小波与傅里叶分析基础,图像处理电子书第4章
- 格式:ppt
- 大小:921.50 KB
- 文档页数:82
第4章 小波变换的实现技术4.1 Mallat 算法双正交小波变换的Mallat 算法:设{}n h h =、{}n g g =、{}n h h =、{}n g g =为实系数双正交小波滤波器。
h ,g 是小波分析滤波器,h ,g 是小波综合滤波器。
h 表示h 的逆序,即n n h h -=。
若输入信号为n a ,它的低频部分和高频部分以此为1n a -和1n d -,小波分解与重构的卷积算法:11()()n n n na D a h d D a g --⎧⎪=*⎨=*⎪⎩ n11()()n n a Uah Ud g --=*+*先进行输入信号和分析滤波器的巻积,再隔点采样,以形成低频和高频信号。
对于有限的数据量,经过多次小波变化后数据量大减,因此需对输入数据进行处理。
4.1.1 边界延拓方法下面给出几种经验方法。
1. 补零延拓是假定边界以外的信号全部为零,这种延拓方式的缺点是,如果输入信号在边界点的值与零相差很大,则零延拓意味着在边界处加入了高频成分,造成很大误差。
实际应用中很少采用。
0121,0,,,,...,,0,0,......n s s s s -2.简单周期延拓将信号看作一个周期信号,即k n k s s +=。
简单周期延拓后的信号变为这种延拓方式的不足之处在于,当信号两端边界值相差很大时,延拓后的信号将存在周期性的突变,也就是说简单周期延拓可在边界引入大量高频成分,从而产生较大误差。
3. 周期对称延拓这种方法是将原信号在边界上作对称折叠,一般分二1)当与之做卷积的滤波器为奇数时,周期延拓信号为2)当与之做卷积的滤波器为偶数时,周期延拓信号为4. 光滑常数延拓在原信号两端添加与端点数据相同的常数。
0121,,,...,,n s s s s -0121,,,...,,n s s s s -0121,,,...,,n s s s s -0,...s 1,...,n s -01221,,,...,,,n n s s s s s --0121,,,...,,n s s s s -21012,...,,,,,...n s s s s s -321212,,,...,,,,...n n n s s s s s s ---10012,,...,,,,...n n s s s s s --10112,,,...,,,n n n s s s s s ---5. 平滑延拓在原信号两端用线性外插法补充采样值,即沿着信号两端包络线的一阶导数方向增加采样值。
基于二维傅里叶变换和小波变换的图像稀疏表示一、基于二维傅里叶变换的图像稀疏表示傅里叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析。
一幅静止的数字图像可以看成是矩阵,因此,数字图像处理主要是对包含数据的矩阵进行处理。
经过对图像进行二维离散傅里叶变换可以得到它的频谱,进而得到我们所需要的特征。
二维离散傅里叶变换及逆变换可以表示为:其中u=0,1,2,...,M-1和v=0,1,2,...,N-1。
其中变量u和v用于确定它们的频率,频域系统是由F(u,v)所张成的坐标系,其中u和v用做(频率)变量。
空间域是由f(x,y)所张成的坐标系。
傅立叶频谱图上我们看到的明暗不一的亮点,其意义是指图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。
一般来讲,梯度大则该点的亮度强,否则该点亮度弱。
下图为cameraman原图像及其频谱分布图:cameraman原图像大小为256*256,其傅里叶变换频谱图大小为256*256。
图像从频域到时域的变换过程称为重构过程,通过峰值信噪比(PSNR)对图像进行评价,公式如下:PSNR=10*log10((2^n-1)^2/MSE)MSE是原图像与处理后图像之间均方误差,n是每个采样值的比特数。
通过取不同的大系数个数观察图像变化,单独取第1个大系数时:N=1PSNR=12.2353所取频谱系数对应图单独取第9个系数时:N=1PSNR=6.3108第9个频谱系数对应图N=2PSNR= 13.1553所取频谱系数对应图N=10PSNR=15.4961所取频谱系数对应图N=50PSNR= 17.1111所取频谱系数对应图N=100PSNR= 17.9232所取频谱系数对应图N=1000PSNR= 21.5791所取频谱系数对应图N=5000PSNR= 25.5610所取频谱系数对应图N=20000PSNR= 31.6995所取频谱系数对应图从以上图片中可以分析得到,随着大系数的数量不断加大,PSNR值逐步增加,重构图像的效果越好,在大系数到20000个时,图像效果已经较好。
小波变换和傅里叶变换一、小波变换的基本概念及原理小波变换是一种时频分析方法,它将信号分解成不同尺度和频率的小波基函数,从而能够更好地描述信号的局部特征。
小波变换与傅里叶变换相比,具有更好的时域局部性和多分辨率特性。
1. 小波基函数小波基函数是一组紧凑支撑的函数,可以用于表示任意信号。
常见的小波基函数包括哈尔、Daubechies、Symlet等。
2. 小波分解小波分解是指将信号分解成不同尺度和频率的小波基函数。
通常采用离散小波变换(DWT)实现。
3. 小波重构小波重构是指将经过小波分解后得到的系数重新合成成原始信号。
通常采用离散小波逆变换(IDWT)实现。
二、傅里叶变换的基本概念及原理傅里叶变换是一种将时域信号转化为频域信号的方法,能够揭示出信号中各个频率成分所占比例,从而能够更好地描述信号在频域上的特征。
1. 傅里叶级数傅里叶级数是指将周期信号分解成一组正弦、余弦函数的线性组合,通常采用复数形式表示。
2. 傅里叶变换傅里叶变换是指将非周期信号分解成一组连续的正弦、余弦函数的线性组合,通常采用积分形式表示。
3. 傅里叶逆变换傅里叶逆变换是指将经过傅里叶变换后得到的频域信号重新合成成原始信号,通常采用积分形式表示。
三、小波变换与傅里叶变换的比较小波变换和傅里叶变换都是将信号从时域转化为频域的方法,但两者有着明显的区别。
1. 时域局部性小波变换具有更好的时域局部性,即小波基函数在时间上具有紧凑支撑。
而傅里叶基函数则是在整个时间轴上存在。
2. 多分辨率特性小波变换具有多分辨率特性,可以将信号分解成不同尺度和频率的小波基函数。
而傅里叶变换则只能得到整体频谱信息。
3. 计算复杂度小波变换的计算复杂度比傅里叶变换低,因为小波基函数具有局部性质,可以在不同尺度上分别计算。
而傅里叶变换则需要对整个信号进行计算。
4. 应用领域小波变换主要应用于信号的时频分析、图像处理等领域。
而傅里叶变换则主要应用于通信、音频处理等领域。