1995年普通高等学校招生全国统一考数学试题及答案(文)
- 格式:doc
- 大小:236.37 KB
- 文档页数:8
1995年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) 2sin 0lim(13)xx x →+=______________.(2) 202cos xd x t dt dx =⎰______________. (3) 设()2a b c ⨯⋅=,则[()()]()a b b c c a +⨯+⋅+=______________.(4) 幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R =______________. (5) 设三阶方阵A 、B 满足关系式:16A BA A BA -=+,且100310041007A ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,则B = ______________.二、选择题(本题共5个小题,每小题3分,满分15分.) (1) 设有直线3210,:21030x y z L x y z +++=⎧⎨--+=⎩及平面:4230x y z ∏-+-=,则直线L ( )(A) 平行于∏ (B) 在∏上 (C) 垂直于∏ (D) 与∏斜交 (2) 设在[0,1]上()0f x ''>,则(0)f '、(1)f '、(1)(0)f f -或(0)(1)f f -的大小顺序是( )(A) (1)(0)(1)(0)f f f f ''>>- (B) (1)(1)(0)(0)f f f f ''>->(C) (1)(0)(1)(0)f f f f ''->> (D) (1)(0)(1)(0)f f f f ''>-> (3) 设()f x 可导,()()(1|sin |)F x f x x =+,则(0)0f =是()F x 在0x =处可导的 ( ) (A) 充分必要条件 (B) 充分条件但非必要条件(C) 必要条件但非充分条件 (D) 既非充分条件又非必要条件 (4)设(1)ln 1n n u ⎛=- ⎝,则级数 ( ) (A)1nn u∞=∑与21nn u∞=∑都收敛 (B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛而21nn u∞=∑发散 (D)1nn u∞=∑发散而21nn u∞=∑收敛(5) 设111213212223313233a a a A a a a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭,212223111213311132123313a a a B a a a a a a a a a ⎛⎫⎪= ⎪ ⎪+++⎝⎭,1010100001P ⎛⎫⎪= ⎪ ⎪⎝⎭, 2100010101P ⎛⎫⎪= ⎪ ⎪⎝⎭,则必有 ( )(A) 12APP B = (B) 21AP P B =(C) 12PP A B = (D) 21P P A B =三、(本题共2小题,每小题5分,满分10分.)(1) 设2(,,),(,,)0,sin yu f x y z x e z y x ϕ===,其中f 、ϕ都具有一阶连续偏导数,且0z ϕ∂≠∂,求du dx. (2) 设函数()f x 在区间[0,1]上连续,并设1()f x dx A =⎰,求 11()()xdx f x f y dy ⎰⎰.四、(本题共2小题,每小题6分,满分12分.) (1) 计算曲面积分zdS ∑⎰⎰,其中∑为锥面z =在柱体222x y x +≤内的部分.(2) 将函数()1(02)f x x x =-≤≤展开成周期为4的余弦级数.五、(本题满分7分)设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为A .已知MA OA =,且L 过点33,22⎛⎫⎪⎝⎭,求L 的方程.六、(本题满分8分)设函数(,)Q x y 在xOy 平面上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,)t t xydx Q x y dy xydx Q x y dy +=+⎰⎰,求(,)Q x y .七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶倒数,并且()0g x ''≠,()()()()f a f b g a g b ===,试证:(1) 在开区间(,)a b 内()0g x ≠; (2) 在开区间(,)a b 内至少存在一点ξ,使()()()()f fg g ξξξξ''=''.八、(本题满分7分)设三阶实对称矩阵A 的特征值为11λ=-,231λλ==,对应于1λ的特征向量为1(0,1,1)T ξ=,求A .九、(本题满分6分)设A 是n 阶矩阵,满足T AA E =(E 是n 阶单位阵,T A 是A 的转置矩阵),0A <,求A E +.十、填空题(本题共2小题,每小题3分,满分6分.)(1) 设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =___________. (2) 设X 和Y 为两个随机变量,且{}30,07P X Y ≥≥=, 4(0)(0)7P X P Y ≥=≥=, 则{}max(,)0P X Y ≥=___________.十一、(本题满分6分)设随机变量X 的概率密度为, 0,()0, 0,x X e x f x x -⎧≥=⎨<⎩求随机变量XY e =的概率密度()Y f y .1995年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】6e【解析】这是1∞型未定式求极限,2123sin 3sin 0lim(13)lim(13)x xx xx x x x ⋅⋅→→+=+,令3x t =,则当0x →时,0t →,所以1130lim(13)lim(1)xtx t x t e →→+=+=,故 00266lim6lim6sin sin sin sin 0lim(13)lim x x x x x xxx xx x x eeee →→→→+====.(2)【答案】2224cos 2cos xt dt x x -⎰【解析】()220022cos cos x x d d x t dt x t dt dx dx=⎰⎰ ()()20222cos cos 2x t dt x x x =-⋅⎰2224cos 2cos xt dt x x =-⎰.【相关知识点】积分上限函数的求导公式:()()()()()()()()()x x d f t dt f x x f x x dxβαββαα''=-⎰. (3)【答案】4【解析】利用向量运算律有[()()]()a b b c c a +⨯+⋅+r r r r r r[()]()[()]()a b b c a a b c c a =+⨯⋅+++⨯⋅+r r r r r r r r r r()()()()a b b b c a a c b c c a =⨯+⨯⋅++⨯+⨯⋅+r r r r r r r r r r r r(其中0b b ⨯=r r ) ()()()()a b c a b a a c c b c a =⨯⋅+⨯⋅+⨯⋅+⨯⋅r r r r r r r r r r r r ()()a b c b c a =⨯⋅+⨯⋅r r r r r r ()()4a b c a b c =⨯⋅+⨯⋅=r r r r r r.(4)【解析】令212(3)n n n nn a x -=+-,则当n →∞时,有 2(1)1111212211112(3)limlim 2(3)23(1)311lim ,323(1)3n n n n n n n nn n nn n n n n n n x a a nx n x x n +-+++→∞→∞-+→∞++++-=+-⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=⋅⋅=⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦而当2113x <时,幂级数收敛,即||x <,此幂级数收敛,当2113x >时,即||x >时,此幂级数发散,因此收敛半径为R =(5)【答案】300020001⎛⎫⎪⎪ ⎪⎝⎭【解析】在已知等式16A BA A BA -=+两边右乘以1A -,得16A B E B -=+,即1()6A E B E --=.因为 1300040007A -⎛⎫ ⎪= ⎪ ⎪⎝⎭,所以116()6B A E --=-=1200030006-⎛⎫ ⎪ ⎪ ⎪⎝⎭=300020001⎛⎫⎪⎪ ⎪⎝⎭.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(C)【解析】这是讨论直线L 的方向向量与平面∏的法向量的相互关系问题.直线L 的方向向量132281477(42)2110i jk l i j k i j k ⎛⎫ ⎪==-+-=--+ ⎪ ⎪--⎝⎭, 平面∏的法向量42n i j k =-+,l n P ,L ⊥∏.应选(C).(2)【答案】(B)【解析】由()0f x ''>可知()f x '在区间[0,1]上为严格单调递增函数,故(1)()(0),(01)f f x f x '''>> <<由微分中值定理,(1)(0)(),(01)f f f ξξ'-=<<.所以(1)(1)(0)()(0)f f f f f ξ'''>-=>,(01)ξ<<故应选择(B). (3)【答案】(A) 【解析】由于利用观察法和排除法都很难对本题作出选择,必须分别验证充分条件和必要条件.充分性:因为(0)0f =,所以0000()(1sin )()(0)()()(0)lim lim lim lim (0)x x x x f x x F x F f x f x f f x x x x→→→→+--'====, 由此可得 ()F x 在0x =处可导.必要性:设()F x 在0x =处可导,则()sin f x x ⋅在0x =处可导,由可导的充要条件知00()sin ()sin lim lim x x f x x f x xx x-+→→⋅⋅=. ①根据重要极限0sin lim1x xx→=,可得0sin sin lim lim 1x x x x x x --→→=-=-,00sin sin lim lim 1x x x xx x++→→==, ② 结合①,②,我们有(0)(0)f f =-,故(0)0f =.应选(A). (4)【答案】(C) 【解析】这是讨论1nn u∞=∑与21nn u∞=∑敛散性的问题.11(1)ln 1nn n n u ∞∞==⎛=- ⎝∑∑是交错级数,显然ln(1+单调下降趋于零,由莱布尼兹判别法知,该级数收敛.正项级数2211ln 1n n n u ∞∞==⎛=+ ⎝∑∑中,2221ln 1~n u n ⎛=+= ⎝.根据正项级数的比较判别法以及11n n ∞=∑发散,21n n u ∞=⇒∑发散.因此,应选(C).【相关知识点】正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则⑴ 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;⑵ 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;⑶ 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.(5)【答案】(C)【解析】1P 是交换单位矩阵的第一、二行所得初等矩阵,2P 是将单位矩阵的第一行加到第三行所得初等矩阵;而B 是由A 先将第一行加到第三行,然后再交换第一、二行两次初等交换得到的,因此12PP A B =,故应选(C).三、(本题共2小题,每小题5分,满分10分.)(1)【解析】这实质上已经变成了由方程式确定的隐函数的求导与带抽象函数记号的复合函数求导相结合的问题.先由方程式2(,,)0yx e z ϕ=,其中sin y x =确定()z z x =,并求dz dx. 将方程两边对x 求导得1232cos 0y dzx e x dxϕϕϕ'''⋅+⋅+⋅=, 解得()12312cos y dz x e x dx ϕϕϕ''=-⋅+⋅'. ① 现再将(,,)u f x y z =对x 求导,其中sin y x =,()z z x =, 可得123cos du dzf f x f dx dx'''=+⋅+⋅. 将①式代入得()213321cos 12cos y du f f x f dx x e x ϕϕϕ'''=+⋅-⋅''⋅+⋅'. 【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u v f f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (2)【解析】方法一:用重积分的方法.将累次积分11()()xI dx f x f y dy =⎰⎰表成二重积分()()DI f x f y dxdy =⎰⎰,其中D 如右图所示.交换积分次序10()()yI dy f x f y dx =⎰⎰.由于定积分与积分变量无关,改写成10()()xI dx f y f x dy =⎰⎰.⇒ 1110002()()()()xx I dx f x f y dy dx f x f y dy =+⎰⎰⎰⎰111120()()()().dx f x f y dy f x dx f y dy A ===⎰⎰⎰⎰⇒ 212I A =. 方法二:用分部积分法.注意()1()()xdf y dy f x dx=-⎰,将累次积分I 写成()()()111111212()()()()11().22xxxx xx I f x f y dy dx f y dyd f y dy f y dy A ====-=-=⎰⎰⎰⎰⎰⎰四、(本题共2小题,每小题6分,满分12分.) (1)【解析】将曲面积分I 化为二重积分(,)xyD I f x y dxdy =⎰⎰.首先确定被积函数(,)f x y ==对锥面z =而言==.其次确定积分区域即∑在xOy 平面的投影区域xy D (见右图),按题意:22:2xy D x y x +≤,即22(1)1x y -+≤.xyD I =.作极坐标变换cos ,sin x r y r θθ==,则:02cos ,22xy D r ππθθ≤≤-≤≤,因此2cos 2cos 322000213I d r rdr r d θππθπθθ-=⋅==⎰. (2)【解析】这就是将()f x 作偶延拓后再作周期为4的周期延拓.于是得()f x 的傅氏系数:0(1,2,3,)n b n ==L2002200222220222()cos 2(1)cos 222(1)sin sin 2244cos ((1)1)28,21,(21)1,2,3,0,2,l n n n x n a f x dx l x xdxl l n n x d x xdx n n n x n n n k k k n k ππππππππππ==-=-=-==---⎧=-⎪-==⎨⎪=⎩⎰⎰⎰⎰L2222000021()(1)(1)022a f x dx x dx x ==-=-=⎰⎰.由于(延拓后)()f x 在[2,2]-分段单调、连续且(1)1f -=.于是()f x 有展开式22181(21)()cos ,[0,2](21)2n n f x x x n ππ∞=-=-∈-∑.五、(本题满分7分)【解析】设点M 的坐标为(,)x y ,则M 处的切线方程为 ()Y y y X x '-=-.令0X =,得Y y xy '=-,切线与y 轴的交点为(0,)A y xy '-.由MA OA =,有y xy '=-.化简后得伯努利方程 212,yy y x x '-=- ()221y y x x'-=-. 令2z y =,方程化为一阶线性方程 ()1z z x x'-=-.解得 ()z x c x =-,即 22y cx x =-,亦即y =又由3322y ⎛⎫⎪⎭=⎝,得3c =,L 的方程为3)y x =<<.六、(本题满分8分) 【解析】在平面上LPdx Qdy +⎰与路径无关(其中,P Q 有连续偏导数),⇔P Q y x ∂∂=∂∂,即 2Q x x∂=∂. 对x 积分得 2(,)()Q x y x y ϕ=+,其中()y ϕ待定.代入另一等式得对t ∀,()()(,1)(1,)(0,0)2(0)2,0()()22t t xydx dy xydx d x y y x y ϕϕ+=+++⎰⎰. ①下面由此等式求()y ϕ.方法一:易求得原函数()()()022222()()2(()()).yyxydx dy ydx dyd x y dd x y x s d x dy y s s y ds ϕϕϕϕ+=+=+=+++⎰⎰于是由①式得 ()()(,1)(1,)22(0,0)(0,0)()()t t yyx y dsx y d s s sϕϕ+=+⎰⎰.即 12()()tt ds t ds s s ϕϕ+=+⎰⎰,亦即 21()ts t t ds ϕ=+⎰.求导得 )2(1t t ϕ=+,即 ()21t t ϕ=-. 因此 2(,)21Q x y x y =+-.方法二:取特殊的积分路径:对①式左端与右端积分分别取积分路径如下图所示.于是得 ()()1200()1()t t dy dy y y ϕϕ+=+⎰⎰. 即 1200()()t t dy t dy y y ϕϕ+=+⎰⎰,亦即 21()ty t t dy ϕ=+⎰. 其余与方法一相同.七、(本题满分8分)【解析】(1)反证法.假设(,)c a b ∃∈,使()0g c =.则由罗尔定理,1(,)a c ξ∃∈与2(,),c b ξ∈ 使12()()0g g ξξ''==;从而由罗尔定理, 12(,)(,)a b ξξξ∃∈⊂,()0g ξ''=.这与 ()0g x ''≠矛盾.(2)证明本题的关键问题是:“对谁使用罗尔定理?”换言之,“谁的导数等于零?” 这应该从所要证明的结果来考察.由证明的结果可以看出本题即证()()()()f x g x f x g x ''''-在(,)a b 存在零点.方法一:注意到 ()()()()()()()()()f x g x f x g x f x g x f x g x '''''''-=-,考察()()()()f x g x f x g x ''''-的原函数,令()()()()()x f x g x f x g x ϕ''=-,()x ϕ⇒在[,]a b 可导,()()0a b ϕϕ==.由罗尔定理,(,)a b ξ∃∈,使()0ϕξ'=.即有()()()()0f g f g ξξξξ''''-=,亦即 ()()()()f fg g ξξξξ''=''. 方法二:若不能像前面那样观察到()()()()f x g x f x g x ''''-的原函数,我们也可以用积分来讨论这个问题:[]()()()()(?)()()()()?f x g x f x g x f x g x f x g x dx '''''''''-=⇔-=⎰.[]()()()()()()()()f x g x f x g x dx f x dg x g x df x ''''''-=-⎰⎰⎰()()()()()()()()f x g x g x f x dx f x g x f x g x dx ⎡⎤⎡⎤''''''=---⎣⎦⎣⎦⎰⎰ ()()()()f x g x f x g x ''=-(取0C =).令()()()()()x f x g x f x g x ϕ''=-,其余与方法一相同.八、(本题满分7分)【解析】设对应于231λλ==的特征向量为123(,,)T x x x ξ=,因为A 为实对称矩阵,且实对称矩阵的不同特征值所对应的特征向量相互正交,故10T ξξ=,即230x x +=.解之得 23(1,0,0),(0,1,1)T T ξξ==-.于是有 123112233(,,)(,,)A ξξξλξλξλξ=,所以 1112233123(,,)(,,)A λξλξλξξξξ-= 1010010100101101001101101010-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=- ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭.九、(本题满分6分)【解析】方法一:根据T AA E =有 |||||()|||||||||T T A E A AA A E A A E A A A E +=+=+=+=+,移项得 (1||)||0A A E -+=. 因为0A <,故1||0A ->.所以||0A E +=.方法二:因为()T T T T A E A AA A E A E A +=+=+=+,所以 A E A E A +=+,即 (1||)||0A A E -+=. 因为0A <,故1||0A ->.所以||0A E +=.十、填空题(本题共2小题,每小题3分,满分6分.)(1)【解析】由题设,因为是独立重复实验,所以X 服从10,0.4n p ==的二项分布.由二项分布的数学期望和方差计算公式,有()4,()(1) 2.4E X np D X np p ===-=,根据方差性质有 22()()[()]18.4E X D X E X =+=.(2)【解析】令{0},{0}A X B Y =<=<,则{max(,)0}1{max(,)0}1{0,0}P X Y P X Y P X Y ≥=-<=-<<.由概率的广义加法公式 ()()()()P A B P A P B P AB =+-U ,有{max(,)0}1[1()]()()()()P X Y P AB P A B P A p B P AB ≥=--=+=+-4435.7777=+-=十一、(本题满分6分) 【解析】方法1:用分布函数法先求Y 的分布函数()Y F y .当1y ≤时, ()0;Y F y =当1y >时, (){}()X Y F y P Y y P e y =≤=≤{}ln P X y =≤ln ln 0011,yy x x e dx e y--==-=-⎰ 所以由连续型随机变量的概率密度是分布函数的微分,得21, 1,()()0, 1.Y Y y y f y F y y ⎧>⎪'==⎨⎪≤⎩或者直接将ln 0yx e dx -⎰对y 求导数得ln ln 2011.y x y d e dx e dy y y--==⎰ 方法2:用单调函数公式直接求Y 的概率密度.由于xy e =在()0,+∞内单调,其反函数()ln x h y y ==在()1,+∞内可导且其导数为 10y x y'=≠,则所求概率密度函数为 ()()()()ln 1,1,,1,0, 1.0, 1.y X Y e y h y f h y y y f y y y -⎧⎧'⋅>⋅>⎪⎪==⎨⎨≤⎪⎪⎩≤⎩21, 1,0, 1.y y y ⎧>⎪=⎨⎪≤⎩ 【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.。
1、若一个正方形的边长为a,则它的面积为:A、aB、2aC、a2D、a3(答案:C。
解析:正方形的面积计算公式是边长的平方,即a2。
)2、下列哪个数不是有理数?A、1/2B、πC、0.333...D、-7(答案:B。
解析:有理数是可以表示为两个整数之比的数,π是一个无理数,不能表示为两个整数的比。
)3、在直角三角形中,如果一个锐角为30°,那么它所对的直角边与斜边的比为:A、1:2B、1:√2C、1:√3D、√3:2(答案:A。
解析:在30°-60°-90°的直角三角形中,30°角所对的直角边与斜边的比为1:2。
)4、下列哪个图形不是轴对称图形?A、等边三角形B、平行四边形C、正方形D、圆(答案:B。
解析:轴对称图形是指沿一条直线折叠后,两边可以完全重合的图形。
平行四边形不一定是轴对称的,除非它是特殊的平行四边形,如矩形或正方形。
)5、若a>b,则下列不等式中正确的是:A、a-2<b-2B、2a<2bC、a+c>b+cD、-a>-b(答案:C。
解析:根据不等式的性质,两边同时加或减同一个数,不等号方向不变;两边同时乘或除以同一个正数,不等号方向不变;两边同时乘或除以同一个负数,不等号方向改变。
所以只有C选项正确。
)6、一个长方形的长是8cm,宽是5cm,则它的周长是:A、13cmB、26cmC、40cmD、64cm(答案:B。
解析:长方形的周长计算公式是2*(长+宽),即2*(8+5)=26cm。
)7、下列哪个选项是方程x2-4x+4=0的解?A、x=0B、x=1C、x=2D、x=3(答案:C。
解析:方程x2-4x+4=0可以化简为(x-2)2=0,解得x=2。
)8、若一个圆的半径为r,则它的周长为:A、2πrB、πr2C、πrD、2r(答案:A。
解析:圆的周长计算公式是2πr,其中π约等于3.14159。
)。
1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx⎰= _____________.(3)设()2,⨯=a b c 则[()()]()+⨯++a b b c c a =_____________.(4)幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R =_____________. (5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上 (C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是 (A)(1)(0)(1)(0)f f f f ''>>- (B)(1)(1)(0)(0)f f f f ''>-> (C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的 (A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件 (D)既非充分条件又非必要条件(4)设(1)ln(1nn u =-+则级数(A)1nn u∞=∑与21nn u∞=∑都收敛 (B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛,而21nn u∞=∑发散 (D)1nn u∞=∑收敛,而21nn u∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分)(1)设2(,,),(,e ,)0,sin ,yu f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.zϕ∂≠∂求.du dx (2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数. 五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程. 六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f f g g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A 九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥=则{max(,)0}P X Y ≥=____________. 十一、(本题满分6分)设随机变量X 的概率密度为()X f x = e 0x - 0x x ≥<,求随机变量e XY =的概率密度().Y f y。
1995年普通高校招生全国统一考试数学试题及解答(理工农
医类)
佚名
【期刊名称】《中学数学月刊》
【年(卷),期】1995(000)008
【摘要】一、选择题:本大题共15小题;第1—10题每小题4分,第11—15题每小题5分,共65分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知I为全集,集合M,N(?)I,若M∩N=N,则 2.函数y=-1/x+1的图象是
【总页数】4页(P47-50)
【正文语种】中文
【中图分类】G634.605
【相关文献】
1.2002年普通高校招生全国统一考试数学试题及解答 [J],
2.1998年普通高校招生全国统一考试数学试题及解答(理工农医类) [J],
3.1996年普通高校招生全国统一考试数学试题及解答(理工农医类) [J],
4.1997年普通高校招生全国统一考试数学试题及解答(理工农医类) [J],
5.1995年全国普通高等学校招生统一考试——上海数学试题(理工农医类) [J],因版权原因,仅展示原文概要,查看原文内容请购买。
1995年全国各地高中数学试题选析1995年全国各地高中数学试题选析近年来,高中教育已经成为了中国教育系统的一道重要组成部分,而数学作为其中最为重要和基础的一门学科,更是得到了广泛的关注和重视。
1995年是中国高考历史上较为重要的一年,那一年的高考数学试题因为其难度和质量而备受瞩目。
本文将对1995年全国各地高中数学试题进行一番深入的分析,以期能够对读者有所裨益。
一、把一个数加上一数然后减去1,得到的结果是这个数本身,求这个数是多少?这是一道非常经典的数学思维题,在数学竞赛中也有经常出现这类题目。
通过设置数学模型,我们可以得出这个数是2。
这题考察的是学生的逻辑和思考能力。
二、如图,三角形ABC中,∠ABC=60°,AN ⊥ BC, D 是 AC 的中点,DE∥BA, BM ⊥ EA。
EB=15, AD=10,则求BM的长度。
这道题出现在1995年全国高考中,属于几何学的范畴。
学生需要先根据题干中的信息,通过画图的方式得出所需数据,然后在通过几何公式进行计算得出答案。
答案为5√3。
此题主要考察的是学生的几何思维和计算能力。
三、已知立方体ABCDEFGH的棱长为2,直线l1过EH和立方体的对角线BF交于点M, 求l1和GH所成平面的倾斜角。
这也是一道立体几何的题目,出现在1995年江苏省高考中。
需要学生的先通过对立方体的理解,以及形体的认知,来计算出所需数据后,最终通过角度计算得出答案。
答案为45°。
四、已知函数f(x)=sqrt( 1+x + x^2 ),则下列说法正确的是()。
A、f(0)=1, f(1)=2B、f(-1)=0, f(2)=3C、f(x)是偶函数D、f(x)是单调函数这道题出现在1995年陕西高考中,属于函数的范畴。
需要学生先通过函数的定义来判断题目的逻辑,然后通过函数的性质去判断选项的正确与否。
正确答案为B,本题考查了学生的逻辑和计算能力,以及函数对数据的处理能力。
1995年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) 2sin 0lim(13)xx x →+=______________.(2) 202cos xd x t dt dx =⎰______________. (3) 设()2a b c ⨯⋅=,则[()()]()a b b c c a +⨯+⋅+=______________. (4) 幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R =______________. (5) 设三阶方阵A 、B 满足关系式:16A BA A BA -=+,且100310041007A ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭,则B = ______________.二、选择题(本题共5个小题,每小题3分,满分15分.) (1) 设有直线3210,:21030x y z L x y z +++=⎧⎨--+=⎩及平面:4230x y z ∏-+-=,则直线L ( )(A) 平行于∏ (B) 在∏上 (C) 垂直于∏ (D) 与∏斜交 (2) 设在[0,1]上()0f x ''>,则(0)f '、(1)f '、(1)(0)f f -或(0)(1)f f -的大小顺序是( )(A) (1)(0)(1)(0)f f f f ''>>- (B) (1)(1)(0)(0)f f f f ''>->(C) (1)(0)(1)(0)f f f f ''->> (D) (1)(0)(1)(0)f f f f ''>-> (3) 设()f x 可导,()()(1|sin |)F x f x x =+,则(0)0f =是()F x 在0x =处可导的 ( ) (A) 充分必要条件 (B) 充分条件但非必要条件(C) 必要条件但非充分条件 (D) 既非充分条件又非必要条件 (4)设(1)ln 1n n u ⎛=-+⎝,则级数 ( ) (A)1nn u∞=∑与21nn u∞=∑都收敛 (B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛而21nn u∞=∑发散 (D)1nn u∞=∑发散而21nn u∞=∑收敛(5) 设111213212223313233a a a A a a a a a a ⎛⎫⎪= ⎪ ⎪⎝⎭,212223111213311132123313a a a B a a a a a a a a a ⎛⎫⎪= ⎪ ⎪+++⎝⎭,1010100001P ⎛⎫⎪= ⎪ ⎪⎝⎭,2100010101P ⎛⎫⎪= ⎪ ⎪⎝⎭,则必有 ( )(A) 12APP B = (B) 21AP P B =(C) 12PP A B = (D) 21P P A B =三、(本题共2小题,每小题5分,满分10分.)(1) 设2(,,),(,,)0,sin yu f x y z x e z y x ϕ===,其中f 、ϕ都具有一阶连续偏导数,且0z ϕ∂≠∂,求du dx. (2) 设函数()f x 在区间[0,1]上连续,并设1()f x dx A =⎰,求11()()xdx f x f y dy ⎰⎰.四、(本题共2小题,每小题6分,满分12分.) (1) 计算曲面积分zdS ∑⎰⎰,其中∑为锥面z =在柱体222x y x +≤内的部分. (2) 将函数()1(02)f x x x =-≤≤展开成周期为4的余弦级数.五、(本题满分7分)设曲线L 位于xOy 平面的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为A .已知MA OA =,且L 过点33,22⎛⎫⎪⎝⎭,求L 的方程.六、(本题满分8分)设函数(,)Q x y 在xOy 平面上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t 恒有(,1)(1,)(0,0)(0,0)2(,)2(,)t t xydx Q x y dy xydx Q x y dy +=+⎰⎰,求(,)Q x y . 七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶倒数,并且()0g x ''≠,()()()()f a f b g a g b ===,试证:(1) 在开区间(,)a b 内()0g x ≠; (2) 在开区间(,)a b 内至少存在一点ξ,使()()()()f fg g ξξξξ''=''.八、(本题满分7分)设三阶实对称矩阵A 的特征值为11λ=-,231λλ==,对应于1λ的特征向量为1(0,1,1)T ξ=,求A .九、(本题满分6分)设A 是n 阶矩阵,满足TAA E =(E 是n 阶单位阵,TA 是A 的转置矩阵),0A <,求A E +.十、填空题(本题共2小题,每小题3分,满分6分.)(1) 设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =___________. (2) 设X 和Y 为两个随机变量,且{}30,07P X Y ≥≥=, 4(0)(0)7P X P Y ≥=≥=, 则{}max(,)0P X Y ≥=___________.十一、(本题满分6分)设随机变量X 的概率密度为, 0,()0, 0,x X e x f x x -⎧≥=⎨<⎩求随机变量XY e =的概率密度()Y f y .1995年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】6e【解析】这是1∞型未定式求极限,2123sin 3sin 0lim(13)lim(13)x xx xx x x x ⋅⋅→→+=+,令3x t =,则当0x →时,0t →,所以1130lim(13)lim(1)xtx t x t e →→+=+=,故 00266lim6lim6sin sin sin sin 0lim(13)lim x x x xxxxxxx x x eeee →→→→+====.(2)【答案】2224cos 2cos xt dt x x -⎰【解析】()220022cos cos x x d d x t dt x t dt dx dx=⎰⎰()()20222cos cos 2x t dt x x x =-⋅⎰20224cos 2cos xt dt x x =-⎰.【相关知识点】积分上限函数的求导公式:()()()()()()()()()x x d f t dt f x x f x x dx βαββαα''=-⎰.(3)【答案】4【解析】利用向量运算律有[()()]()a b b c c a +⨯+⋅+[()]()[()]()a b b c a a b c c a =+⨯⋅+++⨯⋅+()()()()a b b b c a a c b c c a =⨯+⨯⋅++⨯+⨯⋅+ (其中0b b ⨯=) ()()()()a b c a b a a c c b c a =⨯⋅+⨯⋅+⨯⋅+⨯⋅ ()()a b c b c a =⨯⋅+⨯⋅ ()()4a b c a b c =⨯⋅+⨯⋅=.(4)【解析】令212(3)n n n nn a x -=+-,则当n →∞时,有 2(1)1111212211112(3)limlim 2(3)23(1)311lim ,323(1)3n n n n n n n nn n nn n n n n n n x a a nx n x x n +-+++→∞→∞-+→∞++++-=+-⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=⋅⋅=⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦而当2113x <时,幂级数收敛,即||x <,此幂级数收敛,当2113x >时,即||x >时,此幂级数发散,因此收敛半径为R =(5)【答案】300020001⎛⎫ ⎪⎪ ⎪⎝⎭【解析】在已知等式16A BA A BA -=+两边右乘以1A -,得16A B E B -=+,即1()6A E B E --=.因为 1300040007A -⎛⎫ ⎪= ⎪ ⎪⎝⎭,所以116()6B A E --=-=1200030006-⎛⎫ ⎪ ⎪ ⎪⎝⎭=300020001⎛⎫⎪⎪ ⎪⎝⎭.二、选择题(本题共5个小题,每小题3分,满分15分.) (1)【答案】(C)【解析】这是讨论直线L 的方向向量与平面∏的法向量的相互关系问题. 直线L 的方向向量132281477(42)2110i jk l i j k i j k ⎛⎫ ⎪==-+-=--+ ⎪ ⎪--⎝⎭, 平面∏的法向量42n i j k =-+,l n ,L ⊥∏.应选(C). (2)【答案】(B)【解析】由()0f x ''>可知()f x '在区间[0,1]上为严格单调递增函数,故(1)()(0),(01)f f x f x '''>> <<由微分中值定理,(1)(0)(),(01)f f f ξξ'-=<<.所以(1)(1)(0)()(0)f f f f f ξ'''>-=>,(01)ξ<<故应选择(B).(3)【答案】(A)【解析】由于利用观察法和排除法都很难对本题作出选择,必须分别验证充分条件和必要条件.充分性:因为(0)0f =,所以000()(1sin )()(0)()()(0)limlim lim lim (0)x x x x f x x F x F f x f x f f x x x x→→→→+--'====, 由此可得 ()F x 在0x =处可导.必要性:设()F x 在0x =处可导,则()sin f x x ⋅在0x =处可导,由可导的充要条件知00()sin ()sin lim lim x x f x x f x xx x-+→→⋅⋅=. ①根据重要极限0sin lim1x xx→=,可得0sin sin lim lim 1x x x x x x --→→=-=-,00sin sin lim lim 1x x x xx x++→→==, ② 结合①,②,我们有(0)(0)f f =-,故(0)0f =.应选(A). (4)【答案】(C) 【解析】这是讨论1nn u∞=∑与21nn u∞=∑敛散性的问题.11(1)ln 1nn n n u ∞∞==⎛=- ⎝∑∑是交错级数,显然ln(1单调下降趋于零,由莱布尼兹判别法知,该级数收敛.正项级数2211ln 1n n n u ∞∞==⎛=+ ⎝∑∑中,2221ln 1~n u n ⎛== ⎝. 根据正项级数的比较判别法以及11n n ∞=∑发散,21n n u ∞=⇒∑发散.因此,应选(C).【相关知识点】正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则⑴ 当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;⑵ 当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;⑶ 当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.(5)【答案】(C)【解析】1P 是交换单位矩阵的第一、二行所得初等矩阵,2P 是将单位矩阵的第一行加到第三行所得初等矩阵;而B 是由A 先将第一行加到第三行,然后再交换第一、二行两次初等交换得到的,因此12PP A B =,故应选(C).三、(本题共2小题,每小题5分,满分10分.)(1)【解析】这实质上已经变成了由方程式确定的隐函数的求导与带抽象函数记号的复合函数求导相结合的问题.先由方程式2(,,)0yx e z ϕ=,其中sin y x =确定()z z x =,并求dzdx. 将方程两边对x 求导得1232cos 0y dzx e x dxϕϕϕ'''⋅+⋅+⋅=, 解得()12312cos y dz x e x dx ϕϕϕ''=-⋅+⋅'. ① 现再将(,,)u f x y z =对x 求导,其中sin y x =,()z z x =, 可得123cos du dzf f x f dx dx'''=+⋅+⋅.将①式代入得()213321cos 12cos y du f f x f dx x e x ϕϕϕ'''=+⋅-⋅''⋅+⋅'. 【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u vf f x u x v x x x∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂; 12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂. (2)【解析】方法一:用重积分的方法.将累次积分11()()xI dx f x f y dy =⎰⎰表成二重积分()()DI f x f y dxdy =⎰⎰,其中D 如右图所示.交换积分次序10()()yI dy f x f y dx =⎰⎰.由于定积分与积分变量无关,改写成10()()xI dx f y f x dy =⎰⎰.⇒ 1110002()()()()xx I dx f x f y dy dx f x f y dy =+⎰⎰⎰⎰111120()()()().dx f x f y dy f x dx f y dy A ===⎰⎰⎰⎰⇒ 212I A =. 方法二:用分部积分法.注意()1()()xdf y dy f x dx=-⎰,将累次积分I 写成()()()11111001212()()()()11().22x xxx xx I f x f y dy dx f y dyd f y dy f y dy A ====-=-=⎰⎰⎰⎰⎰⎰四、(本题共2小题,每小题6分,满分12分.) (1)【解析】将曲面积分I 化为二重积分(,)xyD I f x y dxdy =⎰⎰.首先确定被积函数(,)f x y ==对锥面z =而言,==.其次确定积分区域即∑在xOy 平面的投影区域xy D (见右图),按题意:22:2xy D x y x +≤,即22(1)1x y -+≤.xyD I =.作极坐标变换cos ,sin x r y r θθ==,则:02cos ,22xy D r ππθθ≤≤-≤≤,因此2cos 2cos 322000213I d r rdr r d θππθπθθ-=⋅==⎰. (2)【解析】这就是将()f x 作偶延拓后再作周期为4的周期延拓.于是得()f x 的傅氏系数:0(1,2,3,)n b n ==2002200222220222()cos 2(1)cos 222(1)sin sin 2244cos ((1)1)28,21,(21)1,2,3,0,2,l n n n x n a f x dx l x xdx l l n n x d x xdx n n n x n n n k k k n k ππππππππππ==-=-=-==---⎧=-⎪-==⎨⎪=⎩⎰⎰⎰⎰2222000021()(1)(1)022a f x dx x dx x ==-=-=⎰⎰.由于(延拓后)()f x 在[2,2]-分段单调、连续且(1)1f -=.于是()f x 有展开式22181(21)()cos ,[0,2](21)2n n f x x x n ππ∞=-=-∈-∑.五、(本题满分7分)【解析】设点M 的坐标为(,)x y ,则M 处的切线方程为 ()Y y y X x '-=-.令0X =,得Y y xy '=-,切线与y 轴的交点为(0,)A y xy '-.由MA OA =,有y xy '=-.化简后得伯努利方程 212,yy y x x '-=- ()221y y x x'-=-. 令2z y =,方程化为一阶线性方程 ()1z z x x'-=-.解得 ()z x c x =-,即 22y cx x =-,亦即y =又由3322y ⎛⎫⎪⎭= ⎝,得3c =,L 的方程为03)y x =<<.六、(本题满分8分) 【解析】在平面上LPdx Qdy +⎰与路径无关(其中,P Q 有连续偏导数),⇔P Q y x ∂∂=∂∂,即 2Q x x∂=∂. 对x 积分得 2(,)()Q x y x y ϕ=+,其中()y ϕ待定.代入另一等式得对t ∀,()()(,1)(1,)(0,0)2(0)2,0()()22t t xydx dy xydx d x y y x y ϕϕ+=+++⎰⎰. ①下面由此等式求()y ϕ.方法一:易求得原函数()()()022222()()2(()()).yyxydx dy ydx dyd x y dd x y x s d x dy y s s y ds ϕϕϕϕ+=+=+=+++⎰⎰于是由①式得 ()()(,1)(1,)22(0,0)(0,0)()()t t yyx y dsx y d s s sϕϕ+=+⎰⎰.即 12()()tt ds t ds s s ϕϕ+=+⎰⎰,亦即 21()ts t t ds ϕ=+⎰.求导得 )2(1t t ϕ=+,即 ()21t t ϕ=-. 因此 2(,)21Q x y x y =+-.方法二:取特殊的积分路径:对①式左端与右端积分分别取积分路径如下图所示.于是得()()1200()1()ttdy dy y y ϕϕ+=+⎰⎰.即 12()()t t dy t dy y y ϕϕ+=+⎰⎰,亦即 21()ty t t dy ϕ=+⎰.其余与方法一相同.七、(本题满分8分)【解析】(1)反证法.假设(,)c a b ∃∈,使()0g c =.则由罗尔定理,1(,)a c ξ∃∈与2(,),c b ξ∈ 使12()()0g g ξξ''==;从而由罗尔定理, 12(,)(,)a b ξξξ∃∈⊂,()0g ξ''=.这与()0g x ''≠矛盾.(2)证明本题的关键问题是:“对谁使用罗尔定理?”换言之,“谁的导数等于零?” 这应该从所要证明的结果来考察.由证明的结果可以看出本题即证()()()()f x g x f x g x ''''-在(,)a b 存在零点.方法一:注意到 ()()()()()()()()()f x g x f x g x f x g x f x g x '''''''-=-, 考察()()()()f x g x f x g x ''''-的原函数,令()()()()()x f x g x f x g x ϕ''=-,()x ϕ⇒在[,]a b 可导,()()0a b ϕϕ==.由罗尔定理,(,)a b ξ∃∈,使()0ϕξ'=.即有()()()()0f g f g ξξξξ''''-=,亦即()()()()f fg g ξξξξ''=''. 方法二:若不能像前面那样观察到()()()()f x g x f x g x ''''-的原函数,我们也可以用积分来讨论这个问题:[]()()()()(?)()()()()?f x g x f x g x f x g x f x g x dx '''''''''-=⇔-=⎰.[]()()()()()()()()f x g x f x g x dx f x dg x g x df x ''''''-=-⎰⎰⎰()()()()()()()()f x g x g x f x dx f x g x f x g x dx ⎡⎤⎡⎤''''''=---⎣⎦⎣⎦⎰⎰()()()()f x g x f x g x ''=-(取0C =).令()()()()()x f x g x f x g x ϕ''=-,其余与方法一相同.八、(本题满分7分)【解析】设对应于231λλ==的特征向量为123(,,)Tx x x ξ=,因为A 为实对称矩阵,且实对称矩阵的不同特征值所对应的特征向量相互正交,故10Tξξ=,即230x x +=. 解之得 23(1,0,0),(0,1,1)T Tξξ==-.于是有 123112233(,,)(,,)A ξξξλξλξλξ=,所以 1112233123(,,)(,,)A λξλξλξξξξ-=1010010100101101001101101010-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=- ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭.九、(本题满分6分)【解析】方法一:根据T AA E =有|||||()|||||||||T T A E A AA A E A A E A A A E +=+=+=+=+,移项得 (1||)||0A A E -+=. 因为0A <,故1||0A ->.所以||0A E +=.方法二:因为()T T T T A E A AA A E A E A +=+=+=+, 所以 A E A E A +=+, 即 (1||)||0A A E -+=. 因为0A <,故1||0A ->.所以||0A E +=.十、填空题(本题共2小题,每小题3分,满分6分.)(1)【解析】由题设,因为是独立重复实验,所以X 服从10,0.4n p ==的二项分布.由二项分布的数学期望和方差计算公式,有()4,()(1) 2.4E X np D X np p ===-=,根据方差性质有 22()()[()]18.4E X D X E X =+=. (2)【解析】令{0},{0}A X B Y =<=<,则{max(,)0}1{max(,)0}1{0,0}P X Y P X Y P X Y ≥=-<=-<<.由概率的广义加法公式 ()()()()P AB P A P B P A B =+-,有{max(,)0}1[1()]()()()()P X Y P AB P A B P A p B P AB ≥=--=+=+-4435.7777=+-=十一、(本题满分6分)【解析】方法1:用分布函数法先求Y 的分布函数()Y F y . 当1y ≤时, ()0;Y F y =当1y >时, (){}()XY F y P Y y P e y =≤=≤{}ln P X y =≤ln ln 011,yy x xe dx e y--==-=-⎰所以由连续型随机变量的概率密度是分布函数的微分,得21, 1,()()0, 1.Y Y y yf y F y y ⎧>⎪'==⎨⎪≤⎩或者直接将ln 0yx e dx -⎰对y 求导数得ln ln 2011.y x y d e dx e dy y y--==⎰方法2:用单调函数公式直接求Y 的概率密度.由于xy e =在()0,+∞内单调,其反函数()ln x h y y ==在()1,+∞内可导且其导数为10y x y'=≠,则所求概率密度函数为 ()()()()ln 1,1,,1,0, 1.0, 1.y X Y e y h y f h y y y f y y y -⎧⎧'⋅>⋅>⎪⎪==⎨⎨≤⎪⎪⎩≤⎩21, 1,0, 1.y yy ⎧>⎪=⎨⎪≤⎩ 【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.。
1995考研数一真题答案及详细解析1995年的考研数学一真题是考生们备考过程中重要的参考资料之一。
通过对这份真题的详细解析和正确答案的给出,考生们能够更加全面地了解考试内容和出题方式,为备考打下坚实的基础。
一、选择题部分解析1. 题目解析在本真题的第一部分,共有15道选择题,这些题目主要考察了考生在微积分、线性代数、概率与统计等知识领域的掌握程度。
其中,第一题涉及到数列的极限、数列收敛、数列的通项公式等概念。
第二题是关于方程与不等式的求解。
第三题则涉及到线性代数中的矩阵运算和行列式。
以此类推,考生需要根据每道题目的具体要求,结合自己所学的知识,进行解答。
2. 答案解析在解答这些选择题时,考生们需要注意仔细审题,理解题目要求,采用合适的解题方法。
在计算过程中,要注意小数点及符号的处理,避免粗心错误。
对于较难的选择题,可以先尝试排除一些明显错误选项,再进行计算,提高解题的准确性。
二、解答题部分解析1. 题目解析在本真题的第二部分,共有10道解答题,包括填空题和证明题。
这些题目主要考察了考生们在微积分、线性代数、概率与统计等知识领域的应用能力。
例如,第一题要求计算函数的极限;第二题需要求解给定方程的根;第三题要求计算行列式的值等等。
2. 答案解析在解答这些解答题时,考生们需要注重解题过程的合理性和严谨性。
对于需要证明的题目,要运用相应的数学定理和方法,严密地进行论证。
填空题则要根据题目的要求,使用正确的计算方法进行计算,注意表达的准确性和符号的使用。
通过对1995年考研数学一真题的详细解析,相信考生们对该年度考试的内容和要求有了更加清晰的认识。
希望这些解析和答案对考生们的备考有所帮助,能够提高他们的解题能力和应试技巧。
祝愿所有参加考试的考生取得优异的成绩!。
1995年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.)(1)【答案】6e【解析】这是1∞型未定式求极限,2123sin 3sin 0lim(13)lim(13)x xx xx x x x ⋅⋅→→+=+,令3x t =,则当0x →时,0t →,所以1130lim(13)lim(1)xtx t x t e →→+=+=,故00266lim6lim6sin sin sin sin 0lim(13)lim x x x x x xxx xx x x eeee →→→→+====.(2)【答案】2224cos 2cos xt dt x x -⎰【解析】()220022cos cos x x d d x t dt x t dt dx dx=⎰⎰()()20222cos cos 2xt dt x x x =-⋅⎰20224cos 2cos xt dt x x =-⎰.【相关知识点】积分上限函数的求导公式:()()()()()()()()()x x d f t dt f x x f x x dx βαββαα''=-⎰.(3)【答案】4【解析】利用向量运算律有[()()]()a b b c c a +⨯+⋅+ [()]()[()]()a b b c a a b c c a =+⨯⋅+++⨯⋅+ ()()()()a b b b c a a c b c c a =⨯+⨯⋅++⨯+⨯⋅+ (其中0b b ⨯=)()()()()a b c a b a a c c b c a =⨯⋅+⨯⋅+⨯⋅+⨯⋅ ()()a b c b c a =⨯⋅+⨯⋅ ()()4a b c a b c =⨯⋅+⨯⋅=.【解析】令212(3)n n n nn a x -=+-,则当n →∞时,有2(1)1111212211112(3)limlim2(3)23(1)311lim ,323(1)3n n n n n n n nn nnn n n n n n n x a a n xn x x n +-+++→∞→∞-+→∞++++-=+-⎡⎤⎛⎫+-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=⋅⋅=⎡⎤⎛⎫+-⎢⎥⎪⎝⎭⎢⎥⎣⎦而当2113x <时,幂级数收敛,即||x <2113x >时,即||x >时,此幂级数发散,因此收敛半径为R =(5)【答案】300020001⎛⎫⎪⎪⎪⎝⎭【解析】在已知等式16A BA A BA -=+两边右乘以1A -,得16A B E B -=+,即1()6A E B E --=.因为1300040007A -⎛⎫ ⎪= ⎪ ⎪⎝⎭,所以116()6B A E --=-=1200030006-⎛⎫ ⎪ ⎪ ⎪⎝⎭=300020001⎛⎫⎪⎪ ⎪⎝⎭.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(C)【解析】这是讨论直线L 的方向向量与平面∏的法向量的相互关系问题.直线L 的方向向量132281477(42)2110i jk l i j k i j k ⎛⎫ ⎪==-+-=--+ ⎪ ⎪--⎝⎭,平面∏的法向量42n i j k =-+,l n ,L ⊥∏.应选(C).(2)【答案】(B)【解析】由()0f x ''>可知()f x '在区间[0,1]上为严格单调递增函数,故(1)()(0),(01)f f x f x '''>> <<由微分中值定理,(1)(0)(),(01)f f f ξξ'-=<<.所以(1)(1)(0)()(0)f f f f f ξ'''>-=>,(01)ξ<<故应选择(B).(3)【答案】(A)【解析】由于利用观察法和排除法都很难对本题作出选择,必须分别验证充分条件和必要条件.充分性:因为(0)0f =,所以000()(1sin )()(0)()()(0)limlim lim lim (0)x x x x f x x F x F f x f x f f x x x x →→→→+--'====,由此可得()F x 在0x =处可导.必要性:设()F x 在0x =处可导,则()sin f x x ⋅在0x =处可导,由可导的充要条件知00()sin ()sin limlim x x f x xf x xxx-+→→⋅⋅=.①根据重要极限0sin lim1x xx→=,可得sin sin lim lim 1x x x x xx --→→=-=-,00sin sin lim lim 1x x x xx x++→→==,②结合①,②,我们有(0)(0)f f =-,故(0)0f =.应选(A).(4)【答案】(C)【解析】这是讨论1nn u∞=∑与21nn u∞=∑敛散性的问题.11(1)ln 1nn n n u ∞∞==⎛=-+ ⎝∑∑是交错级数,显然ln(1单调下降趋于零,由莱布尼兹判别法知,该级数收敛.正项级数2211ln 1n n n u ∞∞==⎛=+ ⎝∑∑中,2221ln 1~n u n ⎛=+= ⎝.根据正项级数的比较判别法以及11n n∞=∑发散,21n n u ∞=⇒∑发散.因此,应选(C).【相关知识点】正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则⑴当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;⑵当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;⑶当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.(5)【答案】(C)【解析】1P 是交换单位矩阵的第一、二行所得初等矩阵,2P 是将单位矩阵的第一行加到第三行所得初等矩阵;而B 是由A 先将第一行加到第三行,然后再交换第一、二行两次初等交换得到的,因此12PP A B =,故应选(C).三、(本题共2小题,每小题5分,满分10分.)(1)【解析】这实质上已经变成了由方程式确定的隐函数的求导与带抽象函数记号的复合函数求导相结合的问题.先由方程式2(,,)0yx e z ϕ=,其中sin y x =确定()z z x =,并求dz dx.将方程两边对x 求导得1232cos 0y dzx e x dxϕϕϕ'''⋅+⋅+⋅=,解得()12312cos y dz x e x dxϕϕϕ''=-⋅+⋅'.①现再将(,,)u f x y z =对x 求导,其中sin y x =,()z z x =,可得123cos du dzf f x f dx dx'''=+⋅+⋅.将①式代入得()213321cos 12cos y du f f x f dxx e x ϕϕϕ'''=+⋅-⋅''⋅+⋅'.【相关知识点】多元复合函数求导法则:如果函数(,),(,)u x y v x y ϕψ==都在点(,)x y 具有对x 及对y 的偏导数,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((,),(,))z f x y x y ϕψ=在点(,)x y 的两个偏导数存在,且有12z z u z v u v f f x u x v x x x ∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂;12z z u z v u v f f y u y v y y y∂∂∂∂∂∂∂''=+=+∂∂∂∂∂∂∂.(2)【解析】方法一:用重积分的方法.将累次积分11()()xI dx f x f y dy =⎰⎰表成二重积分()()D I f x f y dxdy =⎰⎰,其中D 如右图所示.交换积分次序1()()yI dy f x f y dx =⎰⎰.由于定积分与积分变量无关,改写成10()()xI dx f y f x dy =⎰⎰.⇒11102()()()()xxI dx f x f y dy dx f x f y dy=+⎰⎰⎰⎰111120()()()().dx f x f y dy f x dx f y dy A ===⎰⎰⎰⎰⇒212I A =.方法二:用分部积分法.注意()1()()xdf y dy f x dx=-⎰,将累次积分I 写成()()()111111212()()()()11().22xxxx xx I f x f y dy dx f y dyd f y dy f y dy A ====-=-=⎰⎰⎰⎰⎰⎰四、(本题共2小题,每小题6分,满分12分.)(1)【解析】将曲面积分I 化为二重积分(,)xyD I f x y dxdy =⎰⎰.首先确定被积函数(,)f x y ==对锥面z =而言,=.xyOD1y x=其次确定积分区域即∑在xOy 平面的投影区域xyD (见右图),按题意:22:2xy D x y x +≤,即22(1)1x y -+≤.xyD I =⎰⎰.作极坐标变换cos ,sin x r y r θθ==,则:02cos ,22xy D r ππθθ≤≤-≤≤,因此2cos 2cos 3220213I d r rdr r d θππθπθθ-=⋅==⎰.(2)【解析】这就是将()f x 作偶延拓后再作周期为4的周期延拓.于是得()f x 的傅氏系数:0(1,2,3,)n b n == 2002200222220222()cos 2(1)cos 222(1)sin sin 2244cos((1)1)28,21,(21)1,2,3,0,2,ln n n x n a f x dx l x xdxl l n n x d x xdx n n n x n n n k k k n k ππππππππππ==-=-=-==---⎧=-⎪-==⎨⎪=⎩⎰⎰⎰⎰ 2222000021()(1)(1)022a f x dx x dx x ==-=-=⎰⎰.由于(延拓后)()f x 在[2,2]-分段单调、连续且(1)1f -=.于是()f x 有展开式22181(21)()cos ,[0,2](21)2n n f x x x n ππ∞=-=-∈-∑.五、(本题满分7分)【解析】设点M 的坐标为(,)x y ,则M 处的切线方程为()Y y y X x '-=-.令0X =,得Y y xy '=-,切线与y 轴的交点为(0,)A y xy '-.由MA OA =,有y xy '=-.Oyx1xyD化简后得伯努利方程212,yy y x x '-=-()221y y x x'-=-.令2z y =,方程化为一阶线性方程()1z z x x'-=-.解得()z x c x =-,即22y cx x =-,亦即y =又由3322y ⎛⎫⎪⎭=⎝,得3c =,L的方程为3)y x =<<.六、(本题满分8分)【解析】在平面上LPdx Qdy +⎰与路径无关(其中,P Q 有连续偏导数),⇔P Qy x∂∂=∂∂,即2Qx x∂=∂.对x 积分得2(,)()Q x y x y ϕ=+,其中()y ϕ待定.代入另一等式得对t ∀,()()(,1)(1,)(0,0)2(0)2,0()()22t t xydx dy xydx d x y y x y ϕϕ+=+++⎰⎰.①下面由此等式求()y ϕ.方法一:易求得原函数()()()222202()()2(()()).yyxydx dy ydx dyd x y dd x y x s d x dy y s s y ds ϕϕϕϕ+=+=+=+++⎰⎰于是由①式得()()(,1)(1,)2200(0,0)(0,0)()()t t y yx y ds x y d s s sϕϕ+=+⎰⎰.即1200()()tt ds t ds s s ϕϕ+=+⎰⎰,亦即21()ts t t ds ϕ=+⎰.求导得)2(1t t ϕ=+,即()21t t ϕ=-.因此2(,)21Q x y x y =+-.方法二:取特殊的积分路径:对①式左端与右端积分分别取积分路径如下图所示.于是得()()12()1()t tdy dy y y ϕϕ+=+⎰⎰.OxyOyxt(,1)t 1(1,)t即12()()tt dy t dy y y ϕϕ+=+⎰⎰,亦即21()ty t t dy ϕ=+⎰.其余与方法一相同.七、(本题满分8分)【解析】(1)反证法.假设(,)c a b ∃∈,使()0g c =.则由罗尔定理,1(,)a c ξ∃∈与2(,),c b ξ∈使12()()0g g ξξ''==;从而由罗尔定理,12(,)(,)a b ξξξ∃∈⊂,()0g ξ''=.这与()0g x ''≠矛盾.(2)证明本题的关键问题是:“对谁使用罗尔定理?”换言之,“谁的导数等于零?”这应该从所要证明的结果来考察.由证明的结果可以看出本题即证()()()()f x g x f x g x ''''-在(,)a b 存在零点.方法一:注意到()()()()()()()()()f x g x f x g x f x g x f x g x '''''''-=-,考察()()()()f x g x f x g x ''''-的原函数,令()()()()()x f x g x f x g x ϕ''=-,()x ϕ⇒在[,]a b 可导,()()0a b ϕϕ==.由罗尔定理,(,)a b ξ∃∈,使()0ϕξ'=.即有()()()()0f g f g ξξξξ''''-=,亦即()()()()f fg g ξξξξ''=''.方法二:若不能像前面那样观察到()()()()f x g x f x g x ''''-的原函数,我们也可以用积分来讨论这个问题:[]()()()()(?)()()()()?f x g x f x g x f x g x f x g x dx '''''''''-=⇔-=⎰.[]()()()()()()()()f xg x f x g x dx f x dg x g x df x ''''''-=-⎰⎰⎰()()()()()()()()f x g x g x f x dx f x g x f x g x dx ⎡⎤⎡⎤''''''=---⎣⎦⎣⎦⎰⎰()()()()f x g x f x g x ''=-(取0C =).令()()()()()x f x g x f x g x ϕ''=-,其余与方法一相同.八、(本题满分7分)【解析】设对应于231λλ==的特征向量为123(,,)Tx x x ξ=,因为A 为实对称矩阵,且实对称矩阵的不同特征值所对应的特征向量相互正交,故10Tξξ=,即230x x +=.解之得23(1,0,0),(0,1,1)T T ξξ==-.于是有123112233(,,)(,,)A ξξξλξλξλξ=,所以1112233123(,,)(,,)A λξλξλξξξξ-=1010010100101101001101101010-⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-=- ⎪⎪ ⎪ ⎪⎪ ⎪----⎝⎭⎝⎭⎝⎭.九、(本题满分6分)【解析】方法一:根据TAA E =有|||||()|||||||||T T A E A AA A E A A E A A A E +=+=+=+=+,移项得(1||)||0A A E -+=.因为0A <,故1||0A ->.所以||0A E +=.方法二:因为()TTTTA E A AA A E A E A +=+=+=+,所以A E A E A +=+,即(1||)||0A A E -+=.因为0A <,故1||0A ->.所以||0A E +=.十、填空题(本题共2小题,每小题3分,满分6分.)(1)【解析】由题设,因为是独立重复实验,所以X 服从10,0.4n p ==的二项分布.由二项分布的数学期望和方差计算公式,有()4,()(1) 2.4E X np D X np p ===-=,根据方差性质有22()()[()]18.4E X D X E X =+=.(2)【解析】令{0},{0}A X B Y =<=<,则{max(,)0}1{max(,)0}1{0,0}P X Y P X Y P X Y ≥=-<=-<<.由概率的广义加法公式()()()()P A B P A P B P AB =+- ,有{max(,)0}1[1()]()()()()P X Y P AB P A B P A p B P AB ≥=--=+=+-4435.7777=+-=十一、(本题满分6分)【解析】方法1:用分布函数法先求Y 的分布函数()Y F y .当1y ≤时,()0;Y F y =当1y >时,(){}()X Y F y P Y y P e y =≤=≤{}ln P X y =≤ln ln 011,yy x xe dx e y--==-=-⎰所以由连续型随机变量的概率密度是分布函数的微分,得21, 1,()()0, 1.Y Y y yf y F y y ⎧>⎪'==⎨⎪≤⎩或者直接将ln 0yxe dx -⎰对y 求导数得ln ln 2011.y x y d e dx e dy y y--==⎰方法2:用单调函数公式直接求Y 的概率密度.由于xy e =在()0,+∞内单调,其反函数()ln x h y y ==在()1,+∞内可导且其导数为10y x y'=≠,则所求概率密度函数为()()()()ln 1,1,,1,0, 1.0,1.yX Y e y h y f h y y y f y y y -⎧⎧'⋅>⋅>⎪⎪==⎨⎨≤⎪⎪⎩≤⎩21, 1,0, 1.y y y ⎧>⎪=⎨⎪≤⎩【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t f t t f t ββαα'''=⋅-⋅.。
1995年普通高等学校招生全国统一考试 数学(文史类)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟. 第Ⅰ卷(选择题共65分)
一、选择题(本大题共15小题;第1-10题每小题4分,第11-15题每小题5分,共65分,在每小题给出的四个选项中,只有一项有符合题目要求的) 1.已知集合I={0,-1,-2,-3,-4},集合M={0,-1,-2,},N={0,-3,-
4},则NM_ ( ) (A) {0} (B) {-3,-4} (C) {-1,-2} (D) 2.函数y=11x的图像是 ( )
3.函数y=4sin(3x+4)+3cos(3x+4)的最小正周期是 ( ) (A) 6π (B) 2π (C) 32 (D) 3 4.正方体的全面积是a2,它的顶点都在球面上,这个球的表面积是 ( )
(A) 32a (B) 22a (C) 2πa2 (D) 3πa2 5.若图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则( ) (A) k1< k2< k3 (B) k3< k1< k2 (C) k3< k2< k1 (D) k1< k3< k2 6.双曲线3x2-y2=3的渐近线方程是 ( )
(A) y=±3x (B) 3x (C) y=x3 (D) y=x33
7.使sinx≤cosx成立的x的一个变化区间是 ( ) (A) 443, (B) 22,
(C) 434, (D) [0,π]
8.x2+y2-2x=0和x2+y2+4y=0的位置关系是 ( ) (A) 相离 (B) 外切 (C) 相交 (D) 内切 9.已知θ是第三象限角,且sin4θ+cos4θ=95,那么sin2θ等于 ( )
(A) 322 (B) -322 (C) 32 (D) -32
10.如图ABCD-A1B1C1D1是正方体,B1E1=D1F1=411BA,则BE1与DF1所成的角的余弦值是 ( ) (A) 1715 (B) 21 (C) 178 (D) 23
11.已知y=loga(2-x)是x的增函数,则a的取值范围是( ) (A) (0,2) (B) (0,1) (C) (1,2) (D) (2,+∞) 12.在(1-x3)(1+x)10的展开式中,x5的系数是 ( ) (A) -297 (B) -252 (C) 297 (D) 207 13.已知直线l⊥平面α,直线m平面β,有下面四个命题, ①α∥βl⊥m ②α⊥βl∥m ③l∥mα⊥β ④l⊥mα∥β 其中正确的两个命题是 ( ) (A) ①与② (B) ③与④ (C) ②与④ (D) ①与③
14.等差数列{an},{bn}的前n项和分别是Sn与Tn,若132nnTSnn,则nnnbalim等于 ( ) (A) 1 (B) 36
(C) 32 (D) 94
15.用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有 ( ) (A) 24个 (B) 30个 (C) 40个 (D) 60个
第Ⅱ卷(非选择题共85分)
二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中的横线上) 16.方程log2(x+1)2+log4(x+1)=5的解是_____________ 17.已知圆台上、下底面圆周都在球面上,且下底面过球心,母线与底面所成角为3,则圆台的体积与球体积之比为____________ 18.函数y=cosx+cos(x+3)的最大值是___________ 19.若直线l过抛物线y2=4(x+1)的焦点,并且与x轴垂直,则l被抛物线截得的线段长为______________ 20.四个不同的小球放入编号为1、2、3、4的四个盒子中,则恰有一个空盒的放法共有____________种(用数字作答)
三、解答题(本大题共6小题,共65分:解答应写出文字说明、证明过程或推演步骤) 21.(本小题满分7分)解方程3x+2-32-x=80. 22.(本小题满分12分)设复数z=cosθ+isinθ,θ∈(π,2π),求复数z2+z的模和辐角 23.(本小题满分10分)设{an}是由正数组成的等比数列,Sn是其前n项和,证明: 15.025.05.0log2loglognnnS
SS
.
24.(本小题满分12分)如图,ABCD是圆柱的轴截面,点E在底面的圆周上,AF⊥DE,F是垂足. (1)求证:AF⊥DB (2)如果AB=a,圆柱与三棱锥D-ABE的体积比等于3π,求点E到截面ABCD的距离. 25.(本小题满分12分)某地为促进淡水鱼养殖业的发展,将价格控制在适当范围内,决定对淡水鱼养值提供政府补贴,设淡水鱼的市场价格为千克元x,政府补贴为千克元t,根据市场调查,当8≤x≤14时,淡水鱼的市场日供应量p千克与市场日需求量Q近似地满足关系: P=1000(x+t-8) (x≥8,t≥0), Q=5002840x(8≤x≤14), 当P=Q时的市场价格为市场平衡价格, (1)将市场平衡价格表示为政府补贴的函数,并求出函数的定义域: (2)为使市场平衡价格不高于每千克10元,政府补贴至少每千克多少元?
26.(本小题满分12分)已知椭圆1162422yx,直线l:x=12,P是l上一点,射线OP交椭圆于点R,又点Q在OP上,且满足|OQ|·|OP|=|OR|2,当点P在l上移动时,求点Q的轨迹方程,并说明轨迹是什么曲线.
1995年普通高等学校招生全国统一考试 数学试题(文史类)参考答案
一、选择题(本题考查基本知识和基本运算) 1.B 2.D 3.C 4.B 5.D 6.C 7.A 8.C 9.A 10.A 11.B 12.D 13.D 14.C 15.A 二、填空题(本题考查基本知识和基本运算) 16.3 17.3237 18.3 19.4 20.144
三、解答题 21.本小题主要考查指数方程的解法及运算能力, 解:设y=3x,则原方程可化为9y2-80y-9=0, 解得:y1=9,y2=91
方程3x=91无解, 由3x =9得x=2,所以原方程的解为x=2. 22.本小题主要考查复数的有关概念,三角公式及运算能力, 解:z2+z=(cosθ+isinθ)2+(cosθ+isinθ) =cos2θ+isin2θ+cosθ+isinθ =2cos23cos2+i(2sin23cos2)
=2 cos2(cos23+isin23) =-2 cos2[cos(-π+23)+isin(-π+23)] ∵ θ∈(π,2π) ∴ 2∈(2,π)
∴ -2cos (2)>0 所以复数z2+z的模为-2cos2,辐角(2k-1)π+23(k∈z). 23.本小题主要考查等比数列、对数、不等式等基础知识以及逻辑推理能力, 证法一:设{an}的公比为q,由题设知a1>0,q>0, (1)当q=1时,Sn=na1,从而 Sn·Sn+2-21nS=na1(n+2)a1-(n+1)221a=-21a<0.
(2)当q≠1时,qqaSnn111,从而 Sn·Sn+2-21nS=22121222111111qqaqqqannn=-21aqn<0. 由(1)和(2)得Sn·Sn+2<21nS. 根据对数函数的单调性,得log0.5(Sn·Sn+2)>log0.521nS,
即15.025.05.0log2loglognnnSSS. 证法二:设{an}的公比为q,由题设知a1>0,q>0, ∵ Sn+1= a1+qSn, Sn+2=a1+ qSn+1, ∴ Sn·Sn+2-21nS=Sn (a1+ qSn+1)-(a1+qSn)Sn+1= a1(Sn-Sn+1)=-a1 an+1<0. 即Sn·Sn+2<21nS. (以下同证法一) 24.本小题主要考查空间线面关系、圆柱性质、空间想象能力和逻辑推理能力. (1)证明:根据圆柱性质,DA⊥平面ABE, ∵ EB平面ABE, ∴ DA⊥EB, ∵ AB是圆柱底面的直径,点E在圆周上, ∴ AE⊥EB,又AE∩AD=A,故得EB⊥平面DAE, ∵ AF平面DAE, ∴ EB⊥AF, 又AF⊥DE,且EB∩DE=E,故得AF⊥平面DEB, ∵ DB平面DEB, ∴ AF⊥DB. (2)解:设点E到平面ABCD的距离为d,记AD=h,因圆柱轴截面ABCD是矩形,所以AD⊥AB. S△ABD=21AB·AD=2ah
∴ VD-ABE=VE-ABD=3dS△ABD =61dah
又V圆柱=422ADABa2h 由题设知dahha6142=3π,即d=2a. 25.本小题主要考查运用所学数学知识和方法解决实际问题的能力,以及函数的概念、方程和不等式的解法等基础知识和方法.
解:(1)依题设有1000(x+t-8)=5002840x 化简得5x2+(8t-80)x+(4t2-64t+280)=0, 当判别式△=800-16t2≥0时,可得:X=8-54t±52250t. 由△≥0,t≥0,8≤x≤14,得不等式组:
①14505254885002ttt
②14505254885002ttt 解不等式组①,得0≤t≤10,不等式组②无解,故所求的函数关系式为 x=8-54t+25052t 函数的定义域为[0,10] (2)为使x≤10,应有8-54t+25052t≤10, 化简得:t2+4t-5≥0, 解得t≥1或t≤-5,由于t≥0知t≥1,从而政府补贴至少为每千克1元. 26.本小题主要考查直线、椭圆的方程和性质,曲线与方程的关系,轨迹的概念和求法等解析几何的基本思想综合运用知识的能力. 解:设点P、Q、R的坐标分别为(12,yp),(x,y),(xR,yR由题设知xR>0,x>0, 由点R在椭圆上及点O、Q、R共线,得方程组
1162422RRyx 解得 22223248yxxxR ①