2016年秋季学期新版新人教版七年级数学上册4.1几何图形教学设计2
- 格式:doc
- 大小:1022.50 KB
- 文档页数:7
立体图形与平面图形
“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中
是宋代诗人苏轼的著名诗句(《题西林壁》).你能说出“横看成岭侧成峰”
)不同角度看直棱柱、圆柱、圆锥、球
让学生分别从正面、左面、右面,上面等各个角度观察:正方体木块,长方体木块,六角扳手,易拉罐,排球,圆锥,由浅入深,体会从不同方向看直棱柱、
圆锥、球等立体图形得到的平面图形,难点是在体会曲面的透视图,让学生交流、体
分别从不同方向观察以下实物(茶叶盒、魔方、书、乒乓球等),你看到了什么图你能一一画下来吗7(画出示意图即可)
(从不同角度看简单的组合图形,由少数组合逐步加多)如下图,画出下列几何
(学生独立思考、合作交流,最后从
3.实践与探究
(1)
个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,
怎样画得又快又准?
个相同的小方块搭成一个几何体。
七年级数学集体备课教案
年级七科别数学周次月日星期
备注主备课人王亚男课题几何图形
教学目标
1.能从现实物体中抽象出几何图形,正确区分立体图形与平面图形;
2.培养学生发展空间观念,培养提高观察、分析、抽象、概括的能力,
培养动手操作能力。
教学重点:从现实物体中抽象出几何图形;
教学难点:立体图形和平面图形之间的转化。
教学过程:
一.引入新课
请大家观察生活中多姿多彩的图形(播放课件图片):
A.图片欣赏;
B.随处可见的交通标志;
C.精巧绝伦的手工剪纸;
D.寓意深远的城市雕塑;
E.形态各异的动物;
F.巧对天工的城市建筑。
二.新课讲解
1.像上面这样,我们把实物中抽象出来的各种图形称为几何图形。
常见的立体图形:
棱柱圆柱圆锥球
2.棱柱、棱锥有很多种,它的分类都是根据,底面的多边形的边数决定的。
2分钟
8分钟
3.像上面这些几何图形一样,几何图形的各部分不都在一个平面内,叫
做立体图形。
4.有些几何图形的各部分都在一个平面内,它们是平面图形。
如:线段,角,三角形,长方形等。
5.平面图形和立体图形统称为几何图形。
6.区别和联系:
立体图形的展开图是平面图形,平面图形围成立体图形。
三.试一试
请写出下列几何体的名称:
四.随堂检测
练习册课堂训练
五.丰收园地
六.作业:
课本119页练习
8分钟
2分钟
5分钟
2分钟
4分钟
四棱柱六棱柱
五棱柱
四棱锥五棱锥六棱锥。
人教版数学七年级上册4.1.1《几何图形》教学设计2一. 教材分析《几何图形》是人教版数学七年级上册第4章第1节的内容,本节课主要介绍了一些基本的平面几何图形,如点、线、面、角、三角形、矩形、圆形等。
这些图形是学习几何的基础,学生需要掌握它们的定义、性质和相互关系。
本节课的内容对于学生来说比较抽象,需要通过大量的图形观察和动手操作来加深理解。
二. 学情分析七年级的学生已经具备了一定的空间想象能力和逻辑思维能力,但是对于几何图形的认识还比较肤浅,大多数学生对于几何图形的理解仅限于直观的观察,缺乏深入的理性分析。
此外,学生的学习习惯和学习方法有待提高,需要教师在教学过程中进行引导和培养。
三. 教学目标1.知识与技能:使学生了解和掌握一些基本的平面几何图形,如点、线、面、角、三角形、矩形、圆形等,以及它们的定义和性质。
2.过程与方法:通过观察、动手操作、合作交流等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:基本几何图形的定义和性质。
2.难点:对几何图形关系的理解和运用。
五. 教学方法1.情境教学法:通过实物、模型等引导学生直观地认识几何图形。
2.动手操作法:让学生通过折纸、拼图等动手操作活动,加深对几何图形的理解。
3.合作交流法:引导学生分组讨论,分享学习心得,培养团队合作意识。
4.引导发现法:教师提出问题,引导学生发现几何图形的性质和规律。
六. 教学准备1.教具:几何模型、折纸、拼图等。
2.教学课件:几何图形的图片、动画等。
3.学具:学生自带的折纸、拼图等。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的几何图形,如房间的布局、家具的摆放等,引导学生关注几何图形,激发学生的学习兴趣。
2.呈现(10分钟)教师通过几何模型、折纸、拼图等教具,展示一些基本的几何图形,如点、线、面、角、三角形、矩形、圆形等,引导学生直观地认识这些图形,并讲解它们的定义和性质。
人教版数学七年级上册4.1.1《几何图形》教学设计一. 教材分析《几何图形》是人教版数学七年级上册第四章第一节的内容,本节主要介绍了平面几何图形的基本概念,包括点、线、面的概念,以及它们的性质和关系。
这部分内容是学生初步接触几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析七年级的学生刚刚从小学升入初中,对于几何图形的认识大多停留在直观层面,对于抽象的几何概念和性质理解较浅。
因此,在教学过程中,教师需要注重引导学生从直观到抽象的思维转变,让学生能够理解和运用几何图形的性质和关系。
三. 教学目标1.知识与技能目标:使学生了解点、线、面的概念及其性质,能够识别和运用基本的几何图形。
2.过程与方法目标:培养学生观察、思考、表达和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养学生的团队协作能力和创新精神。
四. 教学重难点1.重点:点、线、面的概念及其性质。
2.难点:几何图形的识别和运用。
五. 教学方法1.情境教学法:通过生活实例和模型,引导学生理解和运用几何图形。
2.自主学习法:鼓励学生主动探索和发现问题,培养学生的独立学习能力。
3.合作学习法:引导学生进行小组讨论和交流,提高学生的团队协作能力。
六. 教学准备1.教具:多媒体课件、几何模型、黑板、粉笔。
2.学具:笔记本、铅笔、橡皮、直尺。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的几何图形,如房屋、车辆等,引导学生关注几何图形,激发学生的学习兴趣。
同时,提问学生对几何图形的认识,让学生初步感受几何图形的存在。
2.呈现(10分钟)教师利用多媒体课件,呈现点、线、面的定义和性质,同时进行解释和阐述。
在此过程中,教师引导学生积极思考,提问学生对定义和性质的理解。
3.操练(10分钟)教师布置一些练习题,让学生运用所学的点、线、面的性质进行解答。
教师巡视课堂,及时给予学生解答指导和鼓励。
4.巩固(10分钟)教师挑选几名学生进行板书,展示他们的解答过程和结果。
人教版七年级数学上册:4.1.2 《点、线、面、体——两点之间线段最短》教学设计一. 教材分析《点、线、面、体——两点之间线段最短》是人教版七年级数学上册第四单元第一节的内容。
本节课主要让学生理解两点之间线段最短的性质,掌握线段的性质及其应用。
通过本节课的学习,为学生进一步学习几何图形和其他数学知识打下基础。
二. 学情分析学生在进入七年级之前,已经学习了平面几何的基本概念,对点、线、面有一定的认识。
但是,对于两点之间线段最短的性质及其证明可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生直观地理解线段的性质,并通过举例、操作等活动,帮助学生巩固知识点。
三. 教学目标1.知识与技能:让学生理解两点之间线段最短的性质,学会运用线段的性质解决实际问题。
2.过程与方法:通过观察、操作、证明等环节,培养学生的动手操作能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生勇于探索、积极思考的精神。
四. 教学重难点1.重点:两点之间线段最短的性质。
2.难点:如何证明两点之间线段最短。
五. 教学方法1.情境教学法:通过生活实例,引导学生直观地理解线段的性质。
2.动手操作法:让学生通过实际操作,体验线段的性质。
3.小组合作法:鼓励学生分组讨论,培养学生的团队协作能力。
4.讲解法:教师针对关键知识点进行讲解,引导学生深入理解。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、线段模型等。
2.学具:学生用书、练习册、铅笔、橡皮等。
七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中的实例,如两个人在地图上寻找两地之间的最短路线。
引导学生思考:如何确定这两点之间的最短路线?从而引出本节课的主题——两点之间线段最短。
2.呈现(10分钟)教师通过讲解和展示线段模型,让学生直观地理解两点之间线段最短的性质。
同时,引导学生尝试用语言描述这一性质。
3.操练(10分钟)学生分组进行讨论,每组选择一个实例,运用线段的性质找出两点之间的最短路线。
人教版七年级上册初中数学4.1.2 点、线、面、体教学设计教学目标:知识与技能:知道几何图形是由点、线、面、体构成,点、线、面、体也是基本的几何图形。
过程与方法:经历从几何体中寻找点、线、面、体的过程,认识到点动成线,线动成面,面动成体。
情感态度与价值观:通过实例,进一步感受到点、线、面、体在实际生活中的具体运用,体会利用图形描述世界的必要性。
教学重点:认识点、线、面、体的几何特征,感受它们之间的关系。
教学难点:点动成线、线动成面、面动成体的几何体和生活实例。
教学方法:让学生积极主动的参与操作、观察、分析、猜测,养成积极主动的学习态度和自主学习的方式。
教学准备:多媒体课件,长方体、圆柱模型等。
课时安排:1课时成面的实例。
问题3:长方形、直角三角形纸片绕它的一边旋转一周,形成什么图形?(——面动成体),再举例宾馆的旋转门旋转所形成的几何体也是一种面动成体,最后要求学生举出生活中面动成体的实例。
2、归纳:点动成线、线动成面 、 面动成体。
板书:点动成线、线动成面 、 面动成体。
3、展示电视屏幕上的画面是由点组成的,文艺表演的背景图案也可以看作由点组成的,因此点是构成图形的基本元素。
学生举出生活中实例,感悟点动成线,线动成面,面动成体。
锻炼学生的观察、分析、猜测能力,养成积极主动的学习态度。
检 测 反 馈1.上面的平面图形绕轴旋转一周,可以得出下面的立体图形,把有对应关系的平面图形与立体图形连接起来.2. 现将一个长为4cm ,宽为2cm 的长方形,绕它的一边所在的直线旋转一周,得到的圆柱体的体积是多少?表面积为多少?42独立思考。
小组讨论,合作交流。
调动学生感官,发挥想象力,使学生加深对本节知识的掌握。
分类思想的渗透。
人教版七年级数学上4.1几何图形教学设计(3课时)第一篇:人教版七年级数学上4.1几何图形教学设计(3课时) 第四章几何图形初步4.1 几何图形第1课时几何图形与从不同方向看立体图形教学目标:1.通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.2.能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.教学重点:识别简单几何体.教学难点:从具体事物中抽象出几何图形.教学过程:一、引入新课(播放北京申奥成功的欢庆之夜)2001年7月13日北京申奥成功,这是每一个中国人终生难忘的日子.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)你能从中找到一些熟悉的图形吗?(学生看书)小组讨论交流.你能再举出一些常见的图形吗?学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流.在这些图片或实物中有我们熟悉的图形吗?二、找一找,议一议思考P115图4.1-3,并出示实物(如茶叶盒、地球仪、字典及魔方)及多媒体演示(如谷堆、帐篷、金字塔),它们与我们学过的哪些图形相类似? 出示棱柱、圆柱、棱锥、圆锥模型,看一看,再动手摸一摸,说说它们的异同.(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充.) 归纳:平面图形与立体图形的联系和区别.三、立体图形的分类分类标准不同,得到不同的分类:四、从不同方向看立体图形1.学生阅读课本P117,图4.1-6及以上相关内容,理解从不同方向看立体图形的意义和用途.2.练习:课本P121第4题.3.小结:从三个不同方向看立体图形的方法.4.小组合作探究P117图4.1-7.问题:(1)从正面看,有几层?每一层分别有几个正方形?(2)从上面看,有几个正方形,这些正方形是怎样排列的?(3)从左面看,有几列?每一列有几个正方形?(4)画出从三个不同方向看该立体图形所得到的平面图形.5.能力提升练习:(1)由相同的小正方体搭成的几何体从正面看和从上面看得到的平面图形如图:画出从左面看该几何体得到的平面图形.(2)由相同小立方块搭成的几何体从正面看和从上面看得到的平面图形如图所示:搭成这个几何体最多要多少个小立方块?最少呢?五、课时小结请学生谈:我知道了什么?我学会了什么?我发现了什么?六、课堂作业1.课本P118练习第1题.2.课本P121习题4.1第1、2、3题.3.(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.第2课时立体图形的平面展开图教学目标:1.能直观认识立体图形和展开图,了解研究立体图形的方法.2.会由展开图联想对应的立体图形形状.教学重点:1.识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的立体图形.2.正确判断哪些平面图形可以折叠为立体图形、某个立体图形的展开图可以是哪些平面图形.教学难点:了解基本几何体与其展开图之间的关系,体会一个立体图形按照不同方式展开可得到不同的平面展开图.教学过程:一、问题呈现1.学生阅读课本P117图4.1-8及相关内容.2.动手操作:将一个长方体墨水瓶盒按不同的棱剪开铺平,并画下其形状观察长方体墨水瓶盒展开图中有哪些平面图形,这些平面图形之间大小形状有什么关系?3.课本P118探究:(1)先由平面图形想象立体图形的形状.(2)实际操作:将这些平面展开图画在纸上,看能否围成想象的立体图形.4.小组合作探究: 正方体的平面展开图共有哪些形状? 5.交流总结:正方体的平面展开图形状: 141型:(共6个).231型:(共3个).33型:(1个).222型:(1个).二、练习(1)课本P118第2题.(2)如图所示,经过折叠可以围成一个棱柱的是()(3)课本P123第12题.三、课时小结学生谈:我知道了什么?我学会了什么?我发现了什么?四、课堂作业1.课本P122第6题、第7题.2.下图是一个立方体纸盒的展开图,其中三格已经分别填入一个数,请在其余三个正方形内填入所有可能的数,使得折成立方体后相对面上的两个数绝对值相等,则填入正方形间A,B,C内的数依次为.第3课时点、线、面、体教学目标:1.通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系.2.培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.教学重点:认识点、线、面、体的几何特征,感受它们之间的关系.教学难点:在实际背景中体会点的含义.教学过程:一、创设情境多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.二、讨论(动态研究) 课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?观察、讨论,让学生共同体会“点动成线、线动成面、面动成体”.让学生举出更多的“点动成线、线动成面、面动成体”的例子.小组合作学习,学生利用教学模型完成课本P121练习第2题(动手转一转).设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察、感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力.学生自己动手实践操作,加深学生印象,化解难度.三、讨论(静态研究)教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等.让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子.四、探索1.阅读课本P119,并回答思考问题.引导学生观察后得出结论:面与面相交得到线,线与线相交得到点.2.课本P121习题4.1第1题(提供实物,议一议,动手摸一摸),思考以下问题:这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边? 让学生自己体会并小组讨论得出点、线、面、体之间的关系.五、课时小结六、课堂作业“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.第二篇:七年级数学上教学工作总结七年级数学上教学工作总结本学期我担任七年级(1)、(2)班的数学教学工作,在所任教的班级学生基础相对较差,优生较少,这就给教学带来很大难度。
几何图形核心素养:1.能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系.2.经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.经历问题解决的过程,提高解决问题的能力.3.积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.重、难点与关键1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.2.难点:立体图形与平面图形之间的转化是难点.3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键.教具准备长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个),及多媒体教学设备和课本图4.1-5的教学幻灯片.教学过程一、引入新课1.打开多媒体,播放一个城市的现代化建筑,学生认真观看.2.提出问题:在同学们所观看的电视片中,有哪些是我们熟悉的几何图形?二、新授1.学生在回顾刚才所看的电视片后,充分发表自己的意见,•并通过小组交流,补充自己的意见,积累小组活动经验.2.指定一名学生回答问题,并能正确说出这些几何图形的名称.学生回答:有圆柱、长方体、正方体等等.教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.3.立体图形的概念.(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)(3)用幻灯机放映课本4.1-4的幻灯片(或用教学挂图).(4)提出问题:在这个幻灯片中,包含哪些简单的平面图形?(5)探索解决问题的方法.①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.4.平面图形的概念.长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形.注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.5.立体图形和平面图形的转化.(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看.(2)提出问题.从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?(3)探索解决问题的方法.①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.②进行小组交流,评价各自获得的结论,得出正确结论.③指定三名学生,板书画出的图形.6.思考并动手操作.(1)学生活动:在小组中独立完成课本第119页的探究课题,然后进行小组交流,评价.(2)教师活动:教师对学生完成的探究课题给出适当、正确的评价,•并对学生给予鼓励,激发学生的探索热情.7.操作试验.(1)学生活动:让学生把准备好的墨水瓶包装盒裁剪并展开,•并在小组中进行交流,得出一个长方体它的平面展开图具有的一个特征:多样性.许多立体图形都能展开成平面图形.(2)学生活动:观察展开图,看看它的展开图由哪些平面图形组成?•再把展开的纸板复原为包装,体会立体图形与平面图形的关系.三、五分钟测试((一)选择题1.下列说法错误的是()A.长方体和正方体都是四棱柱B.棱柱的侧面都是四边形C.柱体的上下底面形状相同D.圆柱只有底面为圆的两个面2.下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;其中属于立体图形的是()A. ①②③;B. ③④⑤;C. ③⑤;D.④⑤(二)填空题(每小题20分,共40分.)3.我们所学的常见的立体图形有体,体,体.4.柱体包括圆柱和,锥体包括棱锥和 .)四、课堂小结1.本节课认识了一些常见的立体图形和平面图形.2.一个立体图形从不同方向看,可以是一个平面图形;•可以把立体图形进行适当的裁剪,把它展开成平面图形,或者把一个平面图形复原成立体图形,即立体图形与平面图形可以互相转换.注:小结可采取师生互动的方式进行,由学生归纳,教师进行评价、补充.五、作业布置1.课本第123页至第124页习题4.1第1~6题.六、板书设计:4.1.1 几何图形一、问题导入二、例题三、课堂练习六、课后反思:。
4.1几何图形
4.1.1 立体图形与平面图形
第1课时认识立体图形与平面图形
教学目标
1.可以从简单实物的外形中抽象出几何图形,并了解立体图形与平面图形的区别;
2.会判断一个几何图形是立体图形还是平面图形,能准确识别棱柱与棱锥.
教学过程
一、情境导入
观察实物及欣赏图片:
我们生活在一个图形的世界中,图形世界是多姿多彩的.其中蕴含着大量的几何图形.本节我们就来研究图形问题.
二、合作探究
探究点一:立体图形
【类型一】从实物图中抽象立体图形的认识
例1 观察下列实物模型,其形状是圆柱体的是( )
解析:圆柱的上下底面都是圆,所以正确的是D.
方法总结:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.
【类型二】立体图形的名称与分类
例2 如图所示为8个立体图形.
其中,是柱体的序号为________,是锥体的序号为________,是球的序号为________.解析:分别根据柱体,锥体,球体的定义可得结论,柱体为①②⑤⑦⑧,锥体为④⑥,
球为③,故填①②⑤⑦⑧;④⑥;③.
方法总结:正确理解立体图形的定义是解题的关键.
探究点二:平面图形的认识
【类型一】平面图形的识别
例3 有下列图形,①三角形,②长方形,③平行四边形,④立方体,⑤圆锥,⑥圆柱,⑦圆,⑧球体,其中平面图形的个数为( )
A.5个 B.4个
C.3个 D.2个
解析:根据平面图形的定义:一个图形的各部分都在同一个平面内可判断①②③⑦是平面图形.故选B.
方法总结:区分平面图形要记住平面图形的特征,即一个图形的各部分都在同一个平面内.
【类型二】由平面图形组成的图形
例4 如图所示,各标志的图形主要由哪些简单的平面图形组成?
解:(1)由5个图形组成;
(2)由2个正方形和1个长方形组成;
(3)由3个四边形组成.
方法总结:解决这类问题的关键是正确区分图形的形状和名称.
三、板书设计
1.立体图形
特征:几何图形的各部分不都在同一平面内.
2.平面图形
特征:几何图形的各部分都在同一平面内.
教学反思
本节利用课件展示图片,联系生活实际,激发学习兴趣,调动学生的积极性.使学生以最佳状态投入到学习中去.通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识.使学生在讨论交流的基础上总结出立体图形和平面图形的特征.
第2课时从不同的方向看立体图形和立体图形的展开图
教学目标
1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;
2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形.(重点,难点)
教学过程
一、情境导入
《题西林壁》
苏东坡
横看成岭侧成峰,远近高低各不同.
不识庐山真面目,只缘身在此山中.
诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?
二、合作探究
探究点一:从不同的方向观察立体图形
【类型一】判断从不同的方向看到的图形
例 1 沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是( )
解析:从上面看依然可得到两个半圆的组合图形.故选D.
方法总结:本题考查了从不同的方向观察物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.
【类型二】画从不同的方向看到的图形
例2 如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.
解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形.
解:如图所示:
方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图
形要高平齐,从上面、左面看到的图形要宽相等.
探究点二:立体图形的展开图
【类型一】几何体的展开图
例3 过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( )
解析:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去的三角形与另一个剪去的三角形交于一个顶点,与正方体三个剪去的三角形交于一个顶点符合.故选B.
方法总结:考查几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.
【类型二】由展开图判断几何体
例4 下面的展开图能拼成如图立体图形的是( )
解析:立体图形是三棱柱,展开图应该是:三个长方形,两个三角形,两个三角形位于三个长方形两侧;A答案折叠后两个长方形重合,故排除;C、D折叠后三角形都在一侧,故排除;故选B.
方法总结:此题主要考查了展开图折叠成几何体.通过结合立体图形与平面图形的相互转化,理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.
三、板书设计
1.从不同的方向观察立体图形
(1)判断从不同的方向看到的图形
(2)根据从不同的方向看到的图形判断几何体
2.立体图形的展开图
(1)几何体的展开图
(2)由展开图判断几何体
教学反思
本课时先通过创设情景,跨越学科界限,让苏东坡的一首《题西林壁》把同学们带入了一个如诗如画的境界,再从诗歌中提炼出隐含的数学知识,激发学生的学习兴趣.由小组合作,让学生主体参与,探索新知,充分体现了以学生为主体的新理念.
4.1.2点、线、面、体
教学目标
1.经历探索空间点、线、面、体之间的内在联系的过程,进一步认识点、线、面、体;(重点)
2.探索点、线、面、体的关系,初步掌握点动成线、线动成面、面动成体.(难点)
教学过程
一、情境导入
圣诞节快要到了,圣诞老人为我们准备了一棵特殊的圣诞树,树上结满了象征吉祥的各种礼物,这些礼物的形状,从数学角度可以看作几何图形.你从这些礼物中可以看出哪些几何图形?你们想不想摘取那些吉祥的礼物?那么,我们首先要真正了解它们,本节课我们来学习图形构成的元素以及它们之间的关系.
二、合作探究
探究点一:图形构成的元素
例1 观察图,回答下列问题:
(1)图①是由几个面组成的,这些面有什么特征?
(2)图②是由几个面组成的,这些面有什么特征?
(3)图①中共形成了多少条线?这些线都是直的吗?图②呢?
(4)图①和图②中各有几个顶点?
解析:(1)根据长方体的面的特点解答;(2)根据圆锥的面的特点解答;(3)根据长方体和圆锥体线的特点解答;(4)根据长方体和圆锥体的顶点情况解答.
解:(1)图①是由6个面组成的,这些面都是平面;
(2)图②是由2个面组成的,1个平面和1个曲面;
(3)图①中共有12条线,这些线都是直的,图②中有1条线,是曲线;
(4)图①中有8个顶点,图②中只有1个顶点.
方法总结:解答此类问题要联系实物的形状与面的形状作对比,然后作出判断,平面与
平面相交成直线,曲面与平面相交成曲线.
探究点二:由平面图形旋转而成的立体图形 【类型一】 判断旋转后的图形形状
例 2 观察下图,把左边的图形绕着给定的直线旋转一周后可能形成的立体图形是( )
解析:由图形可以看出,左边的长方形的竖直的两个边与已知的直线平行,因而这两条边旋转形成两个柱形表面,因而旋转一周后可能形成的立体图形是一个管状的物体.故选D.
方法总结:此题考查了点、线、面、体,重在体现面动成体,需要发挥立体图形的空间想象能力及提高分析问题、解决问题的能力.
【类型二】 旋转后几何体的计算问题
例3 已知柱体的体积V =S ·h ,其中S 表示柱体的底面面积,h 表示柱体的高.现将矩形ABCD 绕轴l 旋转一周,则形成的几何体的体积等于( )
A .πr 2h
B .2πr 2
h
C .3πr 2h
D .4πr 2
h
解析:∵柱体的体积V =S ·h ,其中S 表示柱体的底面面积,h 表示柱体的高,现将矩
形ABCD 绕轴l 旋转一周,∴柱体的底面圆环面积为:π(2r )2-πr 2=3πr 2
,∴形成的几何
体的体积等于:3πr 2
h .故选C.
方法总结:先判断旋转后的立体图形的形状,然后利用相应的计算公式进行解答. 三、板书设计
体由面组成,面与面相交成线,线与线相交成点 点的形成:线与线相交成点,点无大小.
线的形成⎩⎪⎨
⎪⎧⎭⎪⎬⎪
⎫点动成线面和面相交成线线无粗细 面的形成:线动成面⎩
⎪⎨⎪⎧平面
曲面
体的形成⎩
⎪⎨⎪⎧面动成体
由面转成
教学反思
在本节课的教学设计中,改变以往注重知识的传授的倾向,强调学生形成积极主动的学习态度,关注学生的学习兴趣和体验.数学学习活动中,应用多媒体给学生创设了生动的学习活动情景,引导学生观察生活中的美妙画面,激发学生的学习兴趣,对点、线、面、体知识有了初步的认识.在学习中注重让学生主动参与学习活动,观察感受,亲身经历体验图形的变化过程,通过自主、合作、探究学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力.。