3.1(2)有理数的加法与减法
- 格式:doc
- 大小:96.00 KB
- 文档页数:4
有理数的加法和减法有理数是数学中的一种数,它包括整数和分数。
有理数的加法和减法是数学中最基础也是最常用的运算之一。
本文将详细介绍有理数的加法和减法的概念、性质以及运算规则。
一、有理数的加法有理数的加法是指将两个有理数相加的操作。
在有理数的加法中,我们需要考虑两个有关键要素:正负号和数值。
规则1: 同号相加。
如果两个有理数的正负号相同,那么它们的加法就等于两个数值的相加,并且结果的正负号与原来相同。
例如,-3 + (-7) = -10;5/2 + 3/2 = 8/2 = 4。
规则2: 异号相加。
如果两个有理数的正负号不同,那么它们的加法就等于两个数值的差值,并且结果的正负号取决于绝对值较大的数值的正负号。
例如,-5 + 3 = -2;7/4 + (-1/2) = 7/4 - 1/2 = 5/4。
二、有理数的减法有理数的减法是指将一个有理数减去另一个有理数的操作。
在有理数的减法中同样需要考虑正负号和数值。
规则1: 异号相减。
如果两个有理数的正负号不同,那么它们的减法就等于两个数值的相加,并且结果的正负号与原来相同。
例如,-3 - 5 = -8;5/2 - 3/2 = 2/2 = 1。
规则2: 同号相减。
如果两个有理数的正负号相同,那么两个有理数的减法就等于两个数值的差值,并且结果的正负号取决于绝对值较大的数值的正负号。
例如,-5 - (-3) = -2;7/4 - 1/2 = 7/4 - 2/4 = 5/4。
三、有理数的加法和减法的综合运用有理数的加法和减法经常在日常生活中用到,特别是在计算中。
我们可以通过加法和减法来解决各种实际问题,例如温度计的计算、银行账户的收支计算等。
例如,现在温度是摄氏零下5度,预计今天降温9度。
我们可以用有理数的减法来计算今天的最低温度:-5 - 9 = -14,所以今天的最低温度是摄氏零下14度。
另一个例子是银行账户的收支计算:如果你的账户里有1500元,并且你从账户中支出了450元,我们可以用有理数的减法计算剩余的金额:1500 - 450 = 1050,所以你的账户里还剩下1050元。
3.1有理数的加法与减法(1)【教学目标】1.在实际应用中理解有理数加法的意义。
2.熟悉有理数加法法则的过程,学会灵活运用有理数的加法法则去解题,积极地参与有理数加法法则的探索活动,并学会与他人进行交流与合作。
3.能够灵活地运用有理数的加法运算解决简单的实际问题,在教学中让学生熟悉分类讨论思想。
【学习重点】异号两数相加计算方法与技巧。
【学习难点】有理数加法法则的灵活运用。
【学习过程】一、情境导入回顾课本第44页有关黄河水位的例子。
让学生体会同号两数相加,异号两数相加以及一个数与0相加的在实际问题中的不同意义,师生共同做课本第45页题目。
师提问:如何进行有理数的加法运算呢?这是我们这节课一起与大家探讨的主要问题。
(出示课题)有理数的加法。
二、合作交流,解读探究1.看课本第45页,观察水位的变化情形与学生相互交流后,教师引导学生可以把两个有理数相加归纳为(1)、同号两数相加;(2)、异号两数相加;(3)一个数同零相加这三种情形。
初步形成有理数相加的做题方法。
2.( 补充)借助数轴来进一步理解有理数的加法。
假定一个物体向前后方向运动,我们规定向前运动为正,向后为负,向前运动8m,记作+8m,那么向后运动3m,记作-3 m。
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。
(2)交流汇报。
(各学习小组的汇报结果,用实物投影仪展示)(3)说一说有理数相加应注意的事项是什么?(①符号,②绝对值的和与差)指导学生用自己的语言进行归纳。
(4)在学生归纳的基础上,教师出示有理数加法法则。
(用投影仪展示)有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
③一个数同0相加,仍得这个数。
3. 自学课本例1,并独立解决(2)(3)(4)三个小题。
有理数的加法与减法运算技巧一、有理数加法运算技巧1.同号有理数相加:–取相同符号,并保留原有绝对值;–将绝对值相加,结果的绝对值即为两数相加的绝对值,符号与原数相同。
2.异号有理数相加:–取绝对值较大的数的符号;–用较大的绝对值减去较小的绝对值,结果的绝对值为两数相加的绝对值,符号与绝对值较大的数相同。
–任何有理数加零,结果为该有理数本身。
3.加法交换律:–对于任何两个有理数a和b,a + b = b + a。
二、有理数减法运算技巧1.同号有理数相减:–取相同符号,并保留原有绝对值;–将绝对值相减,结果的绝对值即为两数相减的绝对值,符号与原数相同。
2.异号有理数相减:–转换为加法运算,即将被减数取相反数后与减数相加;–按照同号有理数相加的方法进行计算。
–任何有理数减零,结果为该有理数本身。
3.减法交换律:–对于任何两个有理数a和b,a - b = b - a。
4.减法的性质:– a - (b + c) = (a - b) - c;– a - b = a + (-b)。
三、加减法运算技巧1.结合律:–对于任何三个有理数a、b和c,(a + b) + c = a + (b + c)。
2.分配律:–对于任何三个有理数a、b和c,a × (b + c) = a × b + a × c;–对于任何三个有理数a、b和c,(a + b) × c = a × c + b × c。
3.运算顺序:–先算乘除,后算加减;–同一级运算,按照从左到右的顺序进行计算。
4.带符号移项:–将含有未知数的项移到等式的一边,将常数项移到等式的另一边;–移项时,注意改变移项后项的符号。
5.运用括号:–括号前面是加号时,括号内的数不变号;–括号前面是减号时,括号内的数变号。
通过以上知识点的学习与理解,同学们可以掌握有理数加减法的运算技巧,并在实际运算中灵活运用,提高解题速度和正确率。
有理数的加法与减法知识点以及专项训练(含有答案解析)【知识点1:有理数的加法】1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.3.运算步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).4. 运算律:【知识点1:有理数的加法练习】1.华罗庚说:“数学是中国人民擅长的学科”,中国是最早认识负数并进行运算的国家.在古代数学名著《九章算术》里,就记载了利用算筹实施“正负数”的方法.图1表示的是()34+-的过程,按照这种方法,图2表示的过程是在计算()A.()52+-B.()52-+C.()()52-+-D.52+【答案】A【解析】由左图知:白色表示正数,黑色表示负数,所以右图表示的过程应是在计算5+(−2), 故选:A .2. 计算(﹣2)+(﹣3)的结果是( ) A .﹣5 B .﹣1 C .1 D .5【答案】A【解析】原式=﹣(2+3)=﹣5, 故选:A3. 比3大-1的数是( ) A .2 B .4 C .-3 D .-2【答案】A【解析】3+(﹣1)=2,所以比3大-1的数是2. 故选:A .4. 奶奶把35000元钱存入银行2年,按年利率2.50%计算,到期时可得到本金和利息共多少元?( ) A .1750 B .36750 C .175 D .35175【答案】B【解析】本金+本金×年利率×年数=到期本息和。
根据题意得:35000+35000×2.50%×2=35000+1750=36750(元), 故选:B .5. 小红解题时,将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了( ). A .加法的交换律和结合律 B .加法的交换律 C .加法的结合律 D .无法判断【答案】A【解析】将式子(−8)+(−3)+8+(−4)先变成[(−8)+8]+[(−3)+(−4)],再计算结果,则小红运用了:加法的交换律和结合律.故选:A .6.两个数相加,如果和小于每个加数,那么这两个加数()A.同为正数B.同为负数C.一正一负且负数的绝对值较大D.不能确定【答案】B【解析】两个负数相加,和为负数,再把绝对值相加,和一定小于每一个加数.例如:(−1)+(−3)=−4,−4<−1,−4<−3,故选B.7.两个数的和为正数,那么这两个数是()A.正数B.负数C.至少有一个为正数D.一正一负【答案】C【解析】根据题意,当两个数为正数时,和为正;当两数一个正数和0时,和为正;当两数一个为正一个为负,且正数的绝对值较大时,和为正.故选C.8.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案()A.少5 B.少10 C.多5 D.多10【答案】D【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10.故选D.9.已知a,b互为相反数,则a+2a+3a+⋯+49a+50a+50b+49b+⋯+3b+2b+b= ________.【答案】0【解析】∵a,b互为相反数,∴a+b=0.∴a+2a+3a+⋯+49a+50a+50b+49b+⋯+3b+2b+b=(a+b)+2(a+b)+3(a+b)+⋯+50(a+b)=0.故答案为:0.10.已知|a|=4>a,|b|=6,则a+b的值是________.【答案】2或-10【解析】∵|a|=4>a,|b|=6,∴a=-4,b=6或-6,当a=-4,b=6时,a+b=-4+6=2;当a=-4,b=-6时,a+b=-4-6=-10.故答案为:2或-10.11.绝对值不大于2.1的所有整数是____,其和是____.【答案】﹣2,﹣1,0,1,2 0【解析】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;012.若a,b为整数,且|a-2|+| a-b|=1,则a+b=________.【答案】2,6,3或5【解析】当|a-2|=1,| a-b|=0时,得:a+b=6或2;当|a-2|=0,| a -b|=1时,得:a+b=3或5;故答案为:2,6,3或5【知识点2:有理数的减法】1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.2. (1)任意两个数都可以进行减法运算.(2)几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.3.运算法则:减去一个数,等于加这个数的相反数,即有:a−b=a+(−b).将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:【知识点2:有理数的减法练习】1.冬季某天我国三个城市的最高气温分别是 -10℃,1℃, -7℃,它们任意两城市中最大的温差是()A.11℃B.7℃C.8℃D.3℃【答案】A【解析】它们任意两城市中最大的温差是:1-(﹣10)=1+10=11℃.故选:A.2.计算-2-3=()A.1-B.1 C.5-D.5 【答案】C【解析】解:-2-3=-2+(-3)=-5.故选:C.3.计算2136⎛⎫---⎪⎝⎭的结果为( )A.12-B.12C.56-D.56【答案】A【解析】原式=−46+16=−36=−12,故选:A.4.今年10月份某市一天的最高气温为11℃,最低气温为﹣3℃,那么这一天的最高气温比最低气温高()A.﹣14℃B.14℃C.8℃D.11℃【答案】B【解析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.解:这一天的最高气温比最低气温高11﹣(﹣3)=11+3=14(℃),故选:B.5.气温由6℃下降了8℃,下降后的气温是()A.14-℃B.8-℃C.2-℃D.2℃【答案】C【解析】用原来的气温减去下降的温度,求出下降后的气温是多少即可.解:6-8=-2(℃),故选:C.6.下面的数中,与﹣2的和为0的是()A.2 B.﹣2 C.12D.12【答案】A【解析】∵-2+2=0,故选A.7.-3-(-2)的值是( )A.-1 B.1 C.5 D.-5【答案】A【解析】本题按照有理数的减法运算法则直接求解即可.−3−(−2)=−3+2=−1,故选:A.8.小怡家的冰箱冷藏室温度是5℃,冷冻室的温度是﹣2℃,则她家冰箱冷藏室温度比冷冻室温度高( )A.3℃B.﹣3℃C.7℃D.﹣7℃【答案】C【解析】用冷藏室温度减去冷冻室的温度,就是冰箱冷藏室温度与冷冻室温度的温差.依题意得:5-(-2)=5+2=7℃,所以冷藏室温度比冷冻室温度高7℃.故选C.9.下列说法中正确的是()A.一个有理数不是正数就是负数B.|a|一定是正数C.如果两个数的和是正数,那么这两个数中至少有一个正数D.两个数的差一定小于被减数【答案】C【解析】解:A. 一个有理数不是正数就是负数,错误,如0既不是正数,也不是负数;B. |a|一定是正数,错误,如|0|=0;C. 如果两个数的和是正数,那么这两个数中至少有一个正数,正确;D. 两个数的差一定小于被减数,错误,如3-0=3. 故选:C10. 若3x =,2y =,且0x y +>,那么x y -的值为( ). A .5或1 B .1或-1 C .5或-5 D .-5或-1【答案】A【解析】由题意,利用绝对值的代数意义确定出x 与y 的值,即可求出x-y 的值.解:∵|x|=3,|y|=2,x+y >0, ∴x=3,y=2;x=3,y=-2, 则x-y=1或5, 故选A .11. 在数轴上,a 所表示的点总在b 所表示的点的右边,且|a|=6,|b|=3,则a-b 的值为( ) A .-3 B .-9 C .-3或-9 D .3或9【答案】D 【解析】∵|a|=6,|b|=3,∴a=±6,b=±3,∵在数轴上,a 所表示的点总在b 所表示的点的右边,∴a=6,当a=6,b=3时,a ﹣b=6﹣3=3,当a=6,b=﹣3时,a ﹣b=6﹣(﹣3)=6+3=9,所以,a ﹣b 的值为3或9.故选D .12. 设|a|=4,|b|=2,且|a+b|=-(a+b),则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2【答案】A 【解析】∵|a+b|=-(a+b ),∴a+b≤0,∵|a|=4,|b|=2,∴a=±4,b=±2,∴a=-4,b=±2,当a=-4,b=-2时,a-b=-2; 当a=-4,b=2时,a-b=-6;故a -b 所有值的和为:-2+(-6)=-8.故选A .13. 某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg 【答案】B【解析】因为最低重量为24.7kg ,最大重量为25.3kg ,故质量最多相差25.3-24.7=0.6kg .【知识点3:有理数加减混合运算】1. 将加减法统一成加法运算,适当应用加法运算律简化计算.2.举例:一、几个有理数相加,把相加得零的数先行相加: 例1 计算38−213−18−20+523−14−313. 【答案】-14【解析】原式=(38-18-20)+(-213+523-313)-14=0+0-14=-14. 例2 计算1+2-3-4+5+6-7-8+9+…+1998-1999-2000+2001+2002-2003-2004+2005+2006. 【答案】2007【解析】原式=1+(2-3-4+5)+(6-7-8+9)+…+(1998-1999-2000+2001)+(2002-2003-2004+2005)+2006=1+0+0+…+0+2006=2007. 二、几个有理数相加,把同号的数分别相加: 例3 计算-18+21-16+8-23+28. 【答案】0【解析】原式=(21+8+28)+(-18-16-23)=57-57=0. 三、几个非整数的有理数相加,先把相加得整数的数相加: 例4 计算-0.375+3.15+114-658+735. 【答案】5【解析】原式=(-0.375-658)+(3.15+114+735)=-7+12=5. 例5 计算214-123+325-113+2.35+9. 【答案】14【解析】原式=(2.35+214+325)+(-123-113)+9=8-3+9=14.四、几个分数相加,先把同分母的分数分别相加: 例6 计算413+514+634-113. 【答案】15【解析】原式=(514+634)+(413-113)=12+3=15.五、几个带分数相加,先把它们的整数部分和分数部分分别相加: 例7 计算413+514+634-113. 【答案】15【解析】原式=(4+5+6-1)+(13+14+34-13)=14+1=15. 六、先变形,后相加:例8 计算38+27-49-996+2006+28. 【答案】1234【解析】原式=(40-2)+(30-3)+(-50+1)+(-1000+4)+(2000+6)+(30-2)=(40+30-50-1000+2000+30)+(-2-3+1+4+6-2)=1230+4=1234.小结:进行有理数的加减混合运算前,根据减法法则把减法变成加法.进行有理数的加减混合运算时,一般先应考虑到符号相同的数先加;互为相反数的数先加,同分母的数先加,和为整数的几个数先加. 【知识点3:有理数加减混合运算 练习】 1. |1−2|+3的相反数是( ) A .4 B .2 C .4- D .2-【答案】C【解析】先化简求解,再根据相反数的定义即可求解. 解:|1−2|+3=2−1+3=4. ∵4的相反数为-4, ∴|1−2|+3的相反数是-4. 故选:C .2. 我市今年某一天上午9点的气温是4°C,下午1点上升了3°C,半夜(24时)又下降了5°C,半夜的气温是( ) A .3°C B .-3°C C .4°C D .2°C【答案】D【解析】根据有理数的加减运算法则计算即可. 解:由题意可得:4+3-5=2°C, 故选D .3. 1﹣2+3﹣4+5﹣6+…+2005﹣2006的结果是( ) A .0 B .100 C .﹣1003 D .1003【答案】C【解析】1﹣2+3﹣4+5﹣6+…+2005﹣2006 =1003(1)(1)(1)(1)(1)--+-+-++-个=-1003.4. 50个连续正奇数的和l+3+5+7+…+99与50个连续正偶数的和:2+4+6+8+…+100,它们的差是( ) A .0 B .50 C .﹣50 D .5050 【答案】C【解析】试题解析::(1+3+5+7+…+99)-(2+4+6+8+…+100) =-[(2-1)+(4-3)+(6-5)+(8-7)…+(100-99)] =-(1+1+1+1+…+1) =-50. 故选C .5. 绝对值大于1且小于4的所有整数的和是( ) A .6 B .–6 C .0 D .4【答案】C【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0. 故选C .6. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a 和b ,有a ☆b =a-b+1,请你根据新运算,计算(2☆3)☆2的值是 .11 | 13【答案】 -1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-17. 阅读下题的计算方法.计算−556+(−923)+1734+(−312).解:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)] =0+(−54) =−54上面这种解题方法叫做拆项法,按此方法计算:(−201156)+(−201023)+402223+(−112). 【答案】−43【解析】解:原式=[(−2011)+(−56)]+[(−2010)+(−23)]+[4022+23]+[(−1)+(−12)]=[(−2011)+(−2010)+4022+(−1)]+[(−56)+(−23)+23+(−12)] =0+(−43) =−438. “九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.(1)现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得第行的三个数、每列的三个数、斜对角的三个数之和都等于15;(2)通过研究问题(1),利用你发现的规律,将3,5,﹣7,1,7,﹣3,9,﹣5,﹣1这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.【答案】【解析】解:(1)15÷3=5,∴最中间的数是5,其它空格填写如图1;(2)如图2所示.9.某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】1594千克【解析】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6 200×8+(-6)=1594(千克)法二:197+202+197+203+200+196+201+198=1594(千克)10.邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)邮递员一共骑了多少千米?【答案】(1)(2)6千米(3)18千米【解析】解:(1)以邮局为原点,以向北方向为正方向用1cm表示1km,数轴为:;12 | 13(2)依题意得:C点与A点的距离为:2+4=6(千米);(3)依题意得邮递员骑了:2+3+9+4=18(千米).11.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,求:x+y+z的值.【答案】10【解析】解:根据数轴,到原点的距离小于3的整数为0,±1,±2,即x=5,不大于3的正整数为1,2,3,即y=3,绝对值等于3的整数为3,﹣3,即z=2,所以x+y+z=10.12.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?星期一二三四五每股涨跌/元+0.4 +0.45 ﹣0.2 +0.25 ﹣0.4【答案】(1)11.85元;(2)周四,本周该只股票最高价12.1元出现在周四。
第3章 有理数的运算3.1有理数的加法与减法 (第1课时)【学习目标】1、探索有理数加法法则,理解有理数的加法法则. 2、能熟练进行整数加法运算.3、通过利用数轴探索有理数加减法则的过程,进一步体验数形结合的思想。
【学习重点】理解有理数加法法则并进行应用。
【学习重难点】 有理数加法法则及应用。
【学习过程】 一、学前准备预习疑难摘要: 二、探究活动 (一)自主学习阅读教材P42海上钻井平台记录潮汐涨落情况及图形,独立思考后完成以下题目:(1)海水第一天水位上涨了3厘米,可以记作_______厘米,第二天上涨了2厘米,记作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。
(2)海水第一天水位下降了3厘米,可以记作_______厘米,第二天下降了2厘米,记作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。
(3)海水第一天水位下降了3厘米,可以记作_______厘米,第二天上涨了2厘米,记作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。
(4)海水第一天水位下降了2厘米,可以记作_______厘米,第二天上涨了3厘米,记作_______厘米,两天的水位总变化量是_________厘米,算式:___________________。
(5)海水第一天水位下降了3厘米,可以记作_______厘米,第二天上涨了3厘米,记作 _______厘米,两天的水位总变化量是_________厘米,算式:___________________。
(6)海水第一天水位下降了3厘米,可以记作_______厘米,第二天水位不变,两天的水位总变化量是_________厘米,算式:___________________。
(二)合作交流 、探究新知 1.数学实验室(1)把笔尖放在原点处,先向正方向移动3个单位长度,再向负方向移动2个单位长度,这时笔尖的位置表示什么数?请用算式表示以上过程及结果。
有理数的加法与减法(8种题型)1.理解有理数加减法的意义;2.初步掌握有理数加法与减法法则;3.能准确地进行有理数的加法与减法运算,并能运用其解决简单的实际问题.一.有理数的加法(1)有理数加法法则:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.③一个数同0相加,仍得这个数.(在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.)(2)相关运算律交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).二.有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.三.有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.四、有理数加减法混合运算技巧(1)把算式中的减法转化为加法;(2)去括号时注意符号,能省掉的“+”号要省掉;(3)多观察,巧妙利用运算律简便计算.题型一:有理数的加法法则例1.计算:(1)(-0.9)+(-0.87);(2)(+456)+(-312);(3)(-5.25)+514;(4)(-89)+0.解析:利用有理数加法法则,首先判断这两个数是同号两数、异号两数还是同0相加,然后根据相应法则来确定和的符号和绝对值.解:(1)(-0.9)+(-0.87)=-1.77;(2)(+456)+(-312)=113;(3)(-5.25)+514=0;(4)(-89)+0=-89.方法总结:两数相加时,应先判断两数的类型,然后根据所对应的法则来确定和的符号与绝对值.【变式1】计算:(1)(+20)+(+12); (2)1223⎛⎫⎛⎫−+−⎪ ⎪⎝⎭⎝⎭; (3)(+2)+(-11);(4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32; (2)12121123236⎛⎫⎛⎫⎛⎫−+−=−+=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.【变式2】设[]x 表示不超过x 的最大整数,计算:][2.3 6.5⎡⎤−+=⎣⎦______.【答案】3【分析】根据题中所给新定义运算可进行求解.【详解】解:∵[]x 表示不超过x 的最大整数,∴][2.3 6.563,⎡⎤−=−=⎣⎦, ∴][2.3 6.5363⎡⎤−+=−+=⎣⎦; 故答案为3.【点睛】本题主要考查有理数的加法,熟练掌握有理数的加法运算是解题的关键.【答案】(1) 4.62−;(2)0.25−.【分析】(1)根据有理数的加法运算法则进行计算即可;(2)根据有理数的加法运算法则及求一个数的绝对值进行计算即可.【详解】(1)解:()() 33 2.71 1.695⎛⎫−+−++⎪⎝⎭()()3.6 2.71 1.69 =−+−+()3.6 2.71 1.69 =−++6.31 1.69=−+()6.31 1.69=−−4.62=−;(2)11 5 4.257522⎛⎫−++−+⎪⎝⎭()5.5 4.257 5.5=−++−+()1.25 1.5=−+−()1.25 1.5=+−()1.5 1.25=−−0.25=−.【点睛】本题考查了有理数的加法运算及求一个数的绝对值;解题的关键是熟练掌握相关运算法则.【答案】(1)同号得正,并把它们的绝对值相加;异号得负,并用较大的绝对值减去较小的绝对值(2)6(3)加法交换律适用,加法结合律不适用,例子见解析【分析】(1)根据题目中的例子可以总结出※(宏)运算的运算法则;(2)根据(1)中的结论可以解答本题,注意运算顺序;(3)根据(1)中的结论分别采用加法交换律和结合律计算可以解答本题.【详解】(1)解:由题意可得,归纳※(宏)运算的运算法则:同号两数进行※(宏)运算时,同号得正,并把它们的绝对值相加,异号两数进行※(宏)运算时,异号得负,并用较大的绝对值减去较小的绝对值;故答案为:同号得正,并把它们的绝对值相加;异号得负,并用较大的绝对值减去较小的绝对值.(2)解:()()()134+−⎡⎤⎣⎦−※※,()()33=−−※, 6=,故答案为:6;(3)解:()()231−+=−※,()()231−+=−※.∴加法交换律适用;()()()()()412321+−+=−+=−※※※,()()()()()124134−+=+−−⎡⎤+⎣⎦※※※,而13−≠−,∴加法结合律不适用.【点睛】本题考查有理数的加法运算,解答本题的关键是明确有理数的加法运算的计算方法.题型二:有理数加法在实际生活中的应用例2.股民默克上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?解析:(1)用买进的价格加上周一、周二、周三的涨跌价格,然后根据有理数加法运算法则进行计算即可求解;(2)分别求出这五天的价格,然后即可得解.解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(-1)=74.5元,周四:74.5+(-2.5)=72元,周五:72+(-6)=66元,∴本周内每股最高价为75.5元,最低价66元.方法总结:股票每天的涨跌都是在前一天的基础上进行的,不要理解为每天都是在67元的基础上涨跌.另外熟记运算法则并根据题意准确列出算式也是解题的关键.假设现在北京时间是2020年11月22日上午9:00.(1)现在纽约的时间是几点?东京时间是几点?(2)如果小明在北京坐11月19日上午10:00的航班飞行约9小时到达豪尔市,那么达到豪尔市的时间是几点?【答案】(1)纽约时间是2020年11月21日晚上20:00,东京时间是2020年11月22日上午10:00 (2)11月19日下午14:00【分析】(1)(2)根据正负数的意义结合有理数加法计算法则求解即可.【详解】(1)解:()()913424420+−=−+−=,,9110+=,∴纽约时间是2020年11月21日晚上20:00,东京时间是2020年11月22日上午10:00;(2)解() 1055+−=,∴在北京坐11月19日上午10:00的航班,是豪尔市11月19日凌晨5:00,5914+=,∴到达豪尔的时间是11月19日下午14:00.【点睛】本题主要考查了正负数的实际应用,有理数加法的实际应用,正确理解题意是解题的关键.题型三:与有理数性质有关的计算问题例3.已知|a|=5,b的相反数为4,则a+b=________.解析:因为|a|=5,所以a=-5或5,因为b的相反数为4,所以b=-4,则a+b=-9或1.解:-9或1方法总结:本题涉及绝对值和相反数的定义,在解决绝对值问题时要注意考虑全面,避免造成漏解. 【变式】若3,2a b ==,且a b <,那么+a b 的值是( )A .5或1B .1或1−C .5或5−D .5−或1−【答案】D【分析】根据绝对值的意义和a b <,求出a 、b 的值,再代入a+b 求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵a b <,∴a=-3,b=2或a=-3,b=-2,∴a+b=-3+2=-1或a+b=-3+(-2)=-5.故选:D .【点睛】此题主要考查了绝对值的意义,解题时先根据绝对值的意义,求出a 、b 的值,然后根据a 、b 的关系分类讨论求解即可.题型四:加法运算律及其应用例4.计算:(1)31+(-28)+28+69; (2)16+(-25)+24+(-35);(3)(+635)+(-523)+(425)+(1+123). 解析:(1)把互为相反数的两数相加;(2)可把符号相同的数相加;(3)可把相加得到整数的数相加. 解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20;(3)(+635)+(-523)+(425)+(1+123)=(635+425)+(-523)+(223)=11+(-3)=8. 方法总结:合理地运用有理数的加法运算律可使计算简化.在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有互为相反数的两数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.【变式1】绝对值小于14的所有整数的和为_________.【答案】0【分析】找出绝对值小于14的所有整数,求和即可.±,之和为0.【详解】解:绝对值小于14的所有整数有:0,1±,2±,3±,L,13故答案为:0.【点睛】此题考查了有理数的加法和绝对值的意义,确定绝对值小于14的所有整数是解本题的关键,熟练掌握互为相反数的两个数为0.【变式2】某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A地出发,晚上最后到达B地,约定向北为正方向,当天的行驶记录如下.(单位:km)+18,-9,+7,-14,+13,-6,-8.(1)B地在A地何方,相距多少千米?(2)若汽车行驶1km耗油a L,求该天耗油多少L?解析:(1)首先把题目的已知数据相加,然后根据结果的正负即可确定B地在A何方,相距多少千米;(2)首先把所给的数据的绝对值相加,然后乘以a即可求解.解:(1)(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km)故B地在A地正北,相距1千米;(2)该天共耗油:(18+9+7+14+13+6+8)a=75a(L).答:该天耗油75a L.方法总结:解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义【答案】-2.【分析】读懂例题,根据例题拆项计算即可.【详解】解:原式=[(-2018)+(56−)]+[(-2017)+(23−)]+[(-1)+(-12)]+4036=[(-2018)+(-2017)+(-1)+4036]+[(-56)+(-23)+(-12)]=0+[(-56)+(-23)+(-12)]=-2.【点睛】本题主要考查实数的计算,必须熟练掌握,并且掌握此方法.题型五:有理数减法法则的直接运用例5、计算:(1)(-32)-(+5);(2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“符号化简进行计算.【变式】(1)2-(-3); (2)0-(-3.72)-(+2.72)-(-4); (3)41373⎛⎫+−⎪⎝⎭.【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】本题可直接利用有理数的减法法则进行计算.(1)2-(-3)=2+3=5 (2)原式=0+3.72+(-2.72)+4=(0+4)+(3.72-2.72)=4+1=5(3)原式=411416(3)(3)2 733721 +−=−−=−【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.题型六:加减混合运算统一成加法运算例6.将下列式子写成省略括号和加号的形式,并用两种读法将它读出来.(-13)-(-7)+(-21)-(+9)+(+32)解析:先把加减法统一成加法,再省略括号和加号;读有理式,式子中第一项的符号,要作为这一项的符号读出正负来,式子中的符号就读作加或减.解:(-13)-(-7)+(-21)-(+9)+(+32)=-13+7-21-9+32.读法①:负13、正7、负21、负9、正32的和;读法②:负13减去负7减去21减去9加上32.方法总结:注意掌握括号前是“+”号时,将括号连同它前边的“+”号去掉,括号内各项都不变;括号前是“-”号时,将括号连同它前边的“-”去掉,括号内各项都要变号.题型七:有理数的加减混合运算例7.计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|; (2)-1423+11215-(-1223)-14+(-11215); (3)23-18-(-13)+(-38). 解析:本题根据有理数加减互为逆运算的关系把减法统一成加法,省略加号后,运用加法运算律,简化运算,求出结果.其中互为相反数的两数先结合;能凑成整数的各数先结合.另外,同号各数先结合;同分母或易通分的各数先结合.解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2+0-14=-16;(3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12. 方法总结:(1)为使运算简便,可适当运用加法的结合律与交换律.在交换加数的位置时,要连同前面的符号一起交换.(2)注意同分母分数相加,互为相反数相加,凑成整数的数相加,这样计算简便.(3)当一个算式中既有小数又有分数时,一般要统一,具体是统一成分数还是小数,要看哪一种计算简便.【变式1】计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21)(3) ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432 (4) 113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭(5)132.2532 1.87584+−+(6)1355354624618−++− 【答案与解析】(1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法 =(26+5)+[(-18)+(-16)] →符号相同的数先加 = 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加 =0(3)⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432 ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224→同分母的数先加()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34(4)113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++−++−+− ⎪ ⎪⎝⎭⎝⎭→统一成加法11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+−+++−+− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦→整数、小数、分数分别加312128544⎛⎫=++−= ⎪⎝⎭(5)132.2532 1.875+−+(2.25 2.75)(3.125 1.875)=−++→统一同一形式(小数或分数),把可凑整的放一起 0.55 4.5=−+=(6)1355354624618−++− 1355354624618=−−++++−−1355(3546)()24618=−++−+−++−→整数,分数分别加18273010036−++−=+2936=【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换. 【变式2】计算:(1)-3.72-1.23+4.18-2.93-1.25+3.72;(2)11-12+13-15+16-18+17; (3)1113.7639568 4.7621362−−+−−+ (4)51133.4643.872 1.54 3.376344+−−−+++ (5)1355354624618−++−; (6)132.2532 1.87584+−+ 【答案与解析】(1)观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组;4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便. 解:-3.72-1.23+4.18-2.93-1.25+3.72 =(-3.72+3.72)+(4.18-2.93-1.25)-1.23 =0+0-1.23=-1.23(2)把正数和负数分别分为一组.解:11-12+13-15+16-18+17=(11+13+16+17)+(-12-15-18) =57+(-45)=12(3)仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组. 解:1113.7639568 4.7621362−−+−−+ 111(3.76 4.76)(521)(3968)362=−+−++−+1(6)2922=−+−+=(4)3.46和1.54的和为整数,把它们分为一组;-3.87与3.37的和为-0.5,把它们分为一组;546与13− 易于通分,把它们分为一组;124−与34同分母,把它们分为一组. 解:51133.4643.872 1.54 3.376344+−−−+++ 5113(3.46 1.54)( 3.87 3.37)(4)(2)6344=++−++−+−+115(0.5)4(1) 4.537.522=+−++−=+=(5)先把整数分离后再分组.解: 1355354624618−++− 1355354624618=−−++++−−1355(3546)()24618=−++−+−++−18273010036−++−=+2936=113322−=−−.(6)如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.2532 1.87584+−+(2.25 2.75)(3.125 1.875)=−++0.55 4.5=−+=【总结升华】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换.题型八:利用有理数加减运算解决实际问题例9.下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:米).(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解析:(1)先规定其中一个为正,则另一个就用负表示.理解表中的正负号表示的含义,根据条件计算出每天的水位即可求解;(2)只要观察星期日的水位是正负即可.解:(1)以警戒水位为基准,前两天的水位是上升的,星期一的水位是+0.20米;星期二的水位是+0.20+0.81=1.01米;星期三的水位是+1.01-0.35=+0.66米;星期四的水位是:+0.66+0.13=0.79米;星期五的水位是:0.79+0.28=1.07米;星期六的水位是:1.07-0.36=0.71米;星期日的水位是:0.71-0.01=0.7米;则水位最低的一天是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米;则本周末河流的水位是上升了0.7米.方法总结:解此题的关键是分析题意列出算式,采用的数学思想是转化思想,即把实际问题转化成数学问题.【变式1】小虫从点O出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:+5,-3,+10,-8,-6,+12,-10.(单位:cm)(1)小虫最后是否回到出发地O?为什么?(2)小虫离开O点最远时是多少?(3)在爬行过程中,如果每爬行1 cm奖励1粒芝麻,则小虫一共可以得到多少粒芝麻?【思路点拨】题目中给出的各数由两部分组成:一是性质符号,表示的爬行的方向,二是绝对值部分,表示爬行的路程大小.所以若直接将它们相加得到的和也包括两层含义:方向和路程大小;若只把它们的绝对值相加,则最后结果只表示路程的大小.【答案与解析】解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=(5+10+12)+(-3-8-6-10)=27-27=00表示最后小虫又回到了出发点O答:小虫最后回到了出发地O.(2) (+5)+(-3)=+2;(+5)+(-3)+(+10)=+12;(+5)+(-3)+(+10)+(-8)=+4;(+5)+(-3)+(+10)+(-8)+(-6)=-2;(+5)+(-3)+(+10)+(-8)+(-6)+(+12)=+10;(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0.因为绝对值最大的是+12,所以小虫离开O点最远时是向右12cm;++−+++−+−++−=(cm), 所以小虫爬行的总路程是54 cm,(3) 53108121054⨯=(粒)由15454答:小虫一共可以得到54粒芝麻.【总结升华】利用有理数的加减混合运算可以解决很多现实生活中的实际问题,这就需要我们认真观察、大胆分析和设想.【变式2】某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工时共耗油多少升?【答案与解析】(1)求收工时距A地多远,应求出已知10个有理数的和,若和为正数,则在A地前面,若和为负数,则在A地后面;距A地的路程均为和的绝对值.解:(1) (+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5)=0+0+44+(-3)=41(千米);(2)要求耗油量,需求出汽车共行走的路程,即求各数的绝对值之和,然后乘以0.2升即可.(|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-21|+|+12|+|+8|+|+5|)×0.2=67×0.2=13.4(升).答:收工时在A地前面41千米,从A地出发到收工时共耗油13.4升.【总结升华】利用有理数的加减混合运算可以解决很多现实生活中的实际问题,这就需要我们认真观察、大胆分析和设想.一.选择题(共5小题)1.(2022秋•如皋市期中)如图是某市去年十二月份某一天的天气预报,该天的温差是()A.9℃B.7℃C.5℃D.2℃【分析】根据题意求出最高温度与最低温度的差即可.【解答】解:∵最高温度是﹣27℃,∴7℃﹣(﹣2℃)=9℃.故选:A.【点评】本题考查的是有理数的加减法,熟知有理数的加减法则是解题的关键.2.(2022秋•东海县月考)若=a+b﹣c﹣d,则的值是()A.2 B.﹣4 C.10 D.﹣10【分析】根据“新定义”的运算进行计算即可.【解答】解:由题意得,=1+2﹣3﹣4=﹣4,故选:B.【点评】本题考查有理数的加减法,掌握有理数加减法的计算方法是正确解答的前提,理解“新定义”的运算是解决问题的关键.3.(2022秋•工业园区校级月考)计算﹣1﹣3的结果是()A.4 B.﹣4 C.﹣2 D.2【分析】根据有理数的减法法则计算即可.【解答】解:﹣1﹣3=﹣1+(﹣3)=﹣4,故选:B.【点评】本题考查了有理数的减法,掌握减去一个数等于加上这个数的相反数是解题的关键.4.(2022秋•东台市校级月考)规定:把四个有理数1,2,3,﹣5分成两组,每组两个,假设1,3分为一组,2,﹣5分为另一组,则A=|1+3|+|2﹣5|.在数轴上原点右侧从左到右取两个有理数m、n,再取这两个数的相反数,对于这样的四个数,其所有A的和为()A.4m B.4m+4n C.4n D.4m﹣4n【分析】根据已知条件,列出所有情况,并求出A的值,即可求得所有A的和.【解答】解:根据题意,得m<n,m,n的相反数为﹣m,﹣n,则有如下三种情况:①m,n为一组,﹣m,﹣n为另一组,此时有A=|m+n|+|(﹣m)+(﹣n)|=2m+2n;②m,﹣m为一组,n,﹣n为另一组,此时有A=|m+(﹣m)|+|n+(﹣n)|=0;③m,﹣n为一组,n,﹣m为另一组,此时有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m.∴所有A的和为2m+2n+0+2n﹣2m=4n.故选:C.【点评】本题考查有理数的混合运算、绝对值和相反数.数轴上一个数所对应的点与原点的距离就叫该数的绝对值.正数的绝对值大于0,负数的绝对值是它的相反数.5.(2022秋•如皋市校级月考)将6﹣(+3)﹣(﹣7)+(﹣2)中的减法改写成省略加号的和的形式是()A.﹣6﹣3+7﹣2 B.6﹣3﹣7﹣2 C.6﹣3+7﹣2 D.6+3﹣7﹣2【分析】先把有理数的减法转化为加法,然后再写成省略加号的和的形式,即可解答.【解答】解:6﹣(+3)﹣(﹣7)+(﹣2)=6+(﹣3)+7+(﹣2)=6﹣3+7﹣2,【点评】本题考查了有理数的加减混合运算,把有理数的减法转化为加法是解题的关键.二.填空题(共6小题)6.(2023•泗洪县一模)计算2+(﹣3)=.【分析】根据异号两数相加,取绝对值大的数的符号,再用较大的绝对值减去较小的绝对值,可得答案.【解答】解:原式=﹣(3﹣1)=﹣1.故答案为:﹣1.【点评】本题考查了有理数的加法,先确定符号,再进行绝对值的减法运算.7.(2022秋•盐城期中)某地一天早晨的气温是﹣2℃,中午温度上升了9℃,则中午的气温是℃.【分析】根据有理数的加法列式计算即可.【解答】解:﹣2+9=7(℃),故答案为:7.【点评】本题考查了有理数的加法,掌握绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值是解题的关键.8.(2022秋•海安市期末)已知x,a,b为互不相等的三个有理数,且a>b,若式子|x﹣a|+|x﹣b|的最小值为2,则2022+a﹣b的值为.【分析】由数轴上|x﹣a|+|x﹣b|表示的几何意义,求出a﹣b的值,即可得到答案.【解答】解:∵|x﹣a|+|x﹣b|的最小值为2,且a>b,∴a﹣b=2,∴2022+a﹣b=2022+2=2024,∴2022+a﹣b的值为2024.故答案为:2024.【点评】本题考查绝对值,有理数的减法,关键是掌握:在数轴上绝对值的几何意义.9.(2022秋•南通期末)若两个有理数m,n满足m+n=66,则称m,n互为顺利数.已知7x的顺利数是﹣18,则x的值是.【分析】根据顺利数的定义列方程求解即可.【解答】解:由顺利数的定义可知,7x﹣18=66,故答案为:12.【点评】本题考查有理数的加法,理解顺利数的定义是正确解答的前提.10.(2022秋•江阴市期末)比﹣3大而比2小的所有整数的和为.【分析】首先找出比﹣3大而比2小的所有整数,在进行加法计算即可.【解答】解:比﹣3大而比2小的所有整数有﹣3,﹣2,﹣1,0,1,2,﹣3+(﹣2)+(﹣1)+0+1+2=﹣3,故答案为:﹣3.【点评】此题主要考查了有理数的加法,关键是找出符合条件的整数,掌握计算法则.11.(2017秋•仪征市校级月考)23﹣|﹣6|﹣(+23)=.【分析】先计算绝对值,再根据有理数减法法则计算即可.【解答】解:23﹣|﹣6|﹣(+23)=23﹣6﹣23=﹣6.【点评】本题考查了有理数的减法运算法则及运算顺序.注意先计算绝对值.三.解答题(共10小题)12.(2022秋•盐都区期中)计算:(1)(﹣7)+(﹣5);(2)﹣2.8+3.2;(3).【分析】(1)根据有理数的加法法则计算即可;(2)根据有理数的加法法则计算即可;(3)根据有理数的减法法则计算即可.【解答】解:(1)(﹣7)+(﹣5)=﹣(7+5)=﹣12;(2)﹣2.8+3.2=+(3.2﹣2.8)=0.4;(3)==﹣()=.【点评】本题考查了有理数的加减混合运算,掌握相关运算法则是解答本题的关键.13.(2022秋•鼓楼区校级月考)在横线上填写每一步的运算依据:22+(﹣4)+(﹣2)+4;解:原式=22+4+(﹣4)+(﹣2).=26+(﹣6).=20【分析】应用有理数加法法则进行计算即可得出答案.【解答】解:原式=22+4+(﹣4)+(﹣2)加法交换律.=(22+4)+[(﹣4)+(﹣2)]同号结合法.=26+(﹣6)有理数加法法则.=20.故答案为:加法交换律,同号结合法,有理数加法法则.【点评】本题主要考查了有理数加法,熟练掌握有理数的加法法则进行求解是解决本题的关键.14.(2022秋•江阴市校级月考)已知:|a|=4,|b|=7,若a>b,求a﹣b的值.【分析】根绝绝对值的意义,a>b确定a、b的值,再计算a﹣b.【解答】解:因为|a|=4,|b|=7,得a=±4,b=±7.由a>b,所以a=±4,b=﹣7,当a=﹣4,b=﹣7时,a﹣b=3,当a=4,b=﹣7时,a﹣b=11.所以a﹣b的值为3或11.【点评】本题考查了绝对值的化简和有理数的减法.根据绝对值的意义及a<b确定a、b的值是解决本题的关键.15.(2022秋•宿豫区期中)计算:﹣24+14﹣15﹣(﹣23).【分析】根据有理数的加减进行计算即可求解.【解答】解:﹣24+14﹣15﹣(﹣23)=﹣24+14﹣15+23=﹣24+23+14﹣15=﹣1﹣1=﹣2.【点评】本题考查了有理数的加减混合运算,掌握有理数的运算法则是关键.16.(2022秋•镇江期中)如图是三个三角形,每个三角形的顶点处都有一个“〇”,在每个“〇”中填入一个数,满足这三个三角形的3个顶点处的“〇”中的数的和都等于2.(1)将﹣8、﹣7、﹣6、﹣4、1、3、5、9、13这9个数填入恰当的位置,使得这三个三角形的3个顶点处(2)如果将(1)中的这9个数改为﹣13、﹣9、﹣5、﹣3、﹣1、4、6、7、8,还能满足要求吗?如果满足,请填在“〇”中;如果不满足,请说明理由.【分析】(1)根据有理数的加法法则解答即可;(2)根据有理数的加法法则解答即可.【解答】解:(1)如图所示:(2)不能,理由如下:∵(﹣13)+(﹣9)+(﹣5)+(﹣3)+(﹣1)+4+6+7+8=﹣31+25=﹣6,∴如果将(1)中的这9个数改为﹣13、﹣9、﹣5、﹣3、﹣1、4、6、7、8,不能满足要求.【点评】此题主要考查了数字的规律,注意观察数据之间的规律,得出三角形顶点和的规律,比较新颖.17.(2022秋•兴化市校级月考)已知|a|=3,|b|=7,且a<b,求a+b的值.【分析】先确定a,b的值,再计算求解.【解答】解:∵|a|=3,|b|=7,∴a=±3,b=±7,∵a<b,∴a=﹣3,b=7或a=3,b=7,当a=﹣3,b=7时,a+b=﹣3+7=4;当a=3,b=7时,a+b=3+7=10,即a+b的值是4或7.【点评】此题考查了运用绝对值的知识解决计算问题的能力,关键是能准确理解并运用以上知识.18.(2022秋•海安市校级月考)(1)已知|a|=1,|b|=2,|c|=3,且a>b>c,求a﹣b+c的值.(2)已知有理数a,b,c满足|a﹣1|+|b﹣3|+|3c﹣1|=0,求a+b﹣c的值.【分析】(1)根据绝对值的性质先求出a=±1,b=±2,c=±3,再根据a>b>c,分情况求出a﹣b+c的值;(2)根据非负数的性质求出a、b、c的值.【解答】解:(1)∵|a|=1,|b|=2,|c|=3,∴a=±1,b=±2,c=±3,∵a>b>c,∴①a=1,b=﹣2,c=﹣3,a﹣b+c=0,②a=﹣1,b=﹣2,c=﹣3,a﹣b+c=﹣2,∴a+b﹣c的值是0或﹣2;(2)∵|a﹣1|+|b﹣3|+|3c﹣1|=0,∴a﹣1=0,b﹣3=0,3c﹣1=0,∴a=1,b=3,c=,∴a+b﹣c=3.【点评】本题主要考查了有理数的加减混合运算、非负数的性质,掌握把有理数加减法统一成加法,读懂题意是解题关键.19.(2022秋•梁溪区校级期中)应我国邀请,俄罗斯特技飞行队在黄山湖风景区进行特技表演.其中一架飞机起飞后的高度变化如下表:(1)此时这架飞机比起飞点高了多少千米?(2)若飞机平均上升1千米需消耗4升燃油,平均下降1千米需消耗2升燃油,那么这架飞机在这5个特技动作表演过程中,一共消耗多少升燃油?(3)若某架飞机从地面起飞后先上升5km,然后再做两个表演动作,这两个动作产生的高度变化分别是0.6km 和1.8km,请你求出这两个表演动作结束后,飞机离地面的高度.【分析】(1)【解答】解:(1)5.5﹣3.2+1﹣1.5﹣0.8=1(km);答:此时这架飞机比起飞点高了1千米.(2)(5.5+1)×4+(3.2+1.5+0.8)×2=6.5×4+5.5×2=26+11=37(升),答:一共消耗37升燃油.(3)5+0.6+1.8=7.4km;5+0.6﹣1.8=3.8km;5﹣0.6﹣1.8=2.6km;5﹣0.6+1.8=6.2km;答:飞机离地面的高度为7.4km或3.8km或2.6km或6.2km.【点评】本题考查了有理数加减运算,正负数的应用,解题的关键是熟练掌握正负数的意义.20.(2022秋•江阴市校级月考)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|;利用数形结合思想回答下列问题:①数轴上表示1和﹣5的两点之间的距离是.②数轴上表示x和﹣2的两点之间的距离表示为|.数轴上表示x和7的两点之间的距离表示为.③若x表示一个有理数,则|x﹣2|+|x+4|的最小值=.④若x表示一个有理数,且|x+1|+|x﹣4|=5,则满足条件的所有整数x的和是.⑤若x表示一个有理数,且|x﹣3|+|x+1|=8,则满足条件的x的所有值是.【分析】①利用数形结合思想和题干中的结论解答即可;②利用数形结合思想和题干中的结论解答即可;③利用数形结合思想和题干中的结论解答即可;④利用数形结合思想和题干中的结论将满足条件的所有整数一一列举,并把它们相加即可得出结论;⑤利用数形结合思想和题干中的结论结合绝对值的意义解答即可.【解答】解:①数轴上表示1和﹣5的两点之间的距离是|1﹣(﹣5)|=6,故答案为:6;②数轴上表示x和﹣2的两点之间的距离表示为|x+2|,数轴上表示x和7的两点之间的距离表示为|a﹣7|,故答案为:|x+2|;|x﹣7|;③∵|x﹣2|+|x+4|是表示x的点到表示2,﹣4两点的距离之和,∴当x在2和﹣4之间时,|x﹣2|+|x+4|的值最小,最小值为|2﹣(﹣4)|=6,故答案为:6;④∵|x+1|+|x﹣4|=5是表示x的点到表示﹣1,4两点的距离之和为5,又表示﹣1,4两点的距离之和为5,∴数x在﹣1和4之间,∵x为整数,∴满足条件的所有整数x的值为:﹣1,0,1,2,3,4,∴满足条件的所有整数x的和是﹣1+0+1+2+3+4=9,故答案为:9;⑤∵|x﹣3|+|x+1|=8是表示x的点到表示﹣1,3两点的距离之和为8,又∵3﹣(﹣1)=4,∴表示x的点可能在3的右侧或在﹣1的左侧,即x>3或x<﹣1.当x>3时,∵|x﹣3|+|x+1|=8,∴x﹣3+x+1=8,解得:x=5;当x<﹣1时,∵|x﹣3|+|x+1|=8.∴3﹣x﹣x﹣1=8,解得:x=﹣3,综上,满足条件的x的所有值是5和﹣3.故答案为:5和﹣3.【点评】本题主要考查了有理数的减法,绝对值,数轴,利用数形结合的方法解答是解题的关键.21.(2022秋•江都区校级月考)观察下列两个等式:2﹣=2×+1,5﹣=5×+1.给出定义如下:使等式a﹣b=ab+1成立的对有理数a,b为“共生有理数对”,记为(a,b).如:数对(2,),(5,。
2.1.1有理数的加法第1课时有理数加法法则课时目标1.经历探究有理数加法法则的过程,体会由特殊到一般的数学思想方法,培养学生的抽象概括能力.2.理解有理数的加法法则,能运用有理数的加法法则进行简单运算,培养学生的运算能力.学习重点有理数的加法法则.学习难点利用有理数的加法法则正确地进行有理数的加法运算.课时活动设计回顾引入1.在小学,我们学过正数及0的加法运算,学过的加法类型是正数与正数相加、正数与0相加.引入负数后,加法的类型还有哪几种?2.正数与正数相加应该怎样计算?引入负数后,在有理数范围内怎样进行加法运算呢?设计意图:通过回顾小学学过的加法运算,引入有理数的加法运算,为本节课的学习作铺垫.探究新知探究1同号两数相加一个物体沿着一条直线做左右方向的运动,我们规定向右为正,向左为负.例如,将向右运动5m记作5m,向左运动记作-5m.问题1:如果物体沿着一条直线先向右运动5m,再向右运动3m,那么两次运动的最后结果是什么?可以用怎样的算式表示?解:两次运动后,物体从起点向右运动了8m.写成算式是5+3=8.追问:若将物体的运动起点放在原点O,那么这个算式如何用数轴表示?学生自主完成,教师给出正确的画法,如图1所示.问题2:如果物体沿着一条直线先向左运动5m,再向左运动3m,那么两次运动的最后结果是什么?可以用怎样的算式表示?解:两次运动后,物体从起点向左运动了8m.写成算式是(-5)+(-3)=-8.追问:若将物体的运动起点放在原点O,那么这个算式如何用数轴表示?学生自主完成,教师给出正确的画法,如图2所示.观察算式5+3=8,(-5)+(-3)=-8,尝试总结符号相同的两个数相加的加法法则.结论:符号相同的两个数相加,和的符号不变,且和的绝对值等于加数的绝对值的和.探究2异号两数相加问题3:如果物体沿着一条直线先向左运动3m,再向右运动5m,那么两次运动的最后结果是物体从起点向右运动了2m,写成算式为(-3)+5=2.问题4:如果物体沿着一条直线先向右运动3m,再向左运动5m,那么两次运动的最后结果是物体从起点向左运动了2m,写成算式为3+(-5)=-2.问题5:如果物体沿着一条直线先向右运动5m,再向左运动5m,那么两次运动的最后结果是物体从起点运动了0m,写成算式为5+(-5)=0.根据上面得到的3个算式,尝试总结异号两数相加的法则.结论:绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.互为相反数的两个数相加得0.你能用数轴表示上面的算式吗?学生独立完成,教师给予指导点评.探究3一个数与0相加问题6:如果物体第1s向右(或左)运动5m,第2s原地不动,那么2s后物体从起点向右(或左)运动了5m.可以用怎样的算式表示呢?学生独立完成,请两名同学代表上台板演.解:5+0=5(或(-5)+0=-5).根据上面的算式可得出结论:一个数与0相加,结果仍是这个数.通过上面的探究过程可知,在有理数的加法运算中,既要考虑符号问题,又要考虑绝对值,你能从这些算式中归纳出有理数加法的运算法则吗?有理数加法法则:1.同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.2.绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.显然,两个有理数相加,和是一个有理数.设计意图:利用数轴探究有理数的加法法则,有利于学生理解有理数加法法则,让学生经历探究有理数加法法则的过程,提高学生的思维能力.通过归纳、总结、梳理有理数的加法法则,让学生对本节课新知识有系统的认识并加强理解.典例精讲例计算:(1)(-3)+(-9);(2)(-8)+0;(3)12+(-8);(4)(-4.7)+3.9;(5)++提示:在运算过程中,“先定和的符号,再算和的绝对值”,是一种有效的方法.解:(1)(-3)+(-9)=-(3+9)=-12.(2)(-8)+0=-8.(3)12+(-8)=+(12-8)=4.(4)(-4.7)+3.9=-(4.7-3.9)=-0.8.(5)-+.设计意图:加强学生对有理数加法法则的理解,通过对法则的运用,提高学生的应用能力.巩固训练1.下列运算中,结果为负数的是(B)A.3+5B.3+(-5)C.5+(-3)D.(-5)+52.下列算式中,计算不正确的是(C)A.-(-6)+(-4)=2B.(-9)+[-(-4)]=-5C.--9+4=13D.-(+9)+[+(-4)]=-133.收入7元,又支出5元,用算式表示的结果为7+(-5)=2.4.计算:(1)15+(-22);(2)(-13)+(-8);(3)(-0.9)+1.5.解:(1)15+(-22)=-7.(2)(-13)+(-8)=-21.(3)(-0.9)+1.5=0.6.设计意图:选题围绕课堂中解决的主要问题,当堂训练,及时反馈学习效果.课堂小结有理数加法法则:1.同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.2.绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差.3.互为相反数的两个数相加得0.4.一个数与0相加,仍得这个数.设计意图:复习巩固本节课所学内容,及时进行总结反思,通过数学知识的学习,感悟知识的获取过程,提高对数学思想方法的认识.课堂8分钟.1.教材第28页练习第1,2题,第34页习题2.1第1题.2.七彩作业.教学反思第2课时有理数的加法运算律课时目标1.掌握有理数的加法交换律和结合律,并能灵活运用运算律进行运算.2.能熟练运用运算律解决实际问题.学习重点灵活运用运算律进行简便运算.学习难点运用运算律解决实际问题.课时活动设计回顾引入1.小学时已学过的加法运算律有哪些?2.猜一猜:对于有理数的加法,已学过的运算律仍然适用吗?设计意图:通过从学生已有的知识入手研究,让学生将所学知识系统化,为本节课的学习作铺垫.探究新知探究有理数的加法运算律1.计算:(1)5+(-13)=-8,(-13)+5=-8;(2)(-4)+(-8)=-12,(-8)+(-4)=-12.学生先独立完成计算,思考每组算式所得的和相同吗?然后小组讨论并发表见解.换几组加数计算之后结果仍是这样吗?你能得出什么结论?能不能用符号语言描述你的结论?师生总结有理数加法交换律:在有理数的加法中,两个数相加,交换加数的位置,和不变.符号语言:a+b=b+a.2.计算:(1)[3+(-8)]+(-4)=-9,3+[(-8)+(-4)]=-9;(2)[(-6)+(-12)]+15=-3,(-6)+[(-12)+15]=-3.学生先独立完成计算,思考每组算式所得的和相同吗?然后小组讨论并发表见解.换几组加数计算之后结果仍是这样吗?你能得出什么结论?能不能用符号语言描述你的结论?师生总结有理数加法结合律:在有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.符号语言:(a+b)+c=a+(b+c).拓展:根据加法交换律和结合律,多个有理数相加,可以任意交换加数的位置,也可以先把其中的几个数相加.利用加法交换律、结合律,可以使运算简化.设计意图:通过举例验证,让学生计算有理数的加法运算,体会加法运算律在有理数中仍然适用,最终概括出有理数的加法运算律,体会由特殊到一般的数学思想方法,培养学生的归纳概括能力,发展学生的数学核心素养.典例精讲例1计算:(1)8+(-6)+(-8);(2)16+(-25)+24+(-35).解:(1)8+(-6)+(-8)=[8+(-8)]+(-6)=0+(-6)=-6.(2)16+(-25)+24+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20.例210袋小麦称后记录(单位:kg)如图所示.10袋小麦一共多少千克?如果每袋小麦以50kg为质量标准,10袋小麦总计超过多少千克或不足多少千克?解法1:先计算10袋小麦一共多少千克:50.5+50.5+50.8+49.5+50.6+50.7+49.2+49.4+50.9+50.4=502.5.再计算总计超过多少千克:502.5-50×10=2.5.解法2:把每袋小麦超过50kg的千克数记作正数,不足的千克数记作负数.10袋小麦对应的数分别为+0.5,+0.5,+0.8,-0.5,+0.6,+0.7,-0.8,-0.6,+0.9,+0.4.0.5+0.5+0.8+(-0.5)+0.6+0.7+(-0.8)+(-0.6)+0.9+0.4=[0.5+(-0.5)]+[0.8+(-0.8)]+[0.6+(-0.6)]+(0.5+0.7+0.9+0.4)=2.5.50×10+2.5=502.5.答:10袋小麦一共502.5kg,总计超过2.5kg.设计意图:通过让学生计算,展评不同的解法,让学生体会计算过程的多样性,感受合理使用运算律可以简化运算,培养学生的运算能力,发展学生的核心素养;让学生运用有理数的加法解决实际问题,培养学生的运算能力与应用意识.巩固训练1.计算有理数的加法时,小雷将式子13+(-2)+++他运用了(C)A.加法交换律B.加法结合律C.加法交换律和加法结合律D.无法判断2.下列变形中,运用加法运算律正确的是(B)A.3+(-2)=2+3B.4+(-6)+3=(-6)+4+3C.[5+(-2)]+4=[5+(-4)]+2D.16+(-1)+++3.绝对值不大于2024的所有整数的和为0.4.计算:(1)20+(-17)+15+(-10);(2)(-1.8)+(-6.5)+(-4)+6.5;(3)(-12)+34+(-38)+66;(4)57+++47.解:(1)20+(-17)+15+(-10)=(20+15)+[(-17)+(-10)]=35+(-27)=35-27=8.(2)(-1.8)+(-6.5)+(-4)+6.5=[(-6.5)+6.5)]+[(-1.8)+(-4)]=0+(-5.8)=-5.8.(3)(-12)+34+(-38)+66=[(-12)+(-38)]+(34+66)=-50+100=50.(4)57+--+47=+47+--=14.学生自主完成,教师订正并给予评价.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也使学生的思维能力得到有效提高,能更好地将知识学以致用.最后针对练习结果进行统一订正,并对同学们的表现作出及时评价,体现课程评价在课堂中的合理应用.课堂小结本节课我们研究了有理数的加法运算律,请同学们带着以下问题进行总结:1.有理数的加法运算律有哪些?2.在学习有理数的加法运算律的过程中,你经历了什么?这个过程中用到了哪些数学方法?积累了哪些活动经验?设计意图:复习巩固本节课所学内容,及时进行总结反思,通过反思,可进一步加深学生对有理数加法运算律的理解,通过反思数学思想与活动的经验,培养学生的数学思维品质,让学生学会学习,学会思考,感悟知识的获取过程,提高对数学思想方法的认识.课堂8分钟.1.教材第30页练习第1,2,3题,第34页习题2.1第2题.2.七彩作业.第2课时有理数的加法运算律加法交换律:a+b=b+a.加法结合律:(a+b)+c=a+(b+c).教学反思2.1.2有理数的减法第1课时有理数减法法则课时目标1.经历探究有理数减法法则的过程,体会转化的数学思想方法,培养学生的抽象概括能力.2.掌握有理数减法的运算法则,能运用有理数的减法运算解决简单的实际问题,体会数学与现实世界的联系,增强数学的应用意识.学习重点有理数的减法法则及其应用.学习难点运用有理数的减法法则解决数学问题.课时活动设计情境引入某地某天的气温是-3~3℃,这天的温差是多少呢?温差就是最高气温减去最低气温,应该怎样列式?解:3-(-3).问题:在小学,我们学习减法时,知道减法是加法的逆运算,引入负数后,即3-(-3)应该怎样计算呢?设计意图:创设问题情境,激发学生的认知兴趣,把具体实例抽象成数学问题,从而点明本节课所要学习的内容,并且回顾小学减法运算,为探究本节课所学知识作铺垫.探究新知探究有理数的减法法则1.由减法是加法的逆运算可知,计算3-(-3),就是要求一个数,使得它与-3相加得3,请同学们说一说哪个数与-3相加得3,并写出3-(-3)的结果.解:6与-3相加得3,所以3-(-3)=6.另外我们知道3+(+3)=6,观察它与算式3-(-3)=6,可以得到3-(-3)=3+(+3),即3-(-3)=3+3,所以减去一个负数,等于加上它的相反数.换几个数试试,把3分别换成0,-1,-5,用上面的方法计算0-(-3),(-1)-(-3),(-5)-(-3).这些数减-3的结果与它们加+3的结果相同吗?2.我们知道10-3=7,也就是(+10)-(+3)=+7.①计算10+(-3)的结果.解:10+(-3)=+7.②观察算式①②的结果,可以得到10-3=10+(-3),所以减去一个正数,等于加上它的相反数.通过上面的探究,你有什么发现吗?教师引导归纳总结,并引出有理数减法法则.有理数减法法则:减去一个数,等于加这个数的相反数,也可以表示为a-b=a+(-b).显然,两个有理数相减,差是一个有理数.思考:在小学,只有当a大于或等于b时(其中a,b是0或正数),我们才能计算a-b(如2-1,1-1).现在,当a小于b时,你能计算a-b(如1-2,(-1)-1)吗?一般地,在有理数范围内,较小的数减去较大的数,所得差的符号是什么?学生独立思考探究.设计意图:充分发展学生的思维能力,让学生通过举例验证认识减法可以转化为加法计算.典例精讲例计算:(1)(-3)-(-5);(2)0-7;(3)2-5;(4)7.2-(-4.8);(5)1214.解:(1)(-3)-(-5)=(-3)+5=2.(2)0-7=0+(-7)=-7.(3)2-5=2+(-5)=-3.(4)7.2-(-4.8)=7.2+4.8=12.(5)-312-514=12+14=-834.设计意图:通过例题练习,获取学生掌握知识的反馈信息,对于存在的问题及时解决.巩固训练1.与(-2)-(-9)相等的式子是(B)A.(+2)-(-9)B.(-2)+9C.(-2)+(-9)D.(-2)-(+9)2.比1小2的数是(A)A.-1B.-2C.-3D.13.计算:(1)(-3)-(-7);(2)(-10)-3;(3)33-(-27);(4)0-12.解:(1)(-3)-(-7)=(-3)+7=4.(2)(-10)-3=(-10)+(-3)=-13.(3)33-(-27)=33+27=60.(4)0-12=0+(-12)=-12.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也使学生的思维能力得到有效提高,能更好地将知识学以致用.课堂小结1.在小学里学习的减法,差总是小于或等于被减数,在有理数的减法中仍是这样吗?2.做有理数的减法一定要化成加法吗?怎样做才能提高计算的速度?3.有理数的减法法则:减去一个数,等于加这个数的相反数.设计意图:复习巩固本节课所学内容,及时进行总结反思,通过数学知识的学习,感悟知识的获取过程,提高对数学思想方法的认识.课堂8分钟.1.教材第32页练习第1,2题,第34页习题2.1第3,4,6题.2.七彩作业.教学反思第2课时有理数的加减混合运算课时目标1.理解有理数的减法转化成加法的意义,能熟练进行有理数的加减混合运算.2.经历把有理数的减法转化成加法运算的过程,体会转化的数学思想方法,培养学生的运算能力.学习重点有理数的加减混合运算.学习难点混合运算中省略算式中的括号和加号.课时活动设计回顾引入1.有理数的加法法则是什么?2.有理数的减法法则是什么?3.小学学过的混合运算法则在有理数中是否仍然适用?设计意图:回顾有理数的加、减法法则,为本节课的学习作铺垫.探究新知探究1有理数的加减混合运算计算:(-20)+(+3)-(-5)-(+7).思考:这个算式中既有加法,也有减法,应该如何计算呢?教师提示:可以先根据有理数的减法法则,把减法转化为加法后再计算.学生尝试写出转化为加法的式子,教师进行板书.请同学们根据解答过程分析运用了哪些运算律.归纳:引入相反数后,加减混合运算可以统一为加法运算.也可表示为a+b-c=a+b+(-c).问题:算式(-20)+(+3)+(+5)+(-7),有没有什么简便的写法呢?教师提示:其中的括号和加号可省略,学生尝试自己写出式子.算式(-20)+(+3)+(+5)+(-7)是-20,+3,+5,-7这四个数的和.为书写简单,可以省略算式中的括号和加号,把它写为-20+3+5-7.这个算式可以读作“负20、正3、正5、负7的和”,或读作“负20加3加5减7”.上面的运算过程也可以简单地写为(-20)+(+3)-(-5)-(+7)=-20+3+5-7=-20-7+3+5=-27+8=-19.探究2数轴上两点之间的距离请同学们画一条数轴,在数轴上,点A,B分别表示数a,b,对于下列各组数a,b:a=2,b=6;a=0,b=6;a=2,b=-6;a=-2,b=-6.学生动手操作并思考下列问题:(1)观察点A,B在数轴上的位置,你能得出它们之间的距离吗?(2)利用有理数的运算,你能用含有a,b的算式表示上述各组点A,B之间的距离吗?教师带领学生进行分析:①当a=2,b=6时,如图1所示.由图1可知,6-2=4,它们之间的距离是4.②当a=0,b=6时,如图2所示.由图2可知,6-0=6,或|0-6|=6,它们之间的距离是6.③当a=2,b=-6时,如图3所示.由图3可知,2-(-6)=8或|-6-2|=8,它们之间的距离是8.④当a=-2,b=-6时,如图4所示.由图4可知,-2-(-6)=4或|-6-(-2)|=4,它们之间的距离是4.通过观察上述算式,你能发现点A,B之间的距离与数a,b之间的关系吗?总结:点A,B之间的距离等于a,b两数之差的绝对值,即|a-b|.设计意图:通过让学生经历探究的过程,更加深刻地理解有理数的混合运算方法和数轴上两点之间距离的计算方法,培养学生的思维能力.典例精讲例计算14-25+12-17.解:14-25+12-17=14+12-25-17=26-42=-16.设计意图:通过例题练习,获取学生掌握知识的反馈信息,对于存在的问题及时解决.巩固训练1.下列各式与a-b+c相等的是(A)A.a-(+b)+cB.a-(-b)+(+c)C.a-(+b)+(-c)D.a+(-b)-(+c)2.8-+11--20+-19写成省略括号和加号的形式是8-11+20-19.3.若两个数的和是-50,其中一个数比-8小3,则另一个数是-39.4.计算:(1)-9+5--12+-3;(2)-1.2+2.6-(-3.1)-(+4.5);(3)-478--51212-318.解:(1)原式=-9+5+12-3=(-9+12-3)+5=0+5=5.(2)原式=-1.2+2.6+3.1-4.5=(-1.2-4.5)+(2.6+3.1)=-5.7+5.7=0.(3)原式=-478+512-412-318=-478+512.学生自主完成,教师订正并给予评价.设计意图:通过设置不同层次的练习,不仅能使学生的新知得到及时巩固,也使学生的思维能力得到有效提高,能更好地将知识学以致用.最后针对练习结果进行统一订正,并对同学们的表现作出及时评价,体现课程评价在课堂中的合理应用.课堂小结1.有理数加、减混合运算统一成加法,并省略括号和加号.2.可以通过有理数的减法法则或者相反数的引入,来使加减混合运算统一为加法运算.3.有理数的加减混合运算的读法.设计意图:学生通过自主反思,可进一步加深对有理数加减混合运算的理解,通过反思数学思想方法与活动经验,培养学生的数学思维品质,让学生学会学习,学会思考,使学生真正深入数学学习过程中,抓住数学思维的内在实质.课堂8分钟.1.教材第34页练习第1,2题,第34页习题2.1第5,7,8,9,13题.2.七彩作业.教学反思。