内容提要:晶体中原子(离子)的扩散是固态传质和反应等过程的基础。
本章讨论了扩散的两个问题。
一是扩散现象的宏观规律——菲克第一、第二定律,描述扩散物质的浓度分布与距离、时间的关系。
二是扩散微观机制,即扩散过程中原子迁移的方式。
在了解原子移动规律的基础上讨论了固相反应的扩散动力学方程。
杨德尔与金斯特林格方程的推导及其适用的范围。
简要介绍了影响固相反应的因素。
固体中质点(原子或离子)的扩散特点:固体质点之间作用力较强,开始扩散温度较高,但低于其熔点;晶体中质点以一定方式堆积,质点迁移必须越过势垒,扩散速率较低,迁移自由程约为晶格常数大小;晶体中质点扩散有各向异性。
菲克第一定律:在扩散过程中,单位时间内通过单位截面的质点数目(或称扩散流量密度)J 正比于扩散质点的浓度梯度c :)(zc k y c j x c i D D ∂∂+∂∂+∂∂-=∇-= 式中D 为扩散系数s m 2或s cm 2;负号表示粒子从浓度高处向浓度低处扩散,即逆浓度梯度的方向扩散。
菲克第一定律是质点扩散定量描述的基本方程,它可直接用于求解扩散质点浓度分布不随时间变化的稳定扩散问题。
菲克第二定律适用于求解扩散质点浓度分布随时间和距离而变化的不稳定扩散问题。
)(222222zc y c x c D t c ∂∂+∂∂+∂∂=∂∂ 扩散过程推动力是化学位梯度。
物质从高化学位流向低化学位是一普遍规律。
扩散系数的一般热力学关系式:)ln ln 1(i i i i N RTB D ∂∂+=γ式中i D 为i 质点本征扩散系数;i B 为i 质点平均速率或称淌度;i γ为i 质点活度系数;i N 为i 质点浓度。
)ln ln 1(i i N ∂∂+γ称为扩散系数的热力学因子。
当体系为理想混合时1=i γ,此时i i i RTB D D ==*。
*i D 为自扩散系数。
当体系为非理想混合时,有两种情况:(1)当0)ln ln 1(>∂∂+i i N γ,0>i D 为正扩散。
第七章 扩散与固相反应例 题7-1 试分析碳原子在面心立方和体心立方铁八面体空隙间跳跃情况,并以D =γr 2Γ形式写出其扩散系数(设点阵常数为a )。
(式中r 为跃迁自由程;γ为几何因子;Γ为跃迁频率。
)解:在面心立方晶体中,八面体空隙中心在晶胞体心及棱边中心。
相邻空隙连线均为[110]晶向,空隙间距为。
因而碳原子通过在平行的[110]晶面之间跳动完成扩散。
若取[110]为X 轴、]101[为Y 轴、[001]为Z 轴,则碳原子沿这三个轴正反方向跳动的机会相等。
因此碳原子在平行[110]晶面之间跳动的几率即几何因子γ=1/6。
在体心立方晶体中,八面体空隙中心在晶胞面心及核边中心,相邻空隙间距为a /2。
其连线为[110]晶向,可以认为碳原子通过在平行的[200]晶面之间来完成扩散,取[100]、[010]、[001]为X 、Y 、Z 轴。
碳原子沿这三个轴正反方向跳动机会均等,因而碳原子在平行的[200]晶面间跳动的几率γ=1/6。
在面心立方铁中2261==r γ代入2D r γ=Γ12)2(6122ΓΓa aD =⨯⨯=面心在体心立方铁中16γ=2r a =24)2(6122ΓΓa a D =⨯⨯=体心7-2 设有一种由等直径的A 、B 原子组成的置换型固溶体。
该固溶体具有简单立方的晶体结构,点阵常数a =0.3nm ,且A 原子在固溶体中分布成直线变化,在0.12mm 距离内原子百分数由0.15增至0.63。
又设A 原子跃迁频率Γ=10-6s -1,试求每秒内通过单位截面的A 原子数?解:已知16s 101--⨯=Γ,16γ=;nm 30.==a r ;求扩散通量J 。
s cm 105110)1030(612226372---⨯=⨯⨯⨯==..r D Γγ每cm 3固溶体内所含原子数为322371073)1030(1个⨯=⨯-..2224222421201506337101481000121510148102210s cm ........dc dx J D dc dx ----=⨯⨯=-⨯=-=⨯⨯⨯=⨯7-3 制造晶体管的方法之一是将杂质原子扩散进入半导体材料如硅中。
假如硅片厚度是0.1cm ,在其中每107个硅原子中含有一个磷原子,而在表面上是涂有每107个硅原子中有400个磷原子,计算浓度梯度(a )每cm 上原子百分数,(b )每cm 上单位体积的原子百分数。
硅晶格常数为0.5431nm 。
解:由菲克第一定律计算在内部和表面上的原子的百分组成,C i 和C s 分别为内部和表面磷浓度。
%0399010104101%10410010400%10100101353757..-=⨯-⨯=⨯=⨯==⨯=----x C C C s i ∆∆硅晶体单位晶胞体积32237cm 1061)1054310(--⨯=⨯=..V硅晶体是立方金刚石结构,单位晶胞有8个Si 原子,107个Si 占体积为:316227cm 102)1061(810--⨯=⨯⨯=.V每cm 3中原子含量:31816cm 10005.01021个⨯=⨯=-i C419181831816cm 10995110102100050cm102102400个个⨯-=⨯-⨯=⨯=⨯=-...x C C s ∆∆7-4 已知MgO 多晶材料中Mg 2+离子本征扩散系数(D in )和非本征扩散系数(D ex )由下式给出2524860000249exp() cm 2545001210exp() cm ..in ex D RTD RT -=-=⨯- (a ) 分别求出25℃和1000℃时,Mg 2+的(D in )和(D ex )。
(b ) 试求在Mg 2+的ln D ~1/T 图中,由非本征扩散转变为本征扩散的转折点温度? 解:(a )862550248600025 0249exp()16010 cm s83142982545001210exp()29410 cm s83142984860001000 0249exp()284183141273.........---=-=⨯⨯=⨯-=⨯⨯=-=⨯⨯℃℃in ex in D D D 2125160 cm 2545001210exp()43310s83141273...---=⨯-=⨯⨯2 cm ex D (b )非本征扩散与本征扩散转折点温度即为D in =D ex 时的温度554860002545000249exp()1210exp()4860002545001210 ln 994402494860002545002800K99448314.......RT RTRT RT T ---=⨯-⨯--==--==⨯ 计算中假设MgO 是纯净的多晶体,若有微量杂质引入,转折点温度将高于2800K (2527℃)。
7-5 从7-4题所给出的D in 和D ex 式中求MgO 晶体的肖特基缺陷形成焓。
若欲使Mg 2+在MgO 中的扩散直至MgO 熔点2800℃时仍是非本征扩散,试求三价杂质离子应有什么样的浓度?解:从7-4题D in 和D ex 式中可知,发生本征扩散激活能Q 1=486kJ/mol ,发生非本征扩散激活能Q 2=254.50kJ/mol 。
从激活能含义:1Q 2f mH H ∆=+∆2Q m H ∆=△H f 为Schottky 缺陷形成焓;△H m 是Mg 2+离子迁移焓。
△H f /2+254.50=486.00△H f =(486.00-254.50)×2=463.00kJ/molMg 2+离子在MgO 晶体中以空位机构扩散。
在MgO 中若掺有M 3+,则[]MgV ''来自两个方面。
肖杂][][][Mg Mg MgV V V ''+''=''即由掺杂M 3+引起的杂][MgV ''和由本征热缺陷—肖特基缺陷引起的Mg[]V ''肖。
Mg 2+通过前一种空位的扩散为非本征扩散,通过后一种空位的扩散为本征扩散。
掺杂M 3+引起MgV ''的缺陷反应如下:MgO•23Mg MgO M O 2M 3O V ''−−−→++由上述反应产生的MgV ''即为杂][MgV ''。
当MgO 在熔点时,晶体内Schottky 缺陷浓度为:4Mg10161)307331482463000exp()2exp(][-⨯=⨯⨯-=-=''..RTH V f∆肖在(7-14)方程中杂]2[]M [Mg Mg V ''=•,所以欲使MgO 晶体中直至3073K 仍为非本征扩散。
M 3+浓度为肖杂][][2]M []M [Mg Mg Mg 3V V ''>''==•+即3+44[M ]21161023210..-->⨯⨯=⨯由此可见,在MgO 晶体中只需混入万分之一杂质,在熔点时发生的是非本征扩散而不是本征扩散。
这也是Al 2O 3、MgO 、CaO 等高熔点氧化物不易测到本征扩散的原因。
7-6 若认为晶界的扩散通道宽度一般为0.5nm ,试证明原子通过晶界扩散和晶格扩散的质量之比为910()()gb v D d D -。
其中d 为晶粒平均直径;D gb 、D v 分别为晶界扩散系数和晶格扩散系数。
解:设晶粒是直径为d 的圆球,每个晶粒周围的晶界扩散通道面积为0.5×10-9πd (m 2),其中只有一半属于该晶体本身,其余一半属于周围的晶粒,因而一个晶粒的晶界通道截面积为:9105102.gb A dπ-=⨯⨯晶粒横截面积214A d π=设M gb 、M v 分别代表扩散原子通过晶界扩散及晶粒内扩散的数量,则:921d 05102d 1d 4d .gb gb gb gbv v v vcM A J dD x cM A J d D x ππ-==-⨯⨯==-所以9921d 0510102d ()()1d 4d .gb gb gb v v v c dD M D x c M d D d D x ππ---⨯⨯==-7-7 设体积扩散与晶界扩散活化能间关系为12gb vQ Q =(Qg b 、Q v 分别为晶界扩散与体积扩散激活能),试画出ln D ~1/T 曲线,并分析在哪个温度范围内,晶界扩散超过体积扩散?解:RT Q D D RT Q D D -=-=00ln ln )ex p(或晶界扩散有 0ln ln gb gb gb D D Q RT =-体积扩散有 0ln ln v v v D D Q RT =-欲使gb vD D >即00ln ln gb gb v v D Q RT D Q RT ->-又12gb v D D =则00ln02gbvv D Q D RT +>移项得:)ln()ln(20000gbv gb gbv vD D R Q T D D R Q T <<或令)ln(2000gb v v D D R Q T =则当T <T 0时以晶界扩散为主, D gb > D v ;当T >T 0时以体积扩散为主,即D v > D gb 。
如图7-1所示。
图7-1 例题7-7附图7-8 在一种柯肯达尔扩散中,假定(a )晶体为简单立方结构;(b )单位体积内原子数为一常数1023;(c ) A 原子的跃迁频率为1010s -1,B 原子跃迁频率为109s -1;(d )点阵常数a =0.25nm ;(e )浓度梯度为10个/cm ;(f )截面面积为0.25cm 2。
试求A 、B 原子通过标志界面的扩散通量以及标志界面移动速度。
解:27210621(0.2510)10 1.0410c m s6A D r γ--=Γ=⨯⨯⨯=⨯27297223241(02510)1010410c m s6d 101010..B D r c x γΓ--==⨯⨯⨯=⨯=⨯=62417·10410100252610A J A -=⨯⨯⨯=⨯...s 个72416·10410100252610...B J A -=⨯⨯⨯=⨯s 个令界面移动速度为V ,n 为单位体积中原子数1716723n 11(1010) 1.049.3610cm sn 10A BA B V J J V J J -=-=-=-⨯=⨯g ()7-9 纯固相反应在热力学上有何特点?为什么固相反应有气体或液体参加时,范特荷夫规则就不适用了?解:一切实际可以进行的纯固相反应,其反应几乎总是放热的,这一规律性的现象称为范特荷夫规则。