高中数学必修二模块综合测试卷(6)
- 格式:doc
- 大小:1.28 MB
- 文档页数:4
第六章单元质量评估卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.如图,向量AB→=a,AC→=b,CD→=c,则向量BD→可以表示为()A.a+b-c B.a-b+cC.b-a+c D.b-a-c2.设D,E,F分别为△ABC的三边BC,CA,AB的中点,则EB→+FC→=()A.AD→B.12AD→C.BC→D.12BC→3.向量a=(-1,1),且a与a+2b方向相同,则a·b的取值范围是()A.(-1,1)B.(-1,+∞)C.(1,+∞)D.(-∞,1)4.已知△ABC中,a=4,b=43,A=30°,则B等于()A.30°B.30°或150°C.60°D.60°或120°5.△ABC的内角A,B,C所对边的长分别为a,b,c,设向量p=(a+c,b),q=(b-a,c -a),若p∥q,则角C的大小为()A.π6B.π3C.π2D.2π36.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱的水柱高度,某人在喷水柱正西方向的D处测得水柱顶端A的仰角为45°,沿D向北偏东30°方向前进100m后到达C处,在C处测得水柱顶端A的仰角为30°,则水柱的高度是()A.50m B.100mC.120m D.150m7.在△ABC中,已知b2-bc-2c2=0,a=6,cos A=78,则△ABC的面积S为()A.152B.15C.8155D.638.如图,在边长为1的正方形组成的网格中,平行四边形ABCD的顶点D被阴影遮住,则AB→·AD→=()A.10B.11C.12D.13二、多项选择题(本大题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分) 9.已知向量a=(1,-2),|b|=4|a|,a∥b,则b可能是()A.(4,-8)B.(8,4)C.(-4,-8)D.(-4,8)10.若a,b,a+b为非零向量,且a+b平分a与b的夹角,则()A.a=b B.a·(a+b)=b·(a+b)C.|a|=|b|D.|a+b|=|a-b|11.在△ABC中,a=15,b=20,A=30°,则cos B可以是()A.-53B.2 3C.-23D.5 312.△ABC是边长为2的等边三角形,已知向量a,b满足AB→=2a,AC→=2a+b,则下列结论正确的是()A.|b|=1B.|a|=1C.a∥b D.(4a+b)⊥BC→三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.14.同一平面内的三个单位向量a,b,c两两夹角都是2π3,则a-b与a+c的夹角是________.15.在△ABC中,已知D为BC边上一点,BC=3BD,AD=2,∠ADB=135°,若AC=2AB ,则BD =________.16.甲、乙两楼相距20m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲楼高为______m ,乙楼高为________m .(本题第一空2分,第二空3分)四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)已知|a |=2|b |=2,且向量a 在向量b 上的投影向量为-b|b |,求:(1)a 与b 的夹角θ;(2)(a -2b )·b .18.(12分)如图,在△OAB 中,P 为线段AB 上一点,且OP →=xOA →+yOB →.(1)若AP →=PB →,求x ,y 的值;(2)若AP →=3PB →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°,求OP →·AB →的值.19.(12分)设向量a =(cos α,sin α)(0≤α<2π),b -12,a 与b 不共线.(1)求证:(a +b )⊥(a -b );(2)若3a +b 与a -3b 的模相等,求角α.20.(12分)在①b 2+2ac =a 2+c 2,②a cos B =b sin A ,③sin B +cos B =2这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,________,A =π3,b =2,求△ABC 的面积.21.(12分)如图所示,A ,B 两个小岛相距21n mile ,B 岛在A 岛的正南方,现在甲船从A 岛出发,以9n mile/h 的速度向B 岛行驶,而乙船同时以6n mile/h 的速度离开B 岛向南偏东60°方向行驶,问行驶多长时间后,两船相距最近,并求出两船的最近距离.22.(12分)在△ABC 中,角A ,B ,C 所对的边a ,b ,c 满足cos B cos C +b c =2ac.(1)求角C 的大小;(2)若边长c =3,求a +2b 的最大值.1.已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb (λ,μ∈R ),那么A ,B ,C 三点共线应满足的条件是()A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=12.已知向量a ,b ,c 互不平行,且λ1a +λ2b +λ3c =0(λ1,λ2,λ3∈R ),则()A .λ1,λ2,λ3一定全为0B .λ1,λ2,λ3中至少有一个为0C .λ1,λ2,λ3可以全不为0D .λ1,λ2,λ3的值只有一组3.下列命题中,正确的是()A .a =(-2,5)与b =(4,-10)方向相同B .a =(4,10)与b =(-2,-5)方向相反C .a =(-3,1)与b =(-2,-5)方向相反D .a =(2,4)与b =(-3,1)的夹角为锐角4.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =()A .3B .22C .2D.35.在△ABC 中,已知a =2b cos C ,那么△ABC 的内角B ,C 之间的关系是()A .B >C B .B =C C .B <CD .关系不确定6.在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →,则S △ABD S △ABC 等于()A.23B.13C.16D.127.设a ,b 是共线的单位向量,则|a +b |的值()A .等于2B .等于0C .大于2D .等于0或等于28.已知△ABC 中,c =6,a =4,B =120°,则b 等于()A .76B .219C .27D .279.如图,若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为()A.165B.125C.85D.4510.在△ABC 中,cos A cos B >sin A sin B ,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形11.已知BA →=a ,BC →=b ,AC →=c 且满足c =0(λ>0),则△ABC 为()A .等腰三角形B .等边三角形C .直角三角形D .不确定12.已知点A (2,3),C (0,1),且AB →=-2BC →,则点B 的坐标为________.13.已知A ,B ,C 为△ABC 的三个内角,且其对边分别为a ,b ,c ,若cos B cos C -sin B sin C =12.(1)求A ;(2)若a =23,b +c =4,求△ABC 的面积.14.已知|a |=3,|b |=4,且满足(2a -b )·(a +2b )≥4,求a 与b 的夹角θ的范围.15.(1)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,求a 与b 的夹角θ;(2)设O 为坐标原点,OA →=(2,5),OB →=(3,1),OC →=(6,3),在线段OC 上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标;若不存在,请说明理由.16.已知平面上三个向量a ,b ,c 的模均为1,它们相互之间的夹角为120°.(1)求证:(a -b )⊥c ;(2)若|k a +b +c |>1(k ∈R ),求k 的取值范围.17.在△ABC 中,C -A =π2,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.第六章单元质量评估卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的)1.如图,向量AB →=a ,AC →=b ,CD →=c ,则向量BD →可以表示为()A .a +b -cB .a -b +cC .b -a +cD .b -a -c答案C解析依题意得,BD →=AD →-AB →=AC →+CD →-AB →,即BD →=b -a +c .故选C.2.设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=()A.AD →B.12AD →C.BC →D.12BC →答案A解析EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →.故选A.3.向量a =(-1,1),且a 与a +2b 方向相同,则a ·b 的取值范围是()A .(-1,1)B .(-1,+∞)C .(1,+∞)D .(-∞,1)答案B解析依题意可设a +2b =λa (λ>0),则b =12(λ-1)a ,∴a ·b =12(λ-1)a 2=12(λ-1)×2=λ-1>-1.4.已知△ABC 中,a =4,b =43,A =30°,则B 等于()A .30°B .30°或150°C .60°D .60°或120°答案D解析由正弦定理,得a sin A =b sin B .所以sin B =b a sin A =434sin 30°=32.又a <b ,则A <B ,所以B =60°或120°.5.△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c ,设向量p =(a +c ,b ),q =(b -a ,c -a ),若p ∥q ,则角C 的大小为()A.π6B.π3C.π2D.2π3答案B解析由p ∥q ,得(a +c )(c -a )=b (b -a ),则b 2+a 2-c 2=ab .由余弦定理,得cos C =a 2+b 2-c 22ab =12,又C ∈(0,π),所以C =π3.6.一个大型喷水池的中央有一个强力喷水柱,为了测量喷水柱的水柱高度,某人在喷水柱正西方向的D 处测得水柱顶端A 的仰角为45°,沿D 向北偏东30°方向前进100m 后到达C 处,在C 处测得水柱顶端A 的仰角为30°,则水柱的高度是()A .50mB .100mC .120mD .150m答案A解析如图,设水柱高AB =h m.依题意有∠ADB =45°,∠BDC =90°-30°=60°,∠ACB =30°,且AB ⊥BD ,AB ⊥BC .由图可知,BD =AB =h ,BC =htan 30°=3h ,CD =100,又∵∠BDC =60°,∴在△BCD中,由余弦定理得BC 2=BD 2+CD 2-2BD ·CD ·cos 60°,即(3h )2=h 2+1002-100h ,解得h =50.7.在△ABC 中,已知b 2-bc -2c 2=0,a =6,cos A =78,则△ABC 的面积S 为()A.152B.15C.8155D .63答案A解析由b2-bc-2c2=0,整理得b2-c2=c2+bc,即b-c=c,b=2c.由cos A=b2+c2-a22bc=4c2+c2-64c2=78,得c2=4,c=2,b=4.又sin A=15 8,∴S=12bc sin A=12×2×4×158=152.故选A.8.如图,在边长为1的正方形组成的网格中,平行四边形ABCD的顶点D被阴影遮住,则AB→·AD→=()A.10B.11C.12D.13答案B二、多项选择题(本大题共4小题,每小题5分,共20分.在每个小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分) 9.已知向量a=(1,-2),|b|=4|a|,a∥b,则b可能是()A.(4,-8)B.(8,4)C.(-4,-8)D.(-4,8)答案AD10.若a,b,a+b为非零向量,且a+b平分a与b的夹角,则()A.a=b B.a·(a+b)=b·(a+b)C.|a|=|b|D.|a+b|=|a-b|答案BC11.在△ABC中,a=15,b=20,A=30°,则cos B可以是()A.-53B.2 3C.-23D.5 3答案AD12.△ABC是边长为2的等边三角形,已知向量a,b满足AB→=2a,AC→=2a+b,则下列结论正确的是()A.|b|=1B.|a|=1C .a ∥bD .(4a +b )⊥BC→答案BD三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知平面向量α,β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.答案10解析由于α⊥(α-2β),所以α·(α-2β)=|α|2-2α·β=0,故2α·β=1,所以|2α+β|=4|α|2+4α·β+|β|2=4+2+4=10.14.同一平面内的三个单位向量a ,b ,c 两两夹角都是2π3,则a -b 与a +c 的夹角是________.答案π6解析(a -b )·(a +c )=a 2-a ·b +a ·c -b ·c=1-1×11×11×1=32,|a -b |=a 2-2a ·b +b 2=3,|a +c |=a 2+2a ·c +c 2=1,设a -b 与a +c 夹角为θ,则cos θ=(a -b )·(a +c )|a -b |·|a +c |=323×1=32,又0≤θ≤π,∴θ=π6.15.在△ABC 中,已知D 为BC 边上一点,BC =3BD ,AD =2,∠ADB =135°,若AC =2AB ,则BD =________.答案2+5解析设AB =k ,则AC =2k .再设BD =x ,则DC =2x .在△ABD 中,由余弦定理,得k 2=x 2+2-2·x ·2x 2+2+2x .①在△ADC 中,由余弦定理,得2k 2=4x 2+2-2·2x ·2×22=4x 2+2-4x ,即k 2=2x 2+1-2x .②由①②得x 2-4x -1=0,解得x =2+5(负值舍去).故BD =2+ 5.16.甲、乙两楼相距20m ,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲楼高为______m ,乙楼高为________m .(本题第一空2分,第二空3分)答案2034033解析如图,设甲楼高为AB ,乙楼高为CD ,由题意知AC =20m.在△ABC 中,∠BAC =90°,所以AB =AC tan 60°=203(m),BC =40m ,在△BCD 中,∠BCD =90°-60°=30°,∠CBD =90°-30°-30°=30°,则∠BDC =180°-30°-30°=120°.由正弦定理,得BC sin ∠BDC =CD sin ∠CBD ,所以CD =sin ∠CBD sin ∠BDC ·BC =4033(m).四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明,证明过程或演算步骤)17.(10分)已知|a |=2|b |=2,且向量a 在向量b 上的投影向量为-b|b |,求:(1)a 与b 的夹角θ;(2)(a -2b )·b .解析(1)由题意知|a |=2,|b |=1,|a |cos θ·b |b |=-b|b |,∴cos θ=-12.由于θ∈[0,π],∴θ=2π3.(2)(a -2b )·b =a·b -2b 2=-1-2=-3.18.(12分)如图,在△OAB 中,P 为线段AB 上一点,且OP →=xOA →+yOB →.(1)若AP →=PB →,求x ,y 的值;(2)若AP →=3PB →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°,求OP →·AB →的值.解析(1)若AP →=PB →,则OP →=12OA →+12OB →,故x =y =12.(2)若AP →=3PB →,则OP →=14OA →+34OB →,OP →·AB →+34OB (OB →-OA →)=-14OA →2-12OA →·OB →+34OB →2=-14×42-12×4×2×cos 60°+34×22=-3.19.(12分)设向量a =(cos α,sin α)(0≤α<2π),b -12,a 与b 不共线.(1)求证:(a +b )⊥(a -b );(2)若3a +b 与a -3b 的模相等,求角α.解析(1)证明:由题意,得a +b =(cos α-12,sin α+32),a -b α+12,sin α因为(a +b )·(a -b )=cos 2α-14+sin 2α-34=1-1=0,所以(a +b )⊥(a -b ).(2)因为3a +b 与a -3b 的模相等,所以(3a +b )2=(a -3b )2,所以|a |2-|b |2+23a ·b =0.因为|a |=1,|b |1,所以|a |2=|b |2,所以a ·b =0,所以-12cos α+32sin α=0,所以tan α=33,又因为0≤α<2π,所以α=π6或α=7π6.20.(12分)在①b 2+2ac =a 2+c 2,②a cos B =b sin A ,③sin B +cos B =2这三个条件中任选一个,补充在下面的问题中,并解决该问题.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,________,A =π3,b =2,求△ABC 的面积.解析若选择条件①b 2+2ac =a 2+c 2,由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22,因为B ∈(0,π),所以B =π4.由正弦定理,得a sin A =bsin B ,得a =b sin A sin B=2·sinπ322=3,因为A =π3,B =π4,所以C =π-π3-π4=5π12,所以sin C =sin 5π12==sinπ4cos π6+cos π4sin π6=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选择条件②a cos B =b sin A ,则由正弦定理,得sin A cos B =sin B sin A ,因为A ∈(0,π),即sin A ≠0,所以sin B =cos B ,因为B ∈(0,π),所以B =π4.下同选择条件①.若选择条件③sin B +cos B =2,则2sin=2,所以1,因为B∈(0,π),所以B +π4∈所以B +π4=π2,所以B =π4.下同选择条件①.21.(12分)如图所示,A ,B 两个小岛相距21n mile ,B 岛在A 岛的正南方,现在甲船从A 岛出发,以9n mile/h 的速度向B 岛行驶,而乙船同时以6n mile/h 的速度离开B 岛向南偏东60°方向行驶,问行驶多长时间后,两船相距最近,并求出两船的最近距离.解析设行驶t 小时后,甲船行驶了9t n mile 到达C 处,乙船行驶了6t n mile 到达D 处.当9t <21,即t <73时,C 在线段AB 上,此时BC =21-9t ,在△BCD 中,BC =21-9t ,BD =6t ,∠CBD =180°-60°=120°,由余弦定理,得CD 2=BC 2+BD 2-2BC ·BD ·cos 120°=(21-9t )2+(6t )2-2×(21-9t )×6t =63t 2-252t +441=63(t -2)2+189.∴当t =2时,CD 取得最小值189=321.当t =73时,C 与B 重合,此时CD =6×73=14>321.当t >73时,BC =9t -21,则CD 2=(9t -21)2+(6t )2-2×(9t -21)×6t ×cos 60°=63t 2-252t+441=63(t -2)2+189>189.综上可知,当t =2时,CD 取最小值321n mile ,故行驶2h 后,甲、乙两船相距最近,为321n mile.22.(12分)在△ABC 中,角A ,B ,C 所对的边a ,b ,c 满足cos B cos C +b c =2ac.(1)求角C 的大小;(2)若边长c =3,求a +2b 的最大值.解析(1)由cos B cos C +b c =2ac及正弦定理得cos B sin C +sin B cos C =2sin A cos C ,即sin A =2sin A cos C ,又sin A ≠0,所以cos C =12.又C ∈(0,π),故C =π3.(2)a +2b =csin C(sin A +2sin B )=2[sin(B +C )+2sin B ]=B +32cos B +2sin 5sin B+3cos B ,令cos φ=528,sin φ=328,则a +2b =28sin(B +φ),当B +φ=π2时,(a +2b )max =28=27.1.已知a ,b 是不共线的向量,AB →=λa +b ,AC →=a +μb (λ,μ∈R ),那么A ,B ,C 三点共线应满足的条件是()A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1答案D解析A ,B ,C 三点共线即存在实数k ,使得AB →=kAC →,即λa +b =k (a +μb ),所以有λa =k a ,b =kμb ,即λ=k ,1=kμ,得λμ=1.2.已知向量a ,b ,c 互不平行,且λ1a +λ2b +λ3c =0(λ1,λ2,λ3∈R ),则()A .λ1,λ2,λ3一定全为0B .λ1,λ2,λ3中至少有一个为0C .λ1,λ2,λ3可以全不为0D .λ1,λ2,λ3的值只有一组答案C解析在△ABC 中,设AB →=a ,BC →=b ,CA →=c ,则a ,b ,c 互不平行,且a +b +c =0,排除A 、B.由2a +2b +2c =0,排除D ,所以选C.3.下列命题中,正确的是()A .a =(-2,5)与b =(4,-10)方向相同B .a =(4,10)与b =(-2,-5)方向相反C .a =(-3,1)与b =(-2,-5)方向相反D .a =(2,4)与b =(-3,1)的夹角为锐角答案B解析在B 中,a =(4,10)=-2(-2,-5)=-2b ,∴a 与b 方向相反.4.(设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =()A .3B .22C .2 D.3答案C解析由余弦定理可得,a 2=b 2+c 2-2bc cos A ,即有4=b 2+12-43×32b ,解得b =2或4,由b <c ,可得b =2.故选C.5.在△ABC 中,已知a =2b cos C ,那么△ABC 的内角B ,C 之间的关系是()A .B >C B .B =C C .B <CD .关系不确定答案B6.在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →,则S △ABD S △ABC 等于()A.23B.13C.16D.12答案D解析已知在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →,则点D 在与AB边平行的中位线上,且为靠近BC 边的三等分点,从而有S △ABD =12S △ABC .7.设a ,b 是共线的单位向量,则|a +b |的值()A .等于2B .等于0C .大于2D .等于0或等于2答案D8.已知△ABC 中,c =6,a =4,B =120°,则b 等于()A .76B .219C .27D .27答案B解析由余弦定理,得b 2=a 2+c 2-2ac cos B =76,所以b =219.9.如图,若D 点在三角形ABC 的边BC 上,且CD →=4DB →=rAB →+sAC →,则3r +s 的值为()A.165B.125C.85D.45答案C解析因为CD →=4DB →=rAB →+sAC →,所以CD →=45CB →=45(AB →-AC →)=rAB →+sAC →,所以r =45,s =-45,所以3r +s =125-45=85.10.在△ABC 中,cos A cos B >sin A sin B ,则△ABC 是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形答案C11.已知BA →=a ,BC →=b ,AC →=c 且满足c =0(λ>0),则△ABC 为()A .等腰三角形B .等边三角形C .直角三角形D .不确定答案A12.已知点A (2,3),C (0,1),且AB →=-2BC →,则点B 的坐标为________.答案(-2,-1)解析设点B 的坐标为(x ,y ),则AB →=(x -2,y -3),BC →=(-x ,1-y ).又AB →=-2BC →,∴(x -2,y -3)=-2(-x ,1-y )=(2x ,2y -2).∴x =-2,y =-1.13.已知A ,B ,C 为△ABC 的三个内角,且其对边分别为a ,b ,c ,若cos B cos C -sin B sin C =12.(1)求A ;(2)若a =23,b +c =4,求△ABC 的面积.解析(1)∵cos B cos C -sin B sin C =12,∴cos (B +C )=12.∵A +B +C =π,∴cos (π-A )=12.∴cos A =-12.又∵0<A <π,∴A =2π3.(2)由余弦定理,得a 2=b 2+c 2-2bc ·cos A ,则(23)2=(b +c )2-2bc -2bc ·cos2π3,∴12=16-2bc -2bc ∴bc =4.∴S △ABC =12bc ·sin A =12×4×32= 3.14.已知|a |=3,|b |=4,且满足(2a -b )·(a +2b )≥4,求a 与b 的夹角θ的范围.解析(2a -b )·(a +2b )=2a 2+3a ·b -2b 2=2×32+3a ·b -2×42=3a ·b -14,由(2a -b )·(a +2b )≥4,得3a ·b -14≥4,∴a ·b ≥6.∴cos 〈a ,b 〉=a ·b |a |·|b |≥6|a |·|b |=63×4=12.∴a 与b 的夹角θ满足0≤θ≤π3.15.(1)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,求a 与b 的夹角θ;(2)设O 为坐标原点,OA →=(2,5),OB →=(3,1),OC →=(6,3),在线段OC 上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标;若不存在,请说明理由.解析(1)∵(2a -3b )·(2a +b )=61,∴4a 2-4a ·b -3b 2=61.又|a |=4,|b |=3,∴a ·b =-6.∴cos θ=a ·b |a |·|b |=-12.又0≤θ≤π,∴θ=23π.(2)假设存在点M ,使MA →⊥MB →,则存在实数λ使OM →=λOC →=(6λ,3λ)(0≤λ≤1),∴MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).由题意知(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0.∴45λ2-48λ+11=0,解得λ=13或λ=1115.∴OM →=(2,1)或OM →即存在满足题意的M (2,1)或16.已知平面上三个向量a ,b ,c 的模均为1,它们相互之间的夹角为120°.(1)求证:(a -b )⊥c ;(2)若|k a +b +c |>1(k ∈R ),求k 的取值范围.解析(1)证明:∵|a |=|b |=|c |=1,且a ,b ,c 之间的夹角均为120°,∴(a -b )·c =a ·c -b ·c=|a ||c |cos 120°-|b ||c |cos 120°=0.∴(a -b )⊥c .(2)∵|k a +b +c |>1,∴|k a +b +c |2>1.∴(k a +b +c )·(k a +b +c )>1.∴k 2a ·a +b ·b +c ·c +2k a ·b +2k a ·c +2b ·c >1.∵a ·b =a ·c =b ·c =cos 120°=-12,∴k 2-2k >0,∴k <0或k >2.17.在△ABC 中,C -A =π2,sin B =13.(1)求sin A 的值;(2)设AC =6,求△ABC 的面积.解析(1)由C -A =π2和A +B +C =π,得2A =π2-B ,0<A <π4.故cos 2A =sin B ,即1-2sin 2A =13,sin A =33.(2)由(1)得cos A =63.又由正弦定理,得BC sin A =AC sin B ,BC =sin Asin B·AC =3 2.又sin C =cos A ,所以S △ABC =12AC ·BC ·sin C =12AC ·BC ·cos A =32.。
模块综合测评(教师独具)(满分:150分 时间:120分钟)一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若α∥β, a ⊂α, b ⊂β, 则a 与b 的位置关系是( ) A .平行或异面 B .相交 C .异面D .平行A [满足条件的情形如下:]2.直线y =kx 与直线y =2x +1垂直,则k 等于( ) A .-2 B .2 C .-12 D .13C [由题意,得2k =-1,∴k =-12.]3.两圆C 1:x 2+y 2=r 2与C 2:(x -3)2+(y +1)2=r 2(r >0)外切,则r 的值为( ) A .10-1 B .102C .10D .10-1或10+1B [因为两圆外切且半径相等,所以|C 1C 2|=2r .所以r =102.] 4.在空间直角坐标系中,O 为坐标原点,设A ⎝ ⎛⎭⎪⎫12,12,12,B ⎝ ⎛⎭⎪⎫12,12,0,C ⎝ ⎛⎭⎪⎫13,13,13, 则( )A .OA ⊥AB B .AB ⊥AC C .AC ⊥BCD .OB ⊥OCC [|AB |=12,|AC |=36,|BC |=66,因为|AC |2+|BC |2=|AB |2,所以AC ⊥BC .]5.圆(x +1)2+y 2=2的圆心到直线y =x +3的距离为( ) A .1 B .2 C . 2 D .2 2C [圆心(-1,0),直线x -y +3=0,所以圆心到直线的距离为|-1-0+3|12+(-1)2= 2.]6.直线2ax +y -2=0与直线x -(a +1)y +2=0互相垂直, 则这两条直线的交点坐标为( )A.⎝ ⎛⎭⎪⎫-25,-65B .⎝ ⎛⎭⎪⎫25,-65C .⎝ ⎛⎭⎪⎫25,65D .⎝ ⎛⎭⎪⎫-25,65 C [由题意知:2a -(a +1)=0,得a =1,所以2x +y -2=0,x -2y +2=0,解得x =25,y =65.]7.如图, 在长方体ABCD A 1B 1C 1D 1中, P 为BD 上任意一点,则一定有( )A .PC 1与AA 1异面B .PC 1与A 1A 垂直 C .PC 1与平面AB 1D 1相交 D .PC 1与平面AB 1D 1平行D [当A ,P ,C 共线时,PC 1与AA 1相交不垂直,所以A ,B 错误;连接BC 1,DC 1(图略),可以证AD 1∥BC 1,AB 1∥DC 1,所以平面AB 1D 1∥平面BDC 1.又PC 1⊂平面BDC 1,所以PC 1与平面AB 1D 1平行.]8.在长方体ABCD A 1B 1C 1D 1中, AB =2, BC =4, AA 1=6, 则AC 1和底面ABCD 所成的角为( )A .30°B .45°C .60°D .75° A [如图所示,连接AC ,在长方体ABCD A 1B 1C 1D 1中,CC 1⊥底面ABCD ,所以∠C 1AC 就是AC 1与底面ABCD 所成的角.因为AB =2,BC =4,AA 1=6,所以CC 1=AA 1=6,AC 1=2 6.所以在Rt △ACC 1中,sin ∠C 1AC =CC 1AC 1=626=12.所以∠C 1AC =30°.] 9.已知点A (-1,1),B (3,1),直线l 过点C (1,3)且与线段AB 相交,则直线l 与圆(x -6)2+y 2=2的位置关系是( )A .相交B .相离C .相交或相切D .相切或相离D [因为k AC =1,k BC =-1,直线l 的斜率的范围是(-∞,-1]∪[1,+∞),直线BC 方程为x +y -4=0,圆(x -6)2+y 2=2的圆心(6,0)到直线BC 的距离为2,因此圆(x -6)2+y 2=2与直线BC 相切,结合图象可知,直线l 与圆(x -6)2+y 2=2的位置关系是相切或相离.]10.设l ,m ,n 表示三条直线,α,β,γ表示三个平面,则下面命题中不成立的是( ) A .若l ⊥α,m ⊥α,则l ∥mB .若m ⊂β,m ⊥l ,n 是l 在β内的射影,则m ⊥nC .若m ⊂α,n ⊄α,m ∥n ,则n ∥αD .若α⊥γ,β⊥γ,则α∥βD [若l ⊥α,m ⊥α,则l ∥m ,A 正确;由直线与平面垂直的判定和性质定理,若m ⊂β,m ⊥l ,n 是l 在β内的射影,则m ⊥n ,B 正确;由直线与平面平行的判定定理,若m ⊂α,n ⊄α,m ∥n ,则n ∥α,C 正确;垂直于同一个平面的两个平面平行或相交, 即若α⊥γ,β⊥γ,则α∥β或α∩β=a ,D 不正确.]11.如果圆x 2+(y -1)2=1上任意一点P (x ,y )都能使x +y +c ≥0成立,那么实数c 的取值范围是( )A .c ≥-2-1B .c ≤-2-1C .c ≥2-1D .c ≤2-1C [对任意点P (x ,y )能使x +y +c ≥0成立,等价于c ≥[-(x +y )]max . 设b =-(x +y ),则y =-x -b . 所以圆心(0,1)到直线y =-x -b 的距离d =|1+b |2≤1, 解得-2-1≤b ≤2-1.所以c ≥2-1.]12.如图, 在△ABC 中, AB =BC =6, ∠ABC =90°, 点D 为AC 的中点,将△ABD 沿BD 折起到△PBD 的位置, 使PC =PD ,连接PC, 得到三棱锥P BCD, 若该三棱锥的所有顶点都在同一球面上, 则该球的表面积是( )A .πB .3πC .5πD .7πD [由题意得该三棱锥的面PCD 是边长为3的正三角形,且BD ⊥平面PCD, 设三棱锥P BDC 外接球的球心为O, △PCD 外接圆的圆心为O 1,则OO 1⊥平面PCD ,所以四边形OO 1DB 为直角梯形, 由BD =3,O 1D =1,及OB =OD ,得OB =72, 所以外接球半径为R =72,所以该球的表面积S =4πR 2=4π×74=7π.]二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.若直线(m +1)x -y -(m +5)=0与直线2x -my -6=0平行,则m =________. -2 [由题意知:m +1=2m,解得m =1或-2. 当m =1时,两直线方程均为2x -y -6=0,两直线重合,不合题意,舍去;当m =-2时,直线分别为x +y +3=0,x +y -3=0,两直线平行.]14.如图所示, 正方体的棱长为2, 以其所有面的中心为顶点的多面体的体积为________.43[平面ABCD 将多面体分成了两个以2为底面,边长、高为1的正四棱锥,所以其体积为2×2×1×13×2=43.]15.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.x 2+y 2-2x =0 [设圆的一般方程为x 2+y 2+Dx +Ey +F =0, 又因为圆经过三点(0,0),(1,1),(2,0),所以⎩⎪⎨⎪⎧F =0,1+1+D +E +F =0,22+2D +F =0,解得D =-2,E =0,F =0,所以圆的方程为x 2+y 2-2x =0.]16.如图,在四棱锥P ABCD 中,底面ABCD 是边长为m 的正方形,PD ⊥底面ABCD ,且PD =m ,PA =PC =2m ,若在这个四棱锥内放一个球,则此球的最大半径是________.12(2-2)m [由PD ⊥底面ABCD ,得PD ⊥AD .又PD =m ,PA =2m ,则AD =m .设内切球的球心为O ,半径为R ,连接OA ,OB ,OC ,OD ,OP (图略),易知V P ABCD =V O ABCD +V O PAD +V O PAB +V O PBC +V O PCD ,即13·m 2·m =13·m 2×R +13×12·m 2·R +13×12·2m 2·R +13×12· 2 m 2·R +13·12·m 2·R ,解得R =12(2-2)m ,所以此球的最大半径是12(2-2)m .]三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知直线l 的方程为3x +4y -12=0,分别求下列直线l ′的方程,l ′满足:(1)过点(-1,3),且与l 平行; (2)与直线l 关于y 轴对称.[解] (1)因为l ∥l ′, 所以l ′的斜率为-34,所以直线l ′的方程为:y -3=-34(x +1),即3x +4y -9=0.(2)l 与y 轴交于点(0,3),该点也在直线l ′上,在直线l 上取一点A (4,0),则点A 关于y 轴的对称点A ′(-4,0)在直线l ′上,所以直线l ′经过(0,3)和(-4,0)两点,故直线l ′的方程为3x -4y +12=0.18.(本小题满分12分)已知圆C :x 2+y 2-8y +12=0,直线l 经过点D (-2,0),且斜率为k .(1)求以线段CD 为直径的圆E 的方程; (2)若直线l 与圆C 相离, 求k 的取值范围.[解] (1)将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为C (0,4),半径为2.所以CD 的中点E (-1,2), |CD |=22+42=25,所以r =5,故所求圆E 的方程为(x +1)2+(y -2)2=5. (2)直线l 的方程为y -0=k (x +2),即kx -y +2k =0.若直线l 与圆C 相离,则有圆心C 到直线l 的距离|0-4+2k |k 2+1>2, 解得k <34.所以k 的取值范围为⎝⎛⎭⎪⎫-∞,34.19.(本小题满分12分)如图,在三棱锥P ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且MC =2MB ,求点C 到平面POM 的距离.[解] (1)因为AP =CP =AC =4,O 为AC 的中点, 所以OP ⊥AC ,且OP =2 3. 连接OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC ,OB ⊂平面ABC ,AC ⊂平面ABC ,OB ∩AC =O ,知PO ⊥平面ABC . (2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,OP ⊂平面POM ,OM ⊂平面POM ,OP ∩OM =O ,所以CH ⊥平面POM . 故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =423,∠ACB =45°.所以OM =253,CH =OC ·MC ·sin ∠ACB OM =455.所以点C 到平面POM 的距离为455.20.(本小题满分12分)在平面直角坐标系xOy 中,已知圆心在第二象限,半径为22的圆C 与直线y =x 相切于坐标原点O .(1)求圆C 的方程;(2)试探求圆C 上是否存在异于原点的点Q ,使Q 到定点F (4,0)的距离等于线段OF 的长?若存在,请求出点Q 的坐标;若不存在,请说明理由.[解] (1)设圆心为C (a ,b ),由OC 与直线y =x 垂直,知斜率k OC =ba=-1,故b =-a . 又|OC |=22,即a 2+b 2=22, 可解得a =-2,b =2或a =2,b =-2, 结合点C (a ,b )位于第二象限知a =-2,b =2. 故圆C 的方程为(x +2)2+(y -2)2=8. (2)假设存在点Q (m ,n )符合题意,则(m -4)2+n 2=16,m 2+n 2≠0, (m +2)2+(n -2)2=8,解得m =45,n =125,故圆C 上存在异于原点的点Q ⎝ ⎛⎭⎪⎫45,125符合题意. 21.(本小题满分12分)如图,矩形ABCD 所在平面与半圆弧CD ︵所在平面垂直,M 是CD ︵上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.[解] (1)证明:由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD ︵上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD . 证明如下:如图,连接AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点.连接OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .22.(本小题满分12分)已知直线l :y =kx +b (0<b <1)和圆O :x 2+y 2=1相交于A ,B 两点.(1)当k =0时,过点A ,B 分别作圆O 的两条切线,求两切线的交点坐标;(2)对于任意的实数k ,在y 轴上是否存在一点N ,满足∠ONA =∠ONB ?若存在,请求出此点坐标;若不存在,说明理由.[解] (1)联立直线l :y =b 与圆O :x 2+y 2=1的方程, 得A ,B 两点坐标为A (-1-b 2,b ),B (1-b 2,b ).设过圆O 上点A 的切线l 1的方程是y -b =kl 1(x +1-b 2),由于k AO ·kl 1=-1,即-b1-b 2·kl 1=-1,也就是kl 1=1-b2b.所以l 1的方程是y -b =1-b2b(x +1-b 2).化简得l 1的方程为-1-b 2x +by =1. 同理得,过圆O 上点B 的切线l 2的方程为 1-b 2x +by =1.联立l 1与l 2的方程得交点的坐标为⎝⎛⎭⎪⎫0,1b .因此,当k =0时,两切线的交点坐标为⎝⎛⎭⎪⎫0,1b .(2)假设在y 轴上存在一点N (0,t ),满足∠ONA =∠ONB , 则直线NA ,NB 的斜率k NA ,k NB 互为相反数, 即k NA +k NB =0.设A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),则y 1-t x 1+y 2-tx 2=0, 即x 2(kx 1+b -t )+x 1(kx 2+b -t )=0. 化简得2kx 1x 2+(b -t )(x 1+x 2)=0.①联立直线l :y =kx +b 与圆O :x 2+y 2=1的方程, 得(k 2+1)x 2+2kbx +b 2-1=0. 所以x 1+x 2=-2kb k 2+1,x 1x 2=b 2-1k 2+1.② 将②代入①整理得-2k +2kbt =0.③因为③式对于任意的实数k 都成立,因此,t =1b.故在y 轴上存在一点N ⎝⎛⎭⎪⎫0,1b ,满足∠ONA =∠ONB .。
第六章综合测试一、单项选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在ABC △中,内角,A B C ,的对边分别为,,a b c ,若a =,2A B =,则cos B 等于( )D.62.已知两个单位向量a 和b 的夹角为60︒,则向量-a b 在向量a 上的投影向量为( )A.12a B.aC.12-aD.-a3.已知点(2,1),(4,2)A B -,点P 在x 轴上,当PA PB 取最小值时,P 点的坐标是( ) A.(2,0) B.(4,0)C.10,03⎛⎫ ⎪⎝⎭D.(3,0)4.已知,,A B C 为圆O 上的三点,若有OA OC OB +=,圆O 的半径为2,则OB CB =( ) A.1- B.2- C.1 D.25.已知点(4,3)A 和点(1,2)B ,点O 为坐标原点,则||()OA tOB t +∈R 的最小值为( )A. B.5 C.36.已知锐角三角形的三边长分别为1,3,a ,那么a 的取值范围为( ) A.(8,10)B.C.D.7.已知圆的半径为4,,,a b c 为该圆的内接三角形的三边,若abc =,则三角形的面积为( )A.B.8.已知向量,a b 满足(2)(54)0+⋅-=a b a b ,且1==a b ,则a 与b 的夹角θ为( )A.34π B.4π C.3π D.23π 9.已知sin 1sin cos 2ααα=+,且向量(tan ,1)AB α=,(tan ,2)BC α=,则AC 等于( )A.(2,3)-B.(1,2)C.(4,3)D.(2,3)10.在ABC △中,E F ,分别为,AB AC 的中点,P 为EF 上的任意一点,实数,x y 满足PA xPB yPC ++=0,设,,,ABC PBC PCA PAB △△△△的面积分别为123,,,S S S S ,记(1,2,3)ii S i Sλ==,则23λλ⋅取到最大值时, 2x y +的值为( )A.1-B.1C.32-D.32二、多项选择题(本大题共2小题,每小题5分,共10分.在每小题给出的选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)11.已知ABC △中,角,,A B C 的对边分别为,,a b c ,且满足,3B a c π=+,则ac=( ) A.2 B.3C.12D.1312.点P 是ABC △所在平面内一点,满足20PB PC PB PC PA --+-=,则ABC △的形状不可能是( ) A.钝角三角形 B.直角三角形 C.等腰三角形 D.等边三角形三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上) 13.已知,12e e 是平面内的单位向量,且12⋅=12e e .若向量b 满足1⋅=⋅=12b e b e ,则=b ________.14.已知向量,a b 满足5,1==a b ,且4-a b ⋅a b 的最小值为________.15.如图,在直角梯形ABCD 中,AB DC ∥,AD DC ⊥,2DC A A B D ==,E 为AD 的中点,若CA CE DB λμ=+,则λ=________,μ=________.(本题第一空2分,第二空3分)16.如图所示,某海岛上一观察哨A 上午11时测得一轮船在海岛北偏东60︒的C 处,12时20分测得轮船在海岛北偏西60︒的B 处,12时40分轮船到达位于海岛正西方且距海岛5km 的E 港口,如果轮船始终匀速直线前进,则船速的大小为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)如图所示,以向量,OA OB ==a b 为邻边作OADB ,11,33BM BC CN CD ==,用,a b 表现,,OM ON MN .18.(本小题满分12分)已知ABC △的内角,,A B C 所对的边分别为,,a b c ,且2a =,3cos 5B =. (1)若4b =,求sin A 的值; (2)若4ABC S ∆=,求,b c 的值.19.(本小题满分12分)在ABC △中,角,,A B C 所对的边分别为,,a b c ,已知sin cos 1sin 2C C C +=-, (1)求sin C 的值;(2)若ABC △的外接圆面积为(4π+,试求AC BC 的取值范围.20.(本小题满分12分)某观测站在城A 南偏西20︒方向的C 处,由城A 出发的一条公路,走向是南偏东40︒,距C 处31千米的B 处有一人正沿公路向城A 走去,走了20千米后到达D 处,此时,C D 间的距离为21千米,问这人还要走多少千米可到达城A ?21.(本小题满分12分)已知正方形ABCD ,E F 、分别是CD AD 、的中点,BE CF 、交于点P ,连接AP .用向量法证明: (1)BE CF ⊥; (2)AP AB =.22.(本小题满分12分)已知向量(sin ,cos )x x =a ,sin ,sin 6x x π⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭b ,函数()2f x =⋅a b ,()4g x f x π⎛⎫= ⎪⎝⎭. (1)求()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的最值,并求出相应的x 的值;(2)计算(1)(2)(3)(2014)g g g g ++++的值;(3)已知t ∈R ,讨论()g x 在[,2]t t +上零点的个数.第六章综合测试答案解析一、 1.【答案】B【解析】由正弦定理得sin sin a Ab B=,a ∴=可化为sin sin A B =.又sin 22sin cos 2,sin sin 2B B B A B B B =∴==,cos B ∴. 2.【答案】A【解析】由已知可得111122⋅=⨯⨯=a b ,211()122-⋅=-⋅=-=a b a a a b ,则向量-a b 在向量a 上的投影向量为()12-⋅⋅=a b a a a a . 3.【答案】D【解析】点P 在x 轴上,∴设P 上的坐标是(,0),(2,1),(4,2)x PA x PB x ∴=--=-,22(2)(4)266(3)3PA PB x x x x x ∴⋅=---=-+=--,∴当3x =时,PA PB ⋅取最小值.P ∴点的坐标是(3,0).4.【答案】D 【解析】OA OC OB +=,OA OC =,∴四边形OABC 是菱形,且120AOC ∠=︒,又圆O 的半径为2,22cos602OB CB ∴⋅=⨯⨯︒=. 5.【答案】D【解析】点(4,3),(1,2)A B ,O 为坐标原点,则(4,32)OA tOB t t +=++,22222()(4)(32)520255(2)55OA tOB t t t t t ∴+=+++=++=++≥,∴当2t =-时,等号成立,此时OA tOB +取得最小值6.【答案】B【解析】设1,3,a 所对的角分别为,,C B A ∠∠∠,由余弦定理的推论知2222222213cos 0,21313cos 0,2131cos 0,23a A a B a a C a ⎧+-=⎪⨯⨯⎪⎪+-=⎨⨯⨯⎪⎪+-=⎪⨯⨯⎩>>>即()()222100,280,680,a a a a a ⎧-⎪⎪-⎨⎪+⎪⎩>>>解得a ,故选B . 7.【答案】C【解析】设圆的半径为R ,内接三角形的三边,,a b c 所对的角分别为,,A B C .28sin sin sin a b cR A B C====,sin 8cC∴=,1sin 216ABC abc S ab C ∆∴===8.【答案】C 【解析】22(2)(54)5680+⋅-=+⋅=-a b a b a a b b ,又11,63,cos 2θ==∴⋅=∴=a b a b ,又[0,],3πθπθ∈∴=,故选C .9.【答案】D【解析】sin 1sin cos 2ααα=+,cos sin αα∴=,tan 1α∴=,(2tan ,3)(2,3)AC AB BC α∴=+==.故选D .10.【答案】D【解析】由题意可得,EF 是ABC △的中位线,P ∴到BC 的距离等于ABC △的边BC 上的高的一半,可得12323121,2S S S S λλ++===.由此可得223231216λλλλ+⎛⎫⋅= ⎪⎝⎭≤,当且仅当23S S =,即P 为EF 的中点时,等号成立.0PE PF ∴+=.由向量加法的四边形法则可得,2PA PB PE +=,2PA PC PF +=,两式相加,得20PA PB PC ++=.0PA xPB yPC ++=,∴根据平面向量基本定理,得12x y ==,从而得到322x y +=. 二、11.【答案】AC【解析】3B π=,a c +=,2222()23a c a c ac b ∴+=++=,①由余弦定理可得,2222cos3a c acb π+-=,②联立①②,可得222520a ac c -+=,即22520a a c c ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得2ac=或12a c =.故选AC .12.【答案】ACD 【解析】P 是ABC △所在平面内一点,且|||2|0PB PC PB PC PA --+-=,|||()()|0CB PB PA PC PA ∴--+-=,即||||CB AC AB =+,||||AB AC AC AB ∴-=+,两边平方并化简得0MC AB ⋅=,AC AB ∴⊥,90A ︒∴∠=,则ABC △一定是直角三角形.故选ACD .三、13.【解析】解析令1e 与2e 的夹角为θ.1cos cos 2θθ∴⋅=⋅==1212e e e e ,又0θ︒︒≤≤180,60θ∴=︒.()0⋅-=12b e e ,∴b 与,12e e 的夹角均为30︒,从而1||cos30︒=b . 14.【答案】52【解析】|4|-a b ,52⋅≥a b ,即⋅a b 的最小值为52. 15.【答案】65 25【解析】以D 为原点,DC 边所在直线为x 轴,DA 边所在直线为y 轴建立平面直角坐标系.不妨设1AB =,则(0,0),(2,0),(0,2),(1,2),(0,1)D C A B E .(2,2),(2,1),(1,2)CA CE DB =-=-=,,(2,2)(2,1)(1,2)CA CE DB λμλμ=+∴-=-+,22,22,λμλμ-+=-⎧∴⎨+=⎩解得6,52.5λμ⎧=⎪⎪⎨⎪=⎪⎩16./h【解析】轮船从C 到B 用时80分钟,从B 到E 用时20分钟,而船始终匀速前进,由此可见,4BC EB =.设EB x =,则4BC x =,由已知得30BAE ∠=︒,150EAC ∠=︒.在AEC △中,由正弦定理的sin sin EC AE EAC C=∠, sin 5sin1501sin 52AE EAC C EC x x︒∠∴===. 在ABC △中,由正弦定理得sin120sin BC ABC =︒,14sin sin120x BC C AB ⋅∴===︒. 在ABE △中,由余弦定理得22216312cos30252533BE AB AE AB AE︒=+-=+-=,故BE ∴船速的大小为/h)3BE t==. 四、 17.【答案】解:BA OA OB =-=-a b ,11153666OM OB BM OB BC OB BA ∴=+=+=+=+a b . 又OD =+a b ,222333ON OC CN OD ∴=+==+a b , 221511336626MN ON OM ∴=-=+--=-a b a b a b . 18.【答案】解:3cos 05B =>,且0B π<<, 4sin 5B ∴=. 由正弦定理得sin sin a b A B=,42sin 25sin 45a B Ab ⨯∴===. (2)1sin 42ABC S ac B ∆==, 142425c ∴⨯⨯⨯=,5c ∴=. 由余弦定理得2222232cos 25225175b ac ac B =+-=+-⨯⨯⨯=,b ∴=19.【答案】(1)解:ABC △中,由sin cos 1sin 2C C C +=-,得22sin cos 2sin sin 2222C C C C =-, sin 02C >,1cos sin 222C C ∴-=-,两边平方得11sin 4C -=,解得3sin 4C =. (2)设ABC △的外接圆的半径为R ,由(1)知sin cos 22C C >,24C π∴>, 2C π∴>,cos C ∴=. 易得2sin c R C =,22294sin (44c R C ∴==,由余弦定理得,222977(4221444c a b ab ab⎛⎫⎛⎫=+=+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭≥,902ab ∴<≤,cos 8AC BC ab C ⎡⎫∴=∈-⎪⎢⎪⎣⎭,即AC BC 的取值范围是8⎡⎫-⎪⎢⎪⎣⎭. 20.【答案】解:如图所示,设ACD α∠=,CDB β∠=.在CBD △中,由余弦定理的推论得2222222021311cos 2220217BD CD CB BD CD β+-+-===-⨯⨯,sin 7β∴=()411sin sin 60sin cos60sin 60cos 27αβββ︒︒︒⎛⎫∴=-=-=--= ⎪⎝⎭在CBD △中,由正弦定理得21sin 60sin AD α=︒, 21sin 15sin60AD α∴==︒(千米). ∴这人还要再走15千米可到达城A .21.【答案】证明:如图,建立平面直角坐标系xOy ,其中A 为原点,不妨设2AB =,则(0,0),(2,0),(2,2),(1,2),(0,1)A B C E F .(1)(1,2)(2,0)(1,2)BE OE OB =-=-=-,(0,1)(2,2)(2,1)CF OF OC =-=-=--,(1)(2)2(1)0BE CF ∴⋅=-⨯-+⨯-=,BE CF ∴⊥,即BE CF ⊥.(2)设(,)P x y ,则(,1)FP x y =-,(2,)BP x y =-,由(1)知(2,1)CF =--,(1,2)BE =-,FP CF ∥,2(1)x y ∴-=--,即24y x =-+.同理,由BP BE ∥,即24y x =-+.22,24,x y y x =-⎧∴⎨=-+⎩解得6,58,5x y ⎧=⎪⎪⎨⎪=⎪⎩即68,55P ⎛⎫ ⎪⎝⎭. 222268455AP AB ⎛⎫⎛⎫∴=+== ⎪ ⎪⎝⎭⎝⎭, ||||AP AB ∴=,即AP AB =.22.【答案】(1)解:21()22sin sin(2sin cos sin 262f x x x x x x x π⎫=⋅=-+=+=⎪⎭a b1sin 22sin 223x x x π⎛⎫=- ⎪⎝⎭,2x ππ⎡⎤∈⎢⎥⎣⎦, 252333x πππ∴-≤≤,1sin 23x π⎛⎫∴-- ⎪⎝⎭≤,∴当3232x ππ-=,即1112x π=时,()f x 1-,当2233x ππ-=,即2x π=时,()f x(2)由(1)得()sin 23f x x π⎛⎫=-+⎪⎝⎭. ()sin 423g x f x x πππ⎛⎫⎛⎫∴==-+ ⎪ ⎪⎝⎭⎝⎭, 4T ∴=(1)(2)(3)(4)(5)(6)(7)(8)(2009)(2010)(2011)(2012)g g g g g g g g g g g g ∴+++=+++==+++.又(1)(2)(3)(4)gg g g +++=,(1)(2)(3)(2014)503(1)(2)g g g g g g ∴++++=⨯+=.(3)()g x 在[,2]t t +上零点的个数等价于sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =.在同一平面直角坐标系内作出这两个函数的图象(图略).当4443k t k +<<,k ∈Z 时,由图象可知,sin 23x y ππ⎛⎫- ⎝=⎪⎭与2y =-两图象无交点,即()g x 无零点;当44243k t k ++≤<或10444,3k t k k ++∈Z <≤时,sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =1个交点,即()g x 有1个零点;当10244,3k t k k ++∈Z ≤≤时,sin 23x y ππ⎛⎫- ⎝=⎪⎭与y =2个交点,即()g x 有2个零点.。
高中数学人教A 版(2019)必修二 第六章 平面向量及其应用 单元试卷一、单选题(共14题;共55分)1.(3分)已知Rt △ABC ,AB=3,BC=4,CA=5,P 为△ABC 外接圆上的一动点,且 AP ⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗⃗ +yAC⃗⃗⃗⃗⃗ ,则x +y 的最大值是( ) A .54B .43C .√176D .532.(4分)已知向量 a ⇀ , b ⇀ 的夹角为 60° , |a ⇀|=1 且 c ⇀=−2a ⇀+tb ⇀(t ∈R) ,则 |c ⇀|+|c ⇀−a ⇀|的最小值为( ) A .√13B .√19C .5D .9√1343.(4分)下列说法中:⑴若向量a →∥b →,则存在实数λ,使得a →=λb →;⑵非零向量a →,b →,c →,d →,若满足d →=(a →·c →)b →−(a →·b →)c →,则a →⊥d →⑶与向量a →=(1,2),b →=(2,1)夹角相等的单位向量c →=(√22,√22)⑷已知△ABC ,若对任意t ∈R ,|BA →−tBC →|≥|AC →|,则△ABC 一定为锐角三角形。
其中正确说法的序号是( ) A .(1)(2)B .(1)(3)C .(2)(4)D .(2)4.(4分)如图,在 ΔABC 中,点 M , N 分别为 CA , CB 的中点,若 AB =√5 , CB =1 ,且满足 3AG⇀⋅MB ⇀=CA ⇀2+CB ⇀2 ,则 AG ⇀⋅AC ⇀ 等于( )A .2B .√5C .23D .835.(4分)定义域为[a ,b ]的函数y =f (x )图像的两个端点为A 、B ,M(x ,y)是函数y =f (x )图象上任意一点,其中x =λa +(1−λ)b ,λ∈(0,1).已知向量ON →=λOA →+(1−λ)OB →,若不等式|MN |→≤k 恒成立,则称函数y =f (x )在[a ,b ]上“k 阶线性近似”.若函数y =x −1x 在[1,2]上“k 阶线性近似”,则实数k 的取值范围为( ) A .[0,+∞)B .[112,+∞)C .[32+√2,+∞)D .[32−√2,+∞)6.(4分)已知集合M ={1,2,3},N ={1,2,3,4},定义函数f :M →N . 若点A (1,f (1)),B (2,f (2)),C (3,f (3)),△ABC 的外接圆圆心为D ,且DA →+DC →=λDB →(λ∈R ) ,则满足条件的函数f (x )有( ) A .6个B .10个C .12个D .16个7.(4分)点P 是△ABC 内一点且满足4PA →+3PB →+2PC →=0→,则△PBC,△PAC,△PAB 的面积比为( ) A .4:3:2B .2:3:4C .1:1:1D .3:4:68.(4分)已知向量 OA ⃗⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗⃗ 满足 |OA|⃗⃗⃗⃗⃗⃗⃗⃗⃗ =|OB|⃗⃗⃗⃗⃗⃗⃗⃗⃗ =1,OA ⃗⃗⃗⃗⃗⃗ ⊥OB ⃗⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ =λOA⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ (λ,μ∈R) ,若M 为AB 的中点,并且 |MC ⃗⃗⃗⃗⃗⃗ |=1 ,则λ+μ的最大值是( ) A .1−√3B .1+√2C .√5D .1+√39.(4分)在 ΔABC 中, ∠C =900,|AB|=6 ,点 P 满足 |CP|=2 ,则 PA⇀⋅PB ⇀ 的最大值为( ) A .9B .16C .18D .2510.(4分)点M 是 △ABC 的边BC 上任意一点,N 在线段AM 上,且 AN ⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ ,若 x +y =13 ,则 △NBC 的面积与 △ABC 的面积的比值是 ( )A .B .C .D .11.(4分)如图,在半径为2的扇形 AOB 中, ∠AOB =3π4, P 是弧 AB 上的一个三等分点, M,N 分别是线段 OA , OB 上的动点,则 PM ⃗⃗⃗⃗⃗⃗ ⋅PN⃗⃗⃗⃗⃗⃗ 的最大值为( )A .√2B .2C .4D .4√212.(4分)在 ΔABC 中, E , F 分别为 AB , AC 的中点, P 为 EF 上的任一点,实数x , y 满足 PA ⇀+xPB ⇀+yPC ⇀=0⃗ ,设 ΔABC 、 ΔPBC 、 ΔPCA 、 ΔPAB 的面积分别为 S 、 S 1 、 S 2 、 S 3 ,记 Si S=λi ( i =1,2,3 ),则 λ2⋅λ3 取到最大值时, 2x +y 的值为( )A .-1B .1C .−32D .3213.(4分)定义域为[a ,b ]的函数y =f (x )图象上两点A (a ,f (a )),B (b ,f (b )),M(x ,y)是y =f (x )图象上任意一点,其中x =λa +(1−λ)b ,λ∈[0,1].已知向量ON →=λOA →+(1−λ)OB →,若不等式|MN →|≤k 对任意λ∈[0,1]恒成立,则称函数f (x )在[a ,b ]上“k 阶线性近似”.若函数y =x −1x 在[1,3]上“k 阶线性近似”,则实数的k 取值范围为( )A .[0,+∞)B .[112,+∞)C .[43−23√3,+∞)D .[43+23√3,+∞)14.(4分)在中,已知,则为( ) A .等边三角形 B .等腰直角三角形 C .锐角非等边三角形D .钝角三角形二、填空题(共11题;共43分)15.(4分)已知非零平面向量 a ⃗ ,b ⃗ 不共线,且满足 a ⃗ ⋅b ⃗ =a ⃗ 2=4 ,记 c ⃗ =34a ⃗ +14b ⃗ ,当 b ⃗ ,c ⃗ 的夹角取得最大值时, |a −b⃗ | 的值为 . 16.(4分)已知O 是锐角△MBC 的外接圆圆心,A 是最大角,若cosB sinC AB ⃗⃗⃗⃗⃗⃗ +cosC sinB AC ⃗⃗⃗⃗⃗ =mAO⃗⃗⃗⃗⃗⃗ ,则m 的取值范围为 。
模块综合检测(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足i z +2=i,则在复平面内,z 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】A2.在△ABC 中,a =3,b =2,A =30°,则sin B =( ) A .13 B .23 C .23D .223【答案】A3.某校高一年级有男生450人,女生550人,若在各层中按比例抽取样本,总样本量为40,则在男生、女生中抽取的人数分别为( )A .17,23B .18,22C .19,21D .22,18【答案】B4.已知向量a ,b 的夹角为60°,|a |=2,|b |=1,则a -2b 与b 的夹角是( ) A .30° B .60° C .120° D .150° 【答案】C5.在某中学举行的环保知识竞赛中,将三个年级参赛学生的成绩进行整理后分为5组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是40,则成绩在80~100分的学生人数是( )A .25B .20C .18D .15【答案】D6.2021年是中国共产党成立100周年,电影频道推出“经典频传:看电影,学党史”系列短视频,首批21支短视频全网发布,传扬中国共产党伟大精神,为广大青年群体带来精神感召.小李同学打算从《青春之歌》《闪闪的红星》《英雄儿女》《焦裕禄》等四支短视频中随机选择两支观看,则选择观看《青春之歌》的概率为( )A .12B .13C .14D .25【答案】A7.我国南宋著名数学家秦九韶在他的著作《数书九章》卷五“田域类”里记载了这样一个题目:“今有沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里.里法三百步.欲知为田几何.”这道题讲的是有一块三角形的沙田,三边长分别为13里,14里,15里,假设1里按500米计算,则该沙田的面积为( )A .15平方千米B .18平方千米C .21平方千米D .24平方千米【答案】C【解析】设在△ABC 中,a =13里,b =14里,c =15里,∴由余弦定理得cos C =132+142-1522×13×14=513,∴sin C =1213.故△ABC 的面积为12×13×14×1213×5002×11 0002=21(平方千米).故选C .8.在三棱锥ABCD 中,△ABC 与△BCD 都是正三角形,平面ABC ⊥平面BCD ,若该三棱锥的外接球的体积为2015π,则△ABC 的边长为( )A .332 B .634 C .633 D .6【答案】D【解析】如图,取BC 中点M ,连接AM ,DM .设等边△ABC 与等边△BCD 的外心分别为N ,G ,三棱锥外接球的球心为O ,连接OA ,OD ,ON ,OG .由V =4π3R 3=2015π,得外接球半径R =15.设△ABC 的边长为a ,则ON =GM =13DM =36a ,AN =23AM =33a .在Rt △ANO 中,由ON 2+AN 2=R 2,得a 212+a 23=15,解得a =6.故选D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法中错误的是( )A .若事件A 与事件B 互斥,则P (A )+P (B )=1B .若事件A 与事件B 满足P (A )+P (B )=1,则事件A 与事件B 为对立事件C .“事件A 与事件B 互斥”是“事件A 与事件B 对立”的必要不充分条件D .某人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”互为对立事件【答案】ABD【解析】若事件A 与事件B 互斥,则有可能P (A )+P (B )<1,故A 不正确;若事件A 与事件B 为同一事件,且P (A )=0.5,则满足P (A )+P (B )=1,但事件A 与事件B 不是对立事件,B 不正确;互斥不一定对立,对立一定互斥,故C 正确;某人打靶时连续射击两次,事件“至少有一次中靶”与事件“至多有一次中靶”既不互斥也不对立,D 错误.故选ABD .10.如图是民航部门统计的今年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述正确的是( )A .深圳的变化幅度最小,北京的平均价格最高B .深圳和厦门的春运期间往返机票价格同去年相比有所下降C .平均价格从高到低居于前三位的城市为北京、深圳、广州D .平均价格的涨幅从高到低居于前三位的城市为天津、西安、厦门 【答案】ABC【解析】由图可知深圳对应的小黑点最接近0%,故变化幅度最小,北京对应的条形图最高,则北京的平均价格最高,A 正确;深圳和厦门对应的小黑点在0%以下,故深圳和厦门的价格同去年相比有所下降,B 正确;条形图由高到低居于前三位的城市为北京、深圳和广州,C 正确;平均价格的涨幅由高到低分别为天津、西安和南京,D 错误.故选ABC .11.△ABC 是边长为2的等边三角形,已知向量a ,b 满足AB →=2a ,AC →=2a +b ,则下列结论中正确的是( )A .a 为单位向量B .a ⊥bC .b ∥BC →D .(4a +b )⊥BC →【答案】ACD【解析】由AB →=2a ,得a =12AB →,又AB =2,所以|a |=1,即a 是单位向量,A 正确;a ,b 的夹角为120°,B 错误;因为AC →=AB →+BC →=2a +b ,所以BC →=b ,C 正确;(4a +b )·BC →=4a ·b +b2=4×1×2×cos 120°+4=-4+4=0,D 正确.故选ACD .12.如图,点P 在正方体ABCD -A 1B 1C 1D 1的面对角线BC 1上运动,则( )A .三棱锥A -D 1PC 的体积不变B .A 1P ∥平面ACD 1C .DP ⊥BC 1D .平面PDB 1⊥平面ACD 1【答案】ABD【解析】连接BD 交AC 于点O ,连接DC 1交D 1C 于点O 1,连接OO 1,则OO 1∥BC 1,所以BC 1∥平面AD 1C ,动点P 到平面AD 1C 的距离不变,所以三棱锥PAD 1C 的体积不变,又因为V 三棱锥PAD 1C =V 三棱锥AD 1PC ,所以A 正确;因为平面A 1C 1B ∥平面AD 1C ,A 1P ⊂平面A 1C 1B ,所以A 1P ∥平面ACD 1,B 正确;由于当点P 在B 点时,DB 不垂直于BC 1,即DP 不垂直BC 1,故C 不正确;由于DB 1⊥D 1C ,DB 1⊥AD 1,D 1C ∩AD 1=D 1,所以DB 1⊥平面ACD 1,又因为DB 1⊂平面PDB 1,所以平面PDB 1⊥平面ACD 1,D 正确.故选ABD .三、填空题:本题共4小题,每小题5分,共20分.13.已知复数z =1+3i 1-i ,z -为z 的共轭复数,则z 的虚部为________.【答案】-2【解析】由z =1+3i 1-i =(1+3i )(1+i )(1-i )(1+i )=-2+4i2=-1+2i,得z -=-1-2i,∴复数z 的虚部为-2.14.一组数据按从小到大的顺序排列为1,3,3,x ,7,8,10,11,其中x ≠7,已知该组数据的中位数为众数的2倍,则:(1)该组数据的上四分位数是________; (2)该组数据的方差为________. 【答案】(1)9 (2)11.25【解析】(1)一组数据按从小到大的顺序排列为1,3,3,x ,7,8,10,11,其中x ≠7,∵该组数据的中位数为众数的2倍,∴x +72=2×3,解得x =5.∵8×0.75=6,∴该组数据的上四分位数是8+102=9.(2)该组数据的平均数为:18(1+3+3+5+7+8+10+11)=6,∴该组数据的方差为18[(1-6)2+(3-6)2+(3-6)2+(5-6)2+(7-6)2+(8-6)2+(10-6)2+(11-6)2]=11.25.15.a ,b ,c 分别为△ABC 内角A ,B ,C 的对边.已知ab cos(A -B )=a 2+b 2-c 2,A =45°,a =2,则c =________.【答案】4105【解析】由ab cos(A -B )=a 2+b 2-c 2,得cos(A -B )=2·a 2+b 2-c 22ab=2cos C =-2cos(A+B ),整理,得3cos A cos B =sin A sin B ,所以tan A tan B =3.又A =45°,所以tan A =1,tan B =3.由sin B cos B =3,sin 2B +cos 2B =1,得sin B =31010,cosB =1010.所以sin C =sin(A +B )=22⎝ ⎛⎭⎪⎫31010+1010=255.由正弦定理,得c =a sin C sin A =4105. 16.如图,AB →=3AD →,AC →=4AE →,BE 与CD 交于P 点,若AP →=mAB →+nAC →,则m =________,n =________.【答案】311 211【解析】因为AB →=3AD →,AC →=4AE →,且E 、P 、B 三点共线,D 、P 、C 三点共线,所以存在x ,y 使得AP →=xAE →+(1-x )AB →=14xAC →+(1-x )AB →.因为AP →=yAC →+(1-y )AD →=yAC →+13(1-y )AB →,所以⎩⎪⎨⎪⎧14x =y ,1-x =13(1-y ),解得x =811,y =211,所以AP →=14×811AC →+⎝ ⎛⎭⎪⎫1-811AB →=211AC →+311AB →=311AB →+211AC →.又因为AP →=mAB →+nAC →,所以m =311,n =211.四、解答题:本题共6小题,17题10分,其余小题为12分,共70分,解答应写出必要的文字说明、证明过程或演算步骤.17.已知复数z =m 2-m i(m ∈R),若|z |=2,且z 在复平面内对应的点位于第四象限. (1)求复数z ;(2)若z 2+az +b =1+i,求实数a ,b 的值.解:(1)∵z =m 2-m i,|z |=2,∴m 4+m 2=2,得m 2=1.又∵z 在复平面内对应的点位于第四象限,∴m =1,即z =1-i.(2)由(1)得z =1-i,∴z 2+az +b =1+i ⇒(1-i)2+a (1-i)+b =1+i.∴(a +b )-(2+a )i =1+i,∴⎩⎪⎨⎪⎧a +b =1,2+a =-1,解得a =-3,b =4.18.在①b +b cos C =2c sin B ,②S △ABC =2CA →·CB →,③(3b -a )cos C =c cos A ,三个条件中任选一个,补充在下面问题中,并解决问题.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且满足________. (1)求cos C 的值;(2)若点E 在AB 上,且AE →=2EB →,EC =413,BC =3,求sin B .解:(1)若选①:因为b +b cos C =2c sin B ,由正弦定理可得sin B +sin B cos C =2sin C sin B .因为sin B ≠0,所以1+cos C =2sin C .联立⎩⎨⎧1+cos C =2sin C ,sin 2C +cos 2C =1,解得cos C =13,sin C =223,故cos C =13. 若选②:因为S △ABC =2CA →·CB →,所以12ab sin C =2ba cos C ,即sin C =22cos C >0,联立sin 2C +cos 2C =1,可得cos C =13.若选③:因为(3b -a )cos C =c cos A ,由正弦定理可得(3sin B -sin A )cos C =sin C cosA ,所以3sinB cosC =sin A cos C +sin C cos A =sin(A +C )=sin B .因为sin B ≠0,所以cos C =13.(2)由余弦定理可得cos ∠AEC =AE 2+EC 2-AC 22AE ·EC =49c 2+EC 2-b 243c ·EC ,cos ∠BEC =BE 2+EC 2-BC 22BE ·EC=19c 2+EC 2-a 223c ·EC ,因为cos ∠AEC +cos ∠BEC =0,所以49c 2+EC 2-b 243c ·EC +19c 2+EC 2-a 223c ·EC =0,即2c 2+9EC 2-3b 2-6a 2=0,则2c 2-3b 2=6a 2-9EC 2=6×9-9×419=13,①同时cos C =a 2+b 2-c 22ab =13,即b 2-c 2=2b -9,②联立①②可得b 2+4b -5=0,解得b =1,则c =22,故cos B =a 2+c 2-b 22ac =223,则sin B=13. 19.如图所示,在四棱锥MABCD 中,底面ABCD 为直角梯形,BC ∥AD ,∠CDA =90°,AD =4,BC =CD =2,△MBD 为等边三角形.(1)求证:BD ⊥MC ;(2)若平面MBD ⊥平面ABCD ,求三棱锥CMAB 的体积. (1)证明:取BD 中点O ,连接CO 、MO ,如图所示: ∵△MBD 为等边三角形,且O 为BD 中点,∴MO ⊥BD . 又BC =CD ,O 为BD 中点,∴CO ⊥BD .又MO ∩CO =O ,∴BD ⊥平面MCO . ∵MC ⊂平面MCO ,∴BD ⊥MC .(2)解:∵平面MBD ⊥平面ABCD ,且平面MBD ∩平面ABCD =BD ,MO ⊥BD , ∴MO ⊥平面ABCD .由(1)知MB =MD =BD =22,MO =MB 2-BO 2=6,S △ABC =12BC ·CD =2,∴V CMAB =V MABC =13×S △ABC ×MO =263.20.某冰糖橙为甜橙的一种,云南著名特产,以味甜皮薄著称.该橙按照等级可分为四类:珍品、特级、优级和一级(每箱有5 kg).某采购商打算采购一批该橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:等级 珍品 特级 优级 一级 箱数 40 30 10 20 售价/(元·kg -1)36302418(2)按照分层抽样的方法,从这100箱橙子中抽取10箱,试计算各等级抽到的箱数; (3)若在(2)抽取的特级品和一级品的箱子上均编上号放在一起,再从中抽取2箱,求抽取的2箱中两种等级均有的概率.解:(1)依题意可知,样本中的100箱不同等级橙子的平均价格为36×410+30×310+24×110+18×210=29.4(元/kg). (2)依题意,珍品抽到110×40=4(箱),特级抽到110×30=3(箱),优级抽到110×10=1(箱),一级抽到110×20=2(箱).(3)抽到的特级有3箱,编号为A 1,A 2,A 3,抽到的一级有2箱,编号为B 1,B 2. 从中抽取2箱,有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2)共10种可能,两种等级均有的有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2)共6种可能,∴所求概率p =610=35.21.已知向量a =(3cos ωx ,sin ωx ),b =(cos ωx ,cos ωx ),其中ω>0,记函数f (x )=a ·b .(1)若函数f (x )的最小正周期为π,求ω的值;(2)在(1)的条件下,已知△ABC 的内角A ,B ,C 对应的边分别为a ,b ,c ,若f ⎝ ⎛⎭⎪⎫A 2=3,且a=4,b +c =5,求△ABC 的面积.解:(1)f (x )=a ·b =3cos 2ωx +sin ωx ·cos ωx =3(cos 2ωx +1)2+sin 2ωx2=sin ⎝⎛⎭⎪⎫2ωx +π3+32. ∵f (x )的最小正周期为π,且ω>0,∴2π2ω=π,解得ω=1.(2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3+32.∵f ⎝ ⎛⎭⎪⎫A 2=3,∴sin ⎝ ⎛⎭⎪⎫A +π3=32. 由0<A <π,得π3<A +π3<4π3,∴A +π3=2π3,解得A =π3.由余弦定理a 2=b 2+c 2-2bc cos A ,得16=b 2+c 2-bc .联立b +c =5,得bc =3. ∴S △ABC =12bc sin A =12×3×32=334.22.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称.某市为了了解人们对“一带一路”的认知程度,对不同年龄和不同职业的人举办了一次“一带一路”知识竞赛,满分为100分(90分及以上为认知程度高).现从参赛者中抽取了x 人,按年龄分成5组,第一组:[20,25),第二组:[25,30),第三组:[30,35),第四组:[35,40),第五组:[40,45),得到如图所示的频率分布直方图,已知第一组有6人.(1)求x ;(2)求抽取的x 人的年龄的中位数(结果保留整数);(3)从该市大学生、军人、医务人员、工人、个体户,五种人中用分层抽样的方法依次抽取6人,42人,36人,24人,12人,分别记为1~5组,从5个按年龄分的组和5个按职业分的组中每组各选派1人参加知识竞赛,分别代表相应组的成绩,年龄组中1~5 组的成绩分别为93,96,97,94,90,职业组中1~5 组的成绩分别为93,98,94,95,90.①分别求5个年龄组和5个职业组成绩的平均数和方差;②以上述数据为依据,评价5个年龄组和5个职业组对“一带一路”的认知程度,并谈谈你的感想.解:(1)根据频率分布直方图得第一组的频率为0.01×5=0.05,∴6x=0.05,解得x =120.(2)设中位数为a ,则0.01×5+0.07×5+(a -30)×0.06=0.5,∴a =953≈32,则中位数为32.(3)①5个年龄组成绩的平均数为x 1=15×(93+96+97+94+90)=94,方差为s 21=15×[(-1)2+22+32+02+(-4)2]=6.5个职业组成绩的平均数为x 2=15×(93+98+94+95+90)=94,方差为s 22=15×[(-1)2+42+02+12+(-4)2]=6.8.②从平均数来看两组的认知程度相同,从方差来看年龄组的认知程度更稳定.。
模块综合测评(时间120分钟,满分150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求)1.复数z 满足(3-2i)z =4+3i(i 为虚数单位),则复数在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限A [由题意得,z =4+3i 3-2i =(4+3i )(3+2i )(3-2i )(3+2i )=613+17i 13,则复数z 在复平面内对应的点位于第一象限,故选A.]2.将一颗质地均匀的骰子(一种各个面分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为大于8的偶数的概率为( )A.112B.19C.16D.14B [将先后两次的点数记为有序实数对(x ,y ),则共有6×6=36(个)基本事件,其中点数之和为大于8的偶数有(4,6),(6,4),(5,5),(6,6),共4种,则满足条件的概率为436=19.故选B. ]3.从2名男同学和3名女同学中任选2人参加社区服务,则选中的恰有一名女同学的概率为( )A .0.3B .0.4C .0.5D .0.6D [设2名男生为a ,b,3名女生为A ,B ,C, 则任选2人的种数为ab ,aA ,aB ,aC ,bA ,bB ,bC ,AB ,AC ,BC 共10种,其中恰有一名女生为aA ,aB ,aC ,bA ,bB ,bC 共6种, 故恰有一名女同学的概率P =610=0.6 .故选D.]4.已知△ABC 为等腰三角形,满足AB =AC =3,BC =2,若P 为底边BC上的动点,则AP→(AB →+AC →)( ) A .有最大值8B .是定值2C .有最小值1D .是定值4D [如图,设AD 是等腰三角形底边BC 上的高,长度为3-1= 2.故AP →·(AB →+AC →)=(AD →+DP →)·2AD→=2AD →2+2DP →·AD→=2AD →2=2×(2)2=4.故选D.] 5.在△ABC 中,若lg sin A -lg cos B -lg sin C =lg 2,则△ABC 是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形A [因为lg sin A -lg cosB -lg sinC =lg 2,所以lg sin A cos B sin C=lg 2. 所以sin A =2cos B sin C .因为∠A +∠B +∠C =180°,所以sin(B +C )=2cos B sin C ,所以sin(B -C )=0.所以∠B =∠C ,所以△ABC 为等腰三角形.]6.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳌臑.在鳌臑P -ABC 中,P A ⊥平面ABC ,P A =4,AB =BC =2,鳌臑P -ABC 的四个顶点都在同一个球上,则该球的表面积是( )A .16πB .20πC .24πD .64πC [四棱锥P -ABC 的四个面都是直角三角形,∵AB =BC =2,∴AB ⊥BC ,又P A ⊥平面ABC ,∴AB 是PB 在平面ABC上的射影,P A ⊥CA ,∴BC ⊥PB ,取PC 中点O ,则O 是P -ABC外接球球心.由AB =BC =2得AC =22,又P A =4,则PC =8+16=26,OP =6, 所以球表面积为S =4π(OP )2=4π×(6)2=24π.故选C.]7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知三个向量m =⎝ ⎛⎭⎪⎫a ,cos A 2,n =⎝ ⎛⎭⎪⎫b ,cos B 2,p =⎝ ⎛⎭⎪⎫c ,cos C 2共线,则△ABC 的形状为( ) A .等边三角形 B .等腰三角形C .直角三角形D .等腰直角三角形 A [∵向量m =⎝ ⎛⎭⎪⎫a ,cos A 2,n =⎝ ⎛⎭⎪⎫b ,cos B 2共线, ∴a cos B 2=b cos A 2.由正弦定理得sin A cos B 2=sin B cos A 2.∴2sin A 2cos A 2 cos B 2=2sin B 2cos B 2cos A 2.则sin A 2=sin B 2.∵0<A 2<π2,0<B 2<π2,∴A 2=B 2,即A =B .同理可得B =C .∴△ABC 的形状为等边三角形.故选A.]8.如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别为棱BB 1,CC 1的中点,点O 为上底面的中心,过E ,F ,O 三点的平面把正方体分为两部分,其中含A 1的部分为V 1,不含A 1的部分为V 2,连接A 1和V 2的任一点M ,设A 1M 与平面A 1B 1C 1D 1所成角为α,则sin α的最大值为( )A.22B.255C.265D.266B [连接EF ,因为EF ∥平面ABCD ,所以过EFO 的平面与平面ABCD 的交线一定是过点O且与EF 平行的直线,过点O 作GH ∥BC 交CD 于点G ,交AB 于H 点,则GH ∥EF ,连接EH ,FG ,则平行四边形EFGH 即为截面,则五棱柱A 1B 1EHA -D 1C 1FGD 为V 1,三棱柱EBH -FCG 为V 2,设M 点为V 2的任一点,过M 点作底面A 1B 1C 1D 1的垂线,垂足为N ,连接A 1N , 则∠MA 1N 即为A 1M 与平面A 1B 1C 1D 1所成的角,所以∠MA 1N =α.因为sin α=MN A 1M ,要使α的正弦值最大,必须MN 最大,A 1M 最小,当点M 与点H 重合时符合题意.故(sin α)max =⎝ ⎛⎭⎪⎫MN A 1M max =HN A 1H =255.故选B.] 二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.如图是2020年春运期间十二个城市售出的往返机票的平均价格以及相比去年同期变化幅度的数据统计图,给出下列4个结论其中结论正确的是( )A .深圳的变化幅度最小,北京的平均价格最高;B .深圳和厦门往返机票的平均价格同去年相比有所下降;C .平均价格从高到低位于前三位的城市为北京,深圳,广州;D .平均价格的涨幅从高到低位于前三位的城市为天津,西安,上海.ABC [对于A.由图可知深圳对应的小黑点最接近0%,故变化幅度最小,北京对应的条形图最高,则北京的平均价格最高,故A 正确;对于B.由图可知深圳和厦门对应的小黑点在0%以下,故深圳和厦门的价格同去年相比有所下降,故B 正确; 对于C 由图可知条形图由高到低居于前三位的城市为北京、深圳和广州,故C 正确;对于D 由图可知平均价格的涨幅由高到低分别为天津、西安和南京,故D 错误.故选ABC.]10.已知圆锥的顶点为P ,母线长为2,底面半径为3,A ,B 为底面圆周上两个动点,则下列说法正确的是( )A .圆锥的高为1B .三角形P AB 为等腰三角形C.三角形P AB面积的最大值为3D.直线P A与圆锥底面所成角的大小为π6ABD[如图所示:PO=22-()32=1,A正确;P A=PB=2,B正确;易知直线P A与圆锥底面所成的角为∠P AO=π6,D正确;取AB中点为C,设∠P AC=θ,则θ∈⎣⎢⎡⎭⎪⎫π6,π2,S△P AB=2sin θ·2cos θ=2sin 2θ,当θ=π4时,面积有最大值为2,C错误.故选ABD.]11.以下对各事件发生的概率判断正确的是()A.连续抛两枚质地均匀的硬币,有3个基本事件,出现一正一反的概率为1 3B.每个大于2的偶数都可以表示为两个素数的和,例如12=5+7,在不超过15的素数中随机选取两个不同的数,其和等于14的概率为1 15C.将一个质地均匀的骰子先后抛掷2次,记下两次向上的点数,则点数之和为6的概率是5 36D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是12BCD[对于A,连续抛两枚质地均匀的硬币,其样本区间为Ω={(正,正),(正,反),(反,正),(反,反)};有4个基本事件,出现一正一反事件A包含的样本点为(正,反),(反,正),所以A错误;对于B,从集合{2,3,5,7, 11,13}中取出两个数,其样本空间Ω={(2,3),(2,5),(2,7),(2,11),(2,13),(3,5),(3,7),(3,11),(3,13),(5,7),(5,11),(5,13),(7,11),(7,13),(11,13)},即包含15个基本等可能事件,“两个数的和为14”的事件B仅包含一个样本点(3,11),所以P(B)=115,所以B正确;对于C,样本空间有36个样本点,“点数和为6”的事件C包含5个样本点(1,5),(2,4),(3,3),(4,2),(5,1),即P(C)=536,所以C正确;对于D,从四件产品中取出两件,其样本空间为Ω={(正1,正2),(正2,正3),(正1,正3),(正1,次),(正2,次),(正3,次)},故共有6个基本等可能事件,“全是正品”的事件的样本点为3个,所以P(D)=12,所以故选BCD.]12.已知复数z对应复平面内点A,则下列关于复数z,z1,z2结论正确的是()A. |z+2i|表示点A到点(0,2)的距离B. 若|z-1|=|z+2i|,则点A的轨迹是直线C. ||z1|-|z2||≤|z1+z2|≤|z1|+|z2|D. |z1z2|=|z1||z2|BCD[对于A,|z+2i|表示点A到点(0,-2)的距离,所以A错误;对于B, |z-1|=|z+2i|表示A点到M(1,0)和N(0,-2)的距离相等,所以A的轨迹是MN的垂直平分线,是一条直线,所以B正确;由复数模的性质知,C、D均正确,故选BCD.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.2019年国际山地旅游大会于8月29日在贵州黔西南州召开,据统计有来自全世界的4 000名女性和6 000名男性徒步爱好者参与徒步运动,其中抵达终点的女性与男性徒步爱好者分别为1 000名和2 000名,抵达终点的徒步爱好者可获得纪念品一份.若记者随机电话采访参与本次徒步运动的1名女性和1名男性徒步爱好者,其中恰好有1名徒步爱好者获得纪念品的概率是________.512[“男性获得纪念品,女性没有获得纪念品”的概率为2 0006 000×3 0004 000=14,“男性没有获得纪念品,女性获得纪念品”的概率为4 0006 000×1 0004 000=16,故“恰好有1名徒步爱好者获得纪念品”的概率为14+16=512.]14.已知向量a=(1,-2),b=(x,3y-5),且a∥b,若x,y均为正数,则xy 的最大值是________.2524[∵a∥b,∴(3y-5)×1+2x=0,即2x+3y=5.∵x>0,y>0,∴5=2x+3y≥26xy,∴xy≤2524,当且仅当3y=2x时取等号.]15.掷红、白两颗骰子,事件A={红骰子点数小于3},事件B={白骰子点数小于3},则事件P(AB)=__________,P(A+B)=________.1 959[由掷红、白两颗骰子,向上的点数共6×6=36种可能,红色骰子的点数分别记为红1,红2,…,白色骰子的点数分别记为白1,白2,…其中红骰子点数小于3的有1,2二种可能,其中白骰子点数小于3的有1,2二种可能,事件A={红1,白1},{红1,白2},{红1,白3},{红1,白4},{红1,白5},{红1,白6},{红2,白1},{红2,白2},{红2,白3},{红2,白4},{红2,白5},{红2,白6},共12种事件B={白1,红1},{白1,红2},{白1,红3},{白1,红4},{白1,红5},{白1,红6},{白2,红1},{白2,红2},{白2,红3},{白2,红4},{白2,红5},{白2,红6},共12种,事件AB={红1,白1},{红1,白2},{红2,白1},{红2,白2},共4种,故P(AB)=436=19,事件A+B共有12+12-4=20种,故P(A+B)=2036=59.]16.如图,四棱锥P-ABCD中,ABCD是矩形,P A⊥平面ABCD,P A=AB=1,BC=2,四棱锥外接球的球心为O,点E是棱AD上的一个动点.给出如下命题:①直线PB与直线CE是异面直线;②BE与PC一定不垂直;③三棱锥E-BCO的体积为定值;④CE+PE的最小值为2 2.其中正确命题的序号是________.(将你认为正确的命题序号都填上)①③④[对于①,∵直线PB经过平面ABCD内的点B,而直线CE在平面ABCD内不过B,∴直线PB与直线CE是异面直线,故①正确;对于②,当E在线AD上且AE=14AD位置时,BE⊥AC,因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE,又P A∩AC=A,P A⊂平面P AC,AC⊂平面P AC,∴BE⊥平面P AC,则BE垂直PC,故②错误;对于③,由题意知,四棱锥P-ABCD的外接球的球心为O是PC的中点,则△BCE的面积为定值,且O到平面ABCD的距离为定值,∴三棱锥E-BCO的体积为定值,故③正确;对于④,设AE=x,则DE=2-x,∴PE+EC=1+x2+1+(2-x)2.由其几何意义,即平面内动点(x,1)与两定点(0,0),(2,0)距离和的最小值知,其最小值为22,故④正确.故答案为①③④.]四、解答题(本大题共6小题,共10分,解答应写出文字说明、证明过程或演算)17.(本小题满分10分)benti从青岛市统考的学生数学考试试卷中随机抽查100份数学试卷作为样本,分别统计出这些试卷总分,由总分得到如下的频率分布直方图.(1)求这100份数学试卷成绩的中位数;(2)从总分在[55,65)和[135,145)的试卷中随机抽取2份试卷,求抽取的2份试卷中至少有一份总分少于65分的概率.[解](1)记这100份数学试卷成绩的中位数为x(95<x<105),则0.002×10+0.008×10+0.013×10+0.015×10+(x-95)×0.024=0.5,解得x=100,所以中位数为100.(2)总分在[55,65)的试卷共有0.002×10×100=2(份),记为A,B,总分在[135,145)的试卷共有0.004×10×100=4(份),记为a,b,c,d,则从上述6份试卷中随机抽取2份的结果为{A,B},{A,a},{A,b},{A,c},{A,d},{B,a},{B,b},{B,c},{B,d},{a ,b },{a ,c },{a ,d },{b ,c },{b ,d },{c ,d },共计15个样本点,且是等可能的.至少有一份总分少于65分的有:{A ,B },{A ,a },{A ,b },{A ,c },{A ,d },{B ,a },{B ,b },{B ,c },{B ,d },共计9个样本点,所以抽取的2份至少有一份总分少于65分的概率P =915=35.18.(本小题满分12分)已知向量m =(cos α,sin α),n =(-1,2).(1)若m ∥n ,求sin α-2cos αsin α+cos α的值; (2)若|m -n |=2,α∈⎝ ⎛⎭⎪⎫π2,π,求cos ⎝ ⎛⎭⎪⎫α+π4的值. [解] (1)因为m ∥n ,所以sin α=-2cos α.所以原式=-2cos α-2cos α-2cos α+cos α=-4cos α-cos α=4. (2)因为 |m -n |=2,所以2sin α-cos α=2.所以cos 2α=4(sin α-1)2,所以1-sin 2α=4(sin α-1)2,所以α∈⎝ ⎛⎭⎪⎫π2,π, 所以sin α=35,cos α=-45. 所以原式=-7210.19.(本小题满分12分)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =b tan A .(1)证明:sin B =cos A ;(2)若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .[解] (1)证明:由正弦定理知a sin A =b sin B =c sin C =2R ,∴a =2R sin A ,b =2R sin B ,代入a =b tan A 得sin A =sin B ·sin A cos A ,又∵A ∈(0,π),∴sin A >0,∴1=sin B cos A ,即sin B =cos A .(2)由sin C -sin A cos B =34知,sin(A +B )-sin A cos B =34,∴cos A sin B =34.由(1)知,sin B =cos A ,∴cos 2A =34,由于B 是钝角,故A ∈⎝ ⎛⎭⎪⎫0,π2,∴cos A =32,A =π6. sin B =32,B =2π3,∴C =π-(A +B )=π6.20.(本小题满分12分)如图,E 是以AB 为直径的半圆上异于A ,B 的点,矩形ABCD 所在的平面垂直于该半圆所在的平面,且AB =2AD =2.(1)求证:EA ⊥EC ;(2)设平面ECD 与半圆弧的另一个交点为F .①证明:EF ∥AB ;②若EF =1,求三棱锥E -ADF 的体积.[解] (1)证明:∵平面ABCD ⊥平面ABE ,平面ABCD ∩平面ABE =AB ,BC ⊥AB ,BC ⊂平面ABCD ,∴BC ⊥平面ABE .又∵AE ⊂平面ABE ,∴BC ⊥AE .∵E 在以AB 为直径的半圆上,∴AE ⊥BE ,又∵BE ∩BC =B ,BC ,BE ⊂平面BCE ,∴AE ⊥平面BCE .又∵CE ⊂平面BCE ,∴EA ⊥EC .(2)①证明:∵AB ∥CD ,AB ⊄平面CED ,CD ⊂平面CED ,∴AB ∥平面CED .又∵AB ⊂平面ABE ,平面ABE ∩平面CED =EF ,∴AB ∥EF .②取AB 的中点O ,EF 的中点O ′,在Rt △OO ′F 中,OF =1,O ′F =12,∴OO ′=32.由(1)得BC ⊥平面ABE ,又已知AD ∥BC ,∴AD ⊥平面ABE .故V E -ADF =V D -AEF =13·S △AEF ·AD =13·12·EF ·OO ′·AD =312.21.(本小题满分12分)已知△ABC 中,三个内角A ,B ,C 所对的边分别是a ,b ,c .(1)证明:a cos B +b cos A =c ;(2)在①2c -b cos B =a cos A ,②c cos A =2b cos A -a cos C ,③2a -b cos C cos A =c cos B cos A 这三个条件中任选一个补充在下面问题中,并解答若a =7,b =5,________,求△ABC 的周长.[解] (1)根据余弦定理:a cos B +b cos A =a ·a 2+c 2-b 22ac +b ·b 2+c 2-a 22bc=a 2+c 2-b 2+b 2+c 2-a 22c=c ,所以a cos B +b cos A =c . (2)选①:因为2c -b cos B =a cos A ,所以2c ·cos A =b cos A +a cos B ,所以由(1)中所证结论可知,2c cos A =c ,即cos A =12,因为A ∈(0,π),所以A =π3;选②:因为c cos A =2b cos A -a cos C ,所以2b cos A =a cos C +c cos A , 由(1)中的证明过程同理可得,a cos C +c cos A =b ,所以2b cos A =b ,即cos A =12,因为A ∈(0,π),所以A =π3;选③:因为2a -b ·cos C cos A =c ·cos B cos A ,所以2a cos A =b cos C +c cos B ,由(1)中的证明过程同理可得,b cos C +c cos B =a ,所以2a cos A =a ,即cos A =12,因为A ∈(0,π),所以A =π3.在△ABC 中,由余弦定理知,a 2=b 2+c 2-2bc cos A =25+c 2-10c ·12=49,即c 2-5c -24=0,解得c =8或c =-3(舍),所以a +b +c =7+5+8=20,即△ABC 的周长为20.22. (本小题满分12分)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,小区的两个出入口设置在点 A 及点 C 处,且小区里有一条平行于 BO 的小路CD .(1)已知某人从 C 沿 CD 走到 D 用了10分钟,从D 沿DA 走到 A 用了6分钟,若此人步行的速度为每分钟50米,求该扇形的半径OA 的长(精确到1米)(2)若该扇形的半径为OA =a ,已知某老人散步,从 C 沿CD 走到D ,再从D 沿DO 走到O ,试确定C 的位置,使老人散步路线最长.[解] (1)法一:设该扇形的半径为r 米,连接CO . 由题意,得CD =500(米),DA =300(米),∠CDO =60°,在△CDO 中,CD 2+OD 2-2CD ·OD ·cos 60 °=OC 2,即5002+()r -3002-2×500×()r -300×12=r 2, 解得r =4 90011≈445(米).法二:连接AC ,作OH ⊥AC ,交AC 于H ,由题意,得CD =500(米), AD =300(米),∠CDA =120° ,在△CDA 中,AC 2=CD 2+AD 2-2·CD ·AD ·cos 120°=5002+3002+2×500×300×12=7002.AC =700(米). cos ∠CAD =AC 2+AD 2-CD 22·AC ·AD=1114. 在直角△HAO 中,AH =350(米),cos ∠HAO =1114,OA =AH cos ∠HAO=4 90011≈445(米). (2)连接OC ,设∠DOC =θ,θ∈⎝ ⎛⎭⎪⎫0,2π3, 在△DOC 中,由正弦定理得CD sin θ=DO sin ⎝ ⎛⎭⎪⎫2π3-θ=OC sin π3=2a 3, 于是CD =2a 3sin θ,DO =2a 3sin ⎝⎛⎭⎪⎫2π3-θ,则 DC +DO =2a 3⎣⎢⎡⎦⎥⎤sin θ+sin ⎝ ⎛⎭⎪⎫2π3-θ=2a sin ⎝ ⎛⎭⎪⎫θ+π6 ,θ∈⎝ ⎛⎭⎪⎫0,2π3 所以当θ=π3时,DC +DO 最大为2a ,此时C 在弧AB 的中点处.。
北师大版(2019)必修第二册第六章单元测试题一、单选题1.对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A .,a b αα⊂⊂B .,//a b αα⊂C .,a b αα⊥⊥D .,a b αα⊂⊥2.在空间四边形ABCD 中,在,,,AB BC CD DA 上分别取E ,F ,G ,H 四点,如果,GH EF 交于一点P ,则( )A .P 一定在直线BD 上B .P 一定在直线AC 上C .P 在直线AC 或BD 上 D .P 既不在直线BD 上,也不在直线AC 上 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A B C D 4.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高h ,计算其体积V 的近似公式21.36v L h ≈它实际上是将圆锥体积公式中的圆周率π近似取为3.那么近似公式2275v L h ≈相当于将圆锥体积公式中的π近似取为 A .227B .258C .15750D .3551135.菱形ABCD 在平面α内,PC ⊥α,则P A 与BD 的位置关系是( ) A .平行 B .相交但不垂直 C .垂直相交 D .异面且垂直 6.一个水平放置的平面图形的斜二测直观图是直角梯形ABCD (如图所示),若45ABC ∠=︒,1AB AD ==,DC BC ⊥,则这个平面图形的面积为A .14B .2C .14+D .127.在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则. A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥8.如图,等边三角形ABC 的边长为4,M ,N 分别为AB ,AC 的中点,沿MN 将△AMN 折起,使得平面AMN 与平面MNCB 所成的二面角为30°,则四棱锥A -MNCB 的体积为A .32B C D .3二、多选题9.用一张长、宽分别为8cm 和4cm 的矩形硬纸折成正四棱柱的侧面,则此正四棱柱的对角线长可以为( )AB .C .32cmD10.用一个平面去截正方体,关于截面的形状,下列判断正确的是( ) A .直角三角形B .正五边形C .正六边形D .梯形11.如图,在棱长均相等的正四棱锥P ABCD -中,O 为底面正方形的中心,,M N 分别为侧棱,PA PB 的中点,下列结论正确的是( )A .//PC 平面OMNB .平面//PCD 平面OMNC .OM PA ⊥D .直线PD 与直线MN 所成角的大小为90︒12.已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC 是边长为1的正三角形,SC为球O 的直径,且2SC =,则( )A .三棱锥S ABC -B .三棱锥S ABC -C .三棱锥O ABC -D .三棱锥O ABC -三、填空题13.已知,a b 表示直线,,,αβγ表示不重合平面. ①若,,,a b a b αβα⋂=⊂⊥则αβ⊥;②若,a a α⊂垂直于β内任意一条直线,则αβ⊥; ③若,,,a b αβαβαγ⊥⋂=⋂=则a b ⊥;④若,,,a b a b αβ⊥⊥则αβ∥.上述命题中,正确命题的序号是__________.14.古希腊数学家阿基米德的墓碑上刻着一个圆柱,此陶柱内有一个内切球,这个球的直径恰好与圆柱的高相等,如图所示,相传这个图形表达了阿基米德最引以为豪的发现,我们不妨称之为“阿氏球柱体” ,若在装满水的阿氏球柱体中放入其内切球(溢出部分水),则“阿氏球柱体”中剩下的水的体积与圆柱体积的比值为________.15.已知正四棱台的上底面边长为2,下底面边长为6,侧棱长为的半径为________.16.已知二面角α-l -β为60°,动点P ,Q 分别在平面α,β内,P 到βQ到α的距离为P ,Q 两点之间距离的最小值为________,此时直线PQ 与平面α所成的角为________. 四、解答题17.在三棱柱111ABC A B C -中,1,AB AC B C ⊥⊥平面ABC ,,E F 分别是1,AC B C 的中点.(1)求证://EF 平面11AB C ; (2)求证:平面1AB C ⊥平面1ABB .18.在四面体A BCD -中,点E ,F ,M 分别是AB ,BC ,CD 的中点,且2BD AC ==,1EM =.(1)求证://EF 平面ACD ; (2)求异面直线AC 与BD 所成的角.19.某广场设置了一些多面体形或球形的石凳供市民休息.如图(1)的多面体石凳是由图(2)的正方体石块截去八个相同的四面体得到,且该石凳的体积是3160000cm 3.(1)求正方体石块的棱长;(2)若将图(2)的正方体石块打磨成一个球形的石凳,求此球形石凳的最大表面积. 20.如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.21.在三棱锥P ABC -中,AB BC =,PA ⊥平面ABC ,D 为PC 的中点,E 为AC 的中点.(1)求证:BD AC ⊥;(2)若M 为AB 的中点,请问线段PC 上是否存在一点N ,使得||MN 平面BDE ?若存在,请说明点N 的位置,并说明理由?若不存在,也请说明理由.22.如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧面PAD ⊥底面ABCD ,E 为侧棱PD 上一点.(Ⅰ)求证://CD 平面ABE ; (II )求证:CD AE ⊥;(III )若E 为PD 中点,平面ABE 与侧棱PC 交于点F ,且2PA PD AD ===,求四棱锥P-ABFE 的体积.参考答案1.B 【分析】由空间中两条直线的位置关系可得a 、b 可能平行或异面,但A 与异面直线相矛盾,C 中只有//a b 才成立,而对于D ,只有a b ⊥才成立,故D 也错误,用排除法即可得到答案. 【详解】不相交的直线a 、b 的位置有两种:平行或异面. 故对于A 选项,当a 、b 异面时,不存在平面α满足A , 对于C 选项,只有当//a b 时C 才成立; 对于D 选项,只有当a b ⊥时D 才成立. 故选:B 2.B 【分析】由题设知GH ⊂面ADC ,结合已知条件有P ∈面ADC 、P ∈面ABC ,进而可判断P 所在的位置. 【详解】由题意知:GH ⊂面ADC ,又,GH EF 交于一点P , ∴P ∈面ADC ,同理,P ∈面ABC ,又面ABC 面ADC AC =,由公理3知:点P 一定在直线AC 上. 故选:B.3.C 【分析】设,CD a PE b ==,利用212PO CD PE =⋅得到关于,a b 的方程,解方程即可得到答案.【详解】如图,设,CD a PE b ==,则PO由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得b a =. 故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 4.B 【详解】试题分析:设圆锥底面圆的半径为,高为,依题意,,,所以,即的近似值为258,故选B. 考点:《算数书》中的近似计算,容易题.5.D 【分析】由菱形ABCD 在平面α内,则对角线AC BD ⊥,又PC α⊥, 可得BD ⊥平面ACP ,进而可得BD AP ⊥,又显然,P A 与BD 不在同一平面内,可判断其位置关系.【详解】假设P A 与BD 共面,根据条件点P 和菱形ABCD 都在平面α内, 这与条件PC α⊥相矛盾.故假设不成立,即P A 与BD 异面. 又在菱形ABCD 中,对角线AC BD ⊥,PC α⊥,BD α⊆,则BD PC ⊥且ACPC C =,所以BD ⊥平面ACP ,AP ⊆平面ACP . 则BD AP ⊥,所以P A 与BD 异面且垂直. 故选:D 【点睛】本题考查异面直线的判定和垂直关系的证明,属于基础题. 6.B 【详解】在直观图中,∵∠ABC=45°,AB=AD=1,DC ⊥BC ∴AD=1,∴原来的平面图形上底长为1,下底为12, ∴平面图形的面积为1122++×故选:B . 7.C 【分析】画出图形,结合图形根据空间中的垂直的判定对给出的四个选项分别进行分析、判断后可得正确的结论. 【详解】画出正方体1111ABCD A B C D -,如图所示.对于选项A ,连1D E ,若11A E DC ⊥,又111DC A D ⊥,所以1DC ⊥平面11A ED ,所以可得11DC D E ⊥,显然不成立,所以A 不正确.对于选项B ,连AE ,若1A E BD ⊥,又1BD AA ⊥,所以DB ⊥平面1A AE ,故得BD AE ⊥,显然不成立,所以B 不正确.对于选项C ,连1AD ,则11AD BC .连1A D ,则得111,AD A D AD ED ⊥⊥,所以1AD ⊥平面1A DE ,从而得11AD A E ⊥,所以11A E BC ⊥.所以C 正确. 对于选项D ,连AE ,若1A E AC ⊥,又1AC AA ⊥,所以AC ⊥平面1A AE ,故得AC AE ⊥,显然不成立,所以D 不正确. 故选C . 【名师点睛】本题考查线线垂直的判定,解题的关键是画出图形,然后结合图形并利用排除法求解,考查数形结合和判断能力,属于基础题. 8.A 【分析】根据二面角为30°,可求出四棱锥A ﹣MNCB 的高,底面面积,即可求出四棱锥的体积. 【详解】由题意画出图形如图,取MN ,BC 的中点E ,D ,易知∠AED =30°,由题意可知AE AO底面面积为:2344=则四棱锥A ﹣MNCB 的体积为1332=,故选A .【点睛】本题考查二面角和锥体体积问题,考查空间想象能力和平面图形的折叠问题,考查计算能力.9.BD【分析】分别以8cm和4cm作为正四棱柱底面正方形周长,可求得底面正方形边长和正四棱柱的高,利用勾股定理可求得结果.【详解】若8cm为正四棱柱底面正方形的周长,则底面正方形边长为2cm,正四棱柱高为4cm,则此=;若4cm为正四棱柱底面正方形的周长,则底面正方形边长为1cm,正四棱柱高为8cm,则此.故选:BD.10.CD【分析】根据题意,依次作出对应的截面,并判断即可得答案.【详解】对于A选项,如图1,作出的截面为三角形,但为锐角三角形,不可能为直角三角形,故A 选项错误;对于B选项,如图2,过正方体的一个顶点作截面,可以得到截面为五边形,但该五边形不是正五边形,故B选项错误;对于C选项,如图3,取各边的中点,连接的截面即为正六边形,故C选项正确;对于D选项,如图4,所做的截面为梯形,故D选项正确.故选:CD11.ABC【分析】A选项:连接AC,O为AC中点,M为PA中点,可证OM∥PC根据线面平行的判定可以证明PC∥平面OMN;PCD平面OMN;B选项:;连接BD,同理证明PD∥平面OMN,结合A选项可证明平面//-的棱长均相等,且四边形ABCD为正方形,根据勾股定理可C选项:由于正四棱锥P ABCD⊥,结合OM∥PC可证OM⊥PA;证PA PCD选项:先利用平移思想,根据平行关系找到异面直线PD与直线MN所成角的平面角,结合△为正三角形,即可求出直线PD与直线MN所成角.PDC【详解】连接AC 如图示:O 为底面正方形的中心, O ∴为AC 中点,又M 为PA 中点,OM ∴∥PC 又OM ⊂平面OMN ,PC ⊄平面OMN ,PC ∴∥平面OMN ,故A 选项正确;连接BD ,同理可证ON ∥PD ,又ON ⊂平面OMN ,PD ⊄平面OMN ,PD ∴∥平面OMN ,又PD PC P ⋂=,PC ∥平面OMN PC ⊂平面PCD ,PD ⊂平面PCD ,∴平面//PCD 平面OMN ,故B 选项正确;由于正四棱锥P ABCD -的棱长均相等,且四边形ABCD 为正方形,∴22222AB BC PA PC AC +=+=∴PA PC ⊥,又OM ∥PC , OM ∴⊥PA ,故C 选项正确;,M N 分别为侧棱,PA PB 的中点,MN ∴∥AB四边形ABCD 为正方形, CD ∴∥AB ,∴直线PD 与直线CD 所成的角即为直线PD 与直线MN 所成角PDC ∴∠即为直线PD 与直线MN 所成角,又PDC △为正三角形,060PDC ∴∠=, ∴直线PD 与直线MN 所成角为060.故D 选项不正确.故选:ABC 12.AC 【分析】根据题意可知三棱锥S ABC -的体积是三棱锥O ABC -体积的2倍,进而确定相应高,并求出体积. 【详解】解: 由于三棱锥S ABC -与三棱锥O ABC -的底面都是ABC ,O 是SC 的中点, 因此三棱锥S ABC -的高是三棱锥O ABC -高的2倍,所以三棱锥S ABC -的体积也是三棱锥O ABC -体积的2倍,在三棱锥O ABC -中,其棱长都为1,如图,112ABCS=⨯高OD ==则13O ABC V -==26S ABC O ABC V V --==. 故选:AC. 13.②④ 【分析】对于①②,根据面面垂直的判断定理,对于③,利用线线垂直的判断定理判断,对于④,利用面面平行的判断定理判断. 【详解】对于①,根据线面垂直的判定定理,需要一条直线垂直于两条相交的直线,故不正确, 对于②,a α⊂,a 垂直于β内的任意一条直线,满足线面垂直的定理,即可得到a β⊥,又a α⊂,则αβ⊥,故正确,对于③,αβ⊥,a αβ⋂=,b αγ⋂=,则a b ⊥或//a b ,或相交,故不正确, 对于④,可以证明αβ,故正确. 故答案为②④ 【点睛】本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用. 14.13【分析】设球半径为R ,求出球和圆柱的体积,可得剩下的水的体积,从而得比值. 【详解】设球半径为R ,则球体积为3143V R π=,圆柱体积为23222V R R R ππ=⨯=,剩下水的体积为3332142233V V R R R πππ-=-=,∴3213221323R V V V R ππ-==. 故答案为:13【点睛】本题考查圆柱与球的体积,掌握圆柱与球的体积公式是解题关键. 15.【分析】如图,在正四棱台1111ABCD A B C D -中,分别取上下底面的中心1O 、O ,则球心在线段1OO 上,求出1OO 的长,设正四棱台外接球的半径为R8=,求出R 的值,即可得答案 【详解】如图,在正四棱台1111ABCD A B C D -中,分别取上下底面的中心1O 、O,有11O AOA =过点1A 作1A H AO ⊥,垂足为H ,在1Rt A HA △中,18A H =, 设正四棱台外接球的半径为R8=,5=,解得:R =.故答案为:【点睛】此题考查几何体与其外接球的关系,涉及棱台的几何结构,解题的关键是确定球心的位置,属于基础题16. 90 【分析】(1)如图,分别作PA β⊥,AC l ⊥,连结PC ,QB α⊥,QD l ⊥,连结BD ,则,利用勾股定理得到,并验证最小值成立的条件;(2)由(1)可知,直接得到直线PQ 与平面α所成的角. 【详解】(1)如图,分别作PA β⊥,AC l ⊥,连结PC ,QB α⊥,QD l ⊥,连结BD ,则60ACP QDB ∠=∠=,因为QB =所以PQ =≥当点P 与点B 重合时,取最小值,又此时PQ PA =成立,所以,P Q 两点之间距离的最小值是(2)此时点P 与点B 重合,此时QP α⊥,所以PQ 与平面β所成的角为90.故答案为:90 【点睛】本题考查平面与平面之间的位置关系,以及空间中直线与平面的位置关系,考查空间想象能力,运算能力,推理论证能力,属于中档题型. 17.(1)证明见解析;(2)证明见解析. 【分析】(1)建立合适空间直角坐标系,求解出平面11AB C 的一个法向量,通过计算出EF与平面11AB C 法向量的数量积为0证明//EF 平面11AB C ; (2)分别计算出平面1AB C 与平面1ABB 的一个法向量,然后根据法向量的数量积为0证明平面1AB C ⊥平面1ABB . 【详解】 (1)以C 为原点,分别以1,CA CB 的方向为,x z 轴的正方向,建立如图所示的空间直角坐标系Cxyz ,设1,,AC a AB b CB c ===,则()()()()()11,0,0,,,0,0,0,0,0,0,,,,A a B a b C B c C a b c --, ()1,0,AB a c ∴=-,()11,,0B C a b =--,,E F 分别是1,AC B C 的中点,,0,0,0,0,,,0,2222a c ac E F EF ⎛⎫⎛⎫⎛⎫∴∴=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设平面11AB C 的法向量为(),,m x y z =,则1110,0,m AB m B C ⎧⋅=⎪⎨⋅=⎪⎩,即0,0,ax cz ax by -+=⎧⎨--=⎩,取x c =,则,ac y z a b =-=,,,ac m c a b ⎛⎫∴=- ⎪⎝⎭,022ac acEF m ⋅=-+=,且EF ⊄平面11AB C , //EF ∴平面11AB C .(2)由(1)知()()10,,0,,0,AB b AB a c ==-,设平面1ABB 的法向量为()111,,n x y z =, 则由10,0,n AB n AB ⎧⋅=⎪⎨⋅=⎪⎩,得1110,0,by ax cz =⎧⎨-+=⎩,取1=x c ,则110,y z a ==,(),0,n c a ∴=,取平面1AB C 的一个法向量为()0,,0AB b =,0,n AB ⋅=∴平面1AB C ⊥平面1ABB .18.(1)证明见解析;(2)60︒. 【分析】(1)由点E ,F 分别是AB ,BC 的中点,得到//EF AC ,结合线面平行的判定定理,即可求解;(2)由(1)知//EF AC 和//FM BD ,得到EFM ∠即为异面直线AC 与BD 所成的角,在EFM △中,即可求解.【详解】(1)由题意,点E ,F 分别是AB ,BC 的中点,所以//EF AC , 因为EF ⊄平面ACD ,AC ⊂平面ACD , 所以//EF 平面ACD ; (2)由(1)知//EF AC ,因为点F ,M 分别是BC ,CD 的中点,可得//FM BD , 所以EFM ∠即为异面直线AC 与BD 所成的角(或其补角). 在EFM △中,1EF FM EM ===,所以EFM △为等边三角形, 所以60EFM ∠=︒,即异面直线AC 与BD 所成的角为60︒.【点睛】本题主要考查了线面平行的判定与证明,以及异面直线所成角的求解,其中解答中熟记线面平行的判定定理和异面直线所成角的概念,转化为相交直线所成的角是解答的关键,着重考查推理与运算能力.19.(1)40cm ;(2)21600cm π. 【分析】(1)设正方体石块的棱长为a ,求出每个截去的四面体的体积,再由等体积法列式求解a 值; (2)当球形石凳的面与正方体的各个面都相切时球形石凳的表面积最大,可得正方体的棱长正好是球的直径,再由球的表面积公式求解. 【详解】(1)设正方体石块的棱长为a ,则每个截去的四面体的体积为3113222248a a a a ⨯⨯⨯⨯=.由题意可得331600008483a a ⨯+=,解得40a =. 故正方体石块的棱长为40cm ;(2)当球形石凳的面与正方体的各个面都相切时球形石凳的表面积最大. 此时正方体的棱长正好是球的直径,∴球形石凳的表面积22404()16002S cm ππ=⨯=. 【点睛】本题考查多面体体积的求法,考查空间想象能力与运算求解能力,是中档题. 20.(1)证明见解析;(2)证明见解析. 【分析】(1)根据正方形性质得AC BD ⊥,根据长方体性质得1AC BB ⊥,进而可证AC ⊥平面11BB D D ,即得结果;(2)只需证明1//EC AF 即可,在1CC 上取点M 使得12CM MC =,再通过平行四边形性质进行证明即可. 【详解】(1)因为长方体1111ABCD A B C D -,所以1BB ⊥平面ABCD ∴1AC BB ⊥, 因为长方体1111,ABCD A B C D AB BC -=,所以四边形ABCD 为正方形AC BD ∴⊥ 因为11,BB BD B BB BD =⊂、平面11BB D D ,因此AC ⊥平面11BB D D ,因为EF ⊂平面11BB D D ,所以AC EF ⊥;(2)在1CC 上取点M 使得12CM MC =,连,DM MF ,因为111112,//,=D E ED DD CC DD CC =,所以11,//,ED MC ED MC = 所以四边形1DMC E 为平行四边形,1//DM EC ∴因为//,=,MF DA MF DA 所以M F A D 、、、四点共面,所以四边形MFAD 为平行四边形, 1//,//DM AF EC AF ∴∴,所以1E C A F 、、、四点共面,因此1C 在平面AEF 内 【点睛】本题考查线面垂直判定定理、线线平行判定,考查基本分析论证能力,属中档题. 21.(1)证明见解析;(2)存在;点N 是线段PC 上靠近点P 的四等份点;答案见解析. 【分析】(1)PA ⊥平面ABC ,||DE AP 可得DE ⊥平面ABC ,即DE AC ⊥,再结合BE AC ⊥,即可证AC ⊥平面BDE ,从而可证BD AC ⊥.(2)先假设线段PC 上存在一点N ,使得||MN 平面BDE ,取AE 的中点Q ,连MQ 、NQ ,可证平面MNQ 平面BDE ,且N 为线段PD 的中点,即可知点N 是线段PC 上靠近点P 的四等份点. 【详解】(1)证明:∵AE EC =,PD CD =,∴||DE AP , 又∵PA ⊥平面ABC ,||DE AP ,∴DE ⊥平面ABC , ∵AC ⊂平面ABC ,∴DE AC ⊥, ∵AB BC =,AE EC =,∴BE AC ⊥,∵AC DE ⊥,AC BE ⊥,BE DE E ⋂=,BE ⊂平面BDE ,DE ⊂平面BDE , ∴AC ⊥平面BDE .又∵BD ⊂平面BDE ,∴BD AC ⊥,(2)假设线段PC 上存在一点N ,使得||MN 平面BDE ,如图,取AE 的中点Q ,连MQ 、NQ ,∵MB MA =,AQ QE =,∴||MQ BE ,又∵MQ ⊄平面BDE ,||MQ BE ,∴||MQ 平面BDE , ∵MN ⊂平面MNQ ,MQ 平面MNQ ,MN MQ M ⋂=,||MN 平面BDE ,||MQ 平面BDE ,∴平面MNQ 平面BDE ,又∵NQ ⊂平面MNQ ,∴NQ 平面BDE ,∵平面PAC 平面BDE DE =,NQ 平面BDE ,NQ ⊂平面P AC ,∴||NQ DE , 又∵AQ QE =,||NQ DE ,∴N 为线段PD 的中点,故假设成立,线段PC 上存在一点N ,使得||MN 平面BDE ,此时点N 是线段PC 上靠近点P 的四等份点.【点睛】本题主要考查了证明线线平行,补全线面平行的条件,涉及了线面垂直的判定,面面垂直的判定,属于中档题.22.(Ⅰ)证明见解析;(II )证明见解析;(III 【分析】(Ⅰ)根据线面平行的判定定理证明;(II )由面面垂直的性质定理证明CD ⊥平面PAD ,然后可得线线垂直;(III )证明AE 就是四棱锥P ABFE -的高,然后求得底面积,得体积.【详解】(Ⅰ)证明:因为//CD AB ,AB平面ABE ,CD ⊄平面ABE ,所以//CD 平面ABE ;(II )证明:因为侧面PAD ⊥底面ABCD ,CD AD ⊥,平面PAD 平面ABCD AD =,CD ⊂平面ABCD ,所以CD ⊥平面PAD ,又AE ⊂平面PAD ,所以CD AE ⊥;(III )因为//CD 平面ABE ,CD ⊂平面PCD ,平面PCD平面ABE EF =, 所以//CD EF ,所以//AB EF , CD AE ⊥,则EF AE ⊥.所以ABFE 是直角梯形,又E 是PD 中点,所以112EF CD ==,2AE ==所以1(21)2ABFE S =⨯+=由(II )CD ⊥平面PAD ,PE ⊂平面PAD ,所以CD PE ⊥,从而EF PE ⊥,正三角形PAD 中,E 是PD 中点,AD PE ⊥,AEF E =,,AE EF ⊂平面ABFE ,所以PE ⊥平面ABFE ,112PE PD ==,所以11133P ABFE ABFE V S PE -=⋅==【点睛】本题考查线面平行的判定定理,线面垂直的判定定理与性质定理,考查求棱锥的体积.旨在考查学生的空间梘能力,逻辑推理能力.属于中档题.。
x y O x y O x y O xyO高中数学模块考试(必修2)一、选择题1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( B )A.3B.-2C. 2D. 不存在2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( A )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x 3. 下列说法不正确的....是( D ) A. 空间中,一组对边平行且相等的四边形是一定是平行四边形; B .同一平面的两条垂线一定共面;C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;D. 过一条直线有且只有一个平面与已知平面垂直.4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( B )A .524=+y xB .524=-y xC .52=+y xD .52=-y x5. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( C )A .B .C .D . 6. 已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系( C )A.一定是异面B.一定是相交C.不可能平行D.不可能相交 7. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若,,则 ②若,,,则③若,,则④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是 ( A ) (A )①和②(B )②和③(C )③和④(D )①和④8. 圆22(1)1x y -+=与直线3y x =的位置关系是( A ) A .相交 B . 相切 C .相离 D .直线过圆心9. 两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为( A )A .-1B .2C .3D .010. 在空间四边形ABCD 各边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF 、GH 相交于点P ,那么( A )A .点P 必在直线AC 上B.点P 必在直线BD 上C .点P 必在平面DBC 内 D.点P 必在平面ABC 外11. 若M 、N 分别是△ABC 边AB 、AC 的中点,MN 与过直线BC 的平面β的位置关系是(C ) A.MN ∥β B.MN 与β相交或MN ⊂≠βC. MN ∥β或MN ⊂≠βD. MN ∥β或MN 与β相交或MN ⊂≠β12. 已知A 、B 、C 、D 是空间不共面的四个点,且AB ⊥CD ,AD ⊥BC ,则直线BD 与AC ( A )A.垂直B.平行C.相交D.位置关系不确定 二 填空题13.已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且|PA|=|PB|,则点P 的坐标为 ; 14.已知正方形ABCD 的边长为1,AP ⊥平面ABCD ,且AP=2,则PC = ;15. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________; 16.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4)A -,(0,2)B -,则圆C 的方程为 . 一、选择题(5’×12=60’)二、填空题:(4’×4=16’)13. (0,0,3) 14. 15 y=2x 或x+y-3=0 16. (x-2)2+(y+3)2=5三 解答题17(12分) 已知△ABC 三边所在直线方程为AB :3x +4y +12=0,BC :4x -3y +16=0,CA :2x +y -2=0 求AC 边上的高所在的直线方程.由⎩⎨⎧=+-=++016364012463x x 解得交点B (-4,0),211,=-=∴⊥ACBD k k AC BD . ∴AC 边上的高线BD 的方程为042),4(21=+-+=y x x y 即.18(12分) 如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA=AB=2a,DC=a,F 是BE 的中点,求证:(1) FD ∥平面ABC;(2) AF ⊥平面EDB.(1)取AB 的中点M,连FM,MC,∵ F 、M 分别是BE 、BA 的中点 ∴ FM ∥EA, FM=12EA ∵ EA 、CD 都垂直于平面ABC ∴ CD ∥EA ∴ CD ∥FM 又 DC=a, ∴ FM=DC ∴四边形FMCD 是平行四边形 ∴ FD ∥MC FD ∥平面ABC(2) 因M 是AB 的中点,△ABC 是正三角形,所以CM ⊥AB 又 CM ⊥AE,所以CM ⊥面EAB, CM ⊥AF, FD ⊥AF, 因F 是BE 的中点, EA=AB 所以AF ⊥EB.19(12分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点,(1) 求证:平面A B 1D 1∥平面EFG; (2) 求证:平面AA 1C ⊥面EFG.20(12分) 已知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y =x 上截得弦长为27;③圆心在直线x -3y =0上. 求圆C 的方程.设所求的圆C 与y 轴相切,又与直线交于AB ,∵圆心C 在直线03=-yx 上,∴圆心C (3a ,a ),又圆与y 轴相切,∴R=3|a |. 又圆心C 到直线y -x =0的距离7||,72||.||22|3|||===-=BD AB a a a CD在Rt △CBD 中,33,1,1.729,)7(||222222±=±===-∴=-a a a a a CD R.∴圆心的坐标C 分别为(3,1)和(-3,-1),故所求圆的方程为9)1()3(22=-+-y x 或9)1()3(22=+++y x .21(12分) 设有半径为3km 的圆形村落,A 、B 两人同时从村落中心出发,B 向北直行,A 先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B 相遇.设A 、B 两人速度一定,其速度比为3:1,问两人在何处相遇? 解:如图建立平面直角坐标系,由题意 可设A 、B 两人速度分别为3v 千米/小时 ,v 千米/小时,再设出发x 0小时,在点P 改变 方向,又经过y 0小时,在点Q 处与B 相遇. 则P 、Q 两点坐标为(3vx 0, 0),(0,vx 0+vy 0). 由|OP|2+|OQ|2=|PQ|2知,………………3分 (3vx 0)2+(vx 0+vy 0)2=(3vy 0)2, 即0)45)((0000=-+y x y x .000045,0y x y x =∴>+ ……①………………6分将①代入.43,3000-=+-=PQ PQ k x y x k 得……………8分 又已知PQ 与圆O 相切,直线PQ 在y 轴上的截距就是两个相遇的位置. 设直线9:4322=++-=y x O b x y 与圆相切, 则有.415,343|4|22=∴=+b b ……………………11分 答:A 、B 相遇点在离村中心正北433千米处………………12分 22(14分)已知圆C :()2219x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点. (1) 当l 经过圆心C 时,求直线l 的方程; (2) 当弦AB 被点P 平分时,写出直线l 的方程;(3) 当直线l 的倾斜角为45º时,求弦AB 的长.(1) 已知圆C :()2219x y -+=的圆心为C (1,0),因直线过点P 、C ,所以直线l 的斜率为2, 直线l 的方程为y=2(x-1),即 2x-y-20.(2) 当弦AB 被点P 平分时,l ⊥PC, 直线l 的方程为12(2)2y x -=--, 即 x+2y-6=0 (3) 当直线l 的倾斜角为45º时,斜率为1,直线l 的方程为y-2=x-2 ,即 x-y=0圆心C 到直线l3,弦AB。
第六章综合测试一、单项选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A .各个面都是三角形的几何体是三棱锥B .以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C .棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D .圆锥的顶点与底面圆周上的任意一点的连线都是母线2.在正方体1111ABCD A B C D -中,点Q 是棱DD 1上的动点,则过A ,Q ,B 1三点的截面图形不可能的是( ) A .等边三角形 B .矩形 C .等腰梯形 D .正方形3.若圆柱的轴截面是一个正方形,其面积为4S ,则它的一个底面面积是( ) A .4SB .4S πC .S πD .2S π 4.如果一个正四面体(各个面都是正三角形)的体积为39 cm ,则其表面积为( )A .2B .218 cmC .2D .212 cm5.已知平面α⊥平面β,且l αβ=,要得到直线m ⊥平面β,还需要补充的条件是( )A .m α⊂B .m α∥C .m l ⊥D .m α⊂且m l ⊥6.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为13,其四面体的四个顶点在一个球面上,则这个球的表面积为( ) A .16πB .32πC .36πD .64π7.如图,在棱长为4的正方体1111ABCD A B C D -中,P 是11A B 上一点,且11114PB A B =,则多面体11P BCC B -的体积为( )A .83B .163C .4D .58.如图,在边长为1的正方形ABCD 中,点E ,F 分别为边BC ,AD 的中点,将ABF △沿BF 所在的直线进行翻折,将CDE △沿DE 所在的直线进行翻折,在翻折过程中,下列说法错误的是( )A .无论翻折到什么位置,A 、C 两点都不可能重合B .存在某个位置,使得直线AF 与直线CE 所成的角为60︒C .存在某个位置,使得直线AF 与直线CE 所成的角为90︒D .存在某个位置,使得直线AB 与直线CD 所成的角为90︒二、多项选择题(大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知α,β是两个不重合的平面,m 、n 是两条不重合的直线,则下列命题正确的是( ) A .若m n ∥,m α⊥,则n α⊥ B .若m α∥,n αβ=,则m n ∥C .若m α⊥,m β⊥,则αβ∥D .若m α⊥,m n ∥,n β⊥,则αβ∥10.已知m 、n 为两条不重合的直线,α、β为两个不重合的平面,则下列说法正确的是( ) A .若m α∥,n β∥且αβ∥,则m n ∥ B .若m n ∥,m α⊥,n β⊥,则αβ∥ C .若m n ∥,n α⊂,αβ∥,m β⊄,则m β∥ D .若m n ∥,n α⊥,αβ⊥,则m β∥11.如图,在四棱锥P —ABCD 中,底面ABCD 为菱形,60DAB ∠=︒,侧面PAD 为正三角形,且平面PAD⊥平面ABCD ,则下列说法正确的是( ) A .在棱AD 上存在点M ,使AD ⊥平面PMB B .异面直线AD 与PB 所成的角为90︒ C .二面角P —BC —A 的大小为45︒ D .BD ⊥平面PAC12.在正方体1111ABCD A B C D -中,N 为底面ABCD 的中心,P 为线段A 1D 1上的动点(不包括两个端点),M 为线段AP 的中点,则( ) A .CM 与PN 是异面直线 B .CM PN >C .平面PAN ⊥平面BDD 1B 1D .过P 、A 、C 三点的正方体的截面一定是等腰梯形三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的表面积为________,体积为________.14.已知正四棱锥的侧棱长为60︒,则该四棱锥的高为________.15.设α,β,γ是三个不同平面,a ,b 是两条不同直线,有下列三个条件:(1)a γ∥,b β∥;(2)a γ∥,b β⊂;(3)b β∥,a γ⊂,如果命题“a b αβγ=⊂,,且________,则a b ∥”为真命题,则可以在横线处填入的条件是________(把所有正确的序号填上).16.如图,已知六棱锥P —ABCDEF 的底面是正六边形,PA ⊥平面ABC ,2PA AB =,则下列结论中: ①PB AE ⊥;②平面ABC ⊥平面PBC ;③直线BC ∥平面PAE ;④45PDA ∠=︒,其中正确的有________(把所有正确的序号都填上).四、解答题(本题共6小题,共70分,解答时应写出必要的文字说明,证明过程或演算步骤) 17.已知正方体1111ABCD A B C D -. (1)证明:1D A ∥平面1C BD ; (2)求异面直线1D A 与BD 所成的角.18.如图,正方体1111ABCD A B C D -的棱长为a ,连接AC A D A B BD BC C D '''''',,,,,,得到一个三棱锥.求:(1)三棱锥—A BC D ''的表面积与正方体表面积的比值; (2)三棱锥—A BC D ''的体积.19.在如图的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,PD MA ∥,点E ,G ,F 分别为棱MB ,PB ,PC 的中点,且2AD PD MA ==.求证: (1)平面EFG ∥平面PMA ; (2)平面PDC ⊥平面EFG .20.如图平行四边形ABCD 中,BD =,2AB =,4AD =,将BCD △沿BD 折起到EBD △的位置,使平面EBD ⊥平面ABD . (1)求证:AB DE ⊥;(2)求三棱锥E —ABD 的侧面积.21.如图,在正方体1111ABCD A B C D -中,E 是棱1DD 的中点. (1)求直线BE 与平面11ABB A 所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使1B F ∥平面1A BE ?证明你的结论.22.如图,在三棱柱111ABC A B C -中,1AA ⊥底面ABC ,90ACB ∠=︒,1AC =,12AA BC ==,点D 在侧棱1AA 上.(1)若D 为1AA 的中点,求证:1C D ⊥平面BCD ;(2)若1A D =1B C D C --的大小.第六章综合测试答案解析一、 1.【答案】D【解析】A 错误,如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥,B 错误,如图2,若ABC △不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥,C 错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长,D 正确. 2.【答案】D【解析】当点Q 与点D1重合时,截面图形为等边三角形11AB D ,如图(1);当点Q 与点D 重合时,截面图形为矩形11AB C D ,如图(2);当点Q 不与点D 、1D 重合时,令Q 、R 分别为1DD 、11C D 的中点,则截面图形为等腰梯形1AQRB ,如图(3)D 是不可能的. 3.【答案】C【解析】由题意知圆柱的母线长为底面圆的直径2R ,则224R R S ⋅=,得2R S =,所以底面面积为2R S ππ=. 4.【答案】A【解析】设正四面体的棱长为 cm a ,则底面积为22 cm ,易求得高为 cm ,则体积为231934312a ⨯⨯==,解得a =,所以其表面积为)224cm 4⨯=. 5.【答案】D【解析】选项A ,B ,C 的条件都不能得到直线m ⊥平面β,而补充选项D 后,可以得到直线m ⊥平面β,理由如下:若两平面垂直,则一个平面内垂直于交线的直线垂直于另一个平面. 6.【答案】A【解析】将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为4=,即球的半径为2,故这个球的表面积为4216r ππ=.7.【答案】B【解析】】V 多面体1113P BCC B S -=正方形21111164133BCC B PB ⋅=⨯⨯=. 8.【答案】D【解析】在A 中,点A 与点C 一定不重合,故A 正确;在B 中,存在某个位置,使得直线AF 与直线CE 所成的角为60︒,故B 正确;在C 中,当平面ABF ⊥平面BEDF ,平面DCE ⊥平面BEDF 时,直线AF 与直线CE 垂直,故C 正确; 在D 中,直线AB 与直线CD 不可能垂直,故D 错误. 二、9.【答案】ACD【解析】若m α⊥,则a ∃,b α⊂且a b P ⋂=使得m α⊥,m b ⊥,又m n ∥,则n a ⊥,n b ⊥,由线面垂直的判定定理得n a ⊥,故A 对;若m α∥,n αβ⋂=,如图,设m AB =,平面1111A B C D 为平面α,m α∥,设平面11ADD A 为平面β,11A D n αβ==,则m n ⊥,故B 错;垂直于同一条直线的两个平面平行,故C 对;若m α⊥,m n ∥,则n a ⊥,又n β⊥,则αβ∥,故D 对. 10.【答案】BC【解析】若m α∥,n β∥且αβ∥,则可以m n ∥,m ,n 异面,或m ,n 相交,故A 错误;若m n ∥,m α⊥,则n a ⊥,又n β⊥,故α∥β,B 正确;若m n ∥,n α⊂,则m α∥或m α⊂,又αβ∥,m β⊄,故m β∥,C 正确;若m n ∥,n α⊥,则m α⊥,αβ⊥,则m β∥或m β⊂,D 错误. 11.【答案】ABC【解析】对于A ,取AD 的中点M ,连PM ,BM ,则侧面PAD 为正三角形,PM AD ∴⊥,又底面ABCD 是菱形,60DAB ∠=︒,ABD ∴△是等边三角形,AD BM ∴⊥,又PM BM M ⋂=,PM ,BM ⊂平面PMB ,AD ∴⊥平面PBM ,故A 正确,对于B ,AD ⊥平面PBM ,AD PB ∴⊥,即异面直线AD 与PB 所成的角为90︒,故B 正确,对于C ,平面PBC ⋂平面ABCD BC =,BC AD ∥,BC ∴⊥平面PBM ,BC PB ∴⊥,BC BM ⊥,PBM ∴∠是二面角P —BC —A 的平面角,设1AB =,则BM PM =,在Rt PBM △中,tan 1PMPBM RM∠==,即45PBM ∠=︒,故二面角P —BC —A 的大小为45︒,故C 正确,对于D ,因为BD 与PA 不垂直,所以BD 与平面PAC 不垂直,故D 错误. 12.【答案】BCD 【解析】C 、N 、A 共线,即CN 、PM 交于点A ,共面,因此CM 、PN 共面,A 错误; 记PAC θ∠=,则2222212cos cos 4PN AP AN AP AN AP AC AP AC θθ=+-⋅=+⋅︒-, 2222212cos cos 4CM AC AM AC AM AC AP AP AC θθ=+-⋅=+-⋅,又AP AC <, ()2222304CM PN AC AP -=->,22CM PN >,即 CM PN >,B 正确; 由于正方体中,AN BD ⊥,1BB ⊥平面ABCD ,则1BB AN ⊥,1BB BD B =,可得AN ⊥平面11BB D D ,AN ⊂平面PAN ,从而可得平面PAN ⊥平面11BDD B ,C 正确;取11C D 中点K ,连接KP ,KC ,11A C ,易知11PK AC ∥,又正方体中,11AC AC ∥,PK AC ∴∥,PK 、AC 共面,PKCA 就是过P 、A 、C 三点的正方体的截面,它是等腰梯形,D 正确. 三、13.【答案】3π【解析】设圆锥的底面半径为r ,根据题意,得22r ππ=,解得1r =,根据勾股定理,得圆锥的高为=,所以圆锥的表面积2212132S πππ=⨯⨯+⨯=,体积21133V π=⨯⨯=. 14.【答案】3【解析】如图,过点S 作SO ⊥平面ABCD ,连接OC ,则60SCO ∠=︒,sin 603SO SC ∴=︒=⋅⋅=. 15.【答案】(2)(3)【解析】a γ∥,b β∥,不可以,举出反例如下:使βγ∥,b γ⊂,a β⊂,则此时能有a γ∥,b β∥,但不一定有a b ∥; a γ∥,b β⊂,可以,由a γ∥得a 与γ没有公共点,由b β⊂,a αβ⋂=,b γ⊂知,a ,b 在面β内,且没有公共点,故平行; b β∥,a γ⊂可以,由b β∥,a αβ=知,a ,b 无公共点,再由a γ⊂,b γ⊂,可得两直线平行. 综上可知满足的条件有(2)和(3). 16.【答案】①④【解析】对于①,因为PA ⊥平面ABC ,所以PA AE ⊥,又EA AB ⊥,PA AB A ⋂=,所以EA ⊥平面PAB ,从而可得EA PB ⊥,故①正确;对于②,由于PA ⊥平面ABC ,所以平面ABC 与平面PBC 不可能垂直,故②不正确;对于③,由于在正六边形中BC AD ∥,所以BC 与EA 必有公共点,从而BC 与平面PAE 有公共点,所以直线BC 与平面PAE 不平行,故③不正确;对于④,由条件得PAD △为直角三角形,且PA AD ⊥,又2PA AB AD ==,所以45PDA ∠=︒,故④正确, 综上①④正确. 四、17.【答案】(1)证明:在正方体1111ABCD A B C D -中,11AB D C ∥,11AB D C =, ∴四边形11ABC D 是平行四边形,11AD BC ∴∥,1AD ⊄平面1C BD ,1BC ⊂平面1C BD ,1D A ∴∥平面1C BD ,(2)由(1)知,11AD BC ∥,∴异面直线1D A 与BD 所成的角即为1C BD ∠,易知1C BD △为等边三角形,160C BD ∴∠=︒,即异面直线1D A 与BD 所成的角为60︒, 18.【答案】(1)1111ABCD A B C D -是正方体,A B AC A D BC BD C D a ∴'=''='='=='=,∴三棱锥—A BC D ''的表面积为21422⨯⨯=,而正方体的表面积为26a ,故三棱锥A BC D '-' (2)三棱锥A ABD C BCD D A D C B A B C '-'--'''-''',,,是完全一样的,故 4A BC A ABD V D V V '''-=-正方体三枚维三衫维,332114323a a a a =-⨯⨯⨯=.19.【答案】(1)点E 、G 、F 分别为棱MB 、PB 、PC 的中点,EG PM GF BC ∴∥,∥,又PM ⊂平面PMA ,EG ⊄平面PMA ,EG ∴∥平面PMA , 四边形ABCD 是正方形,BC AD ∴∥,GF AD ∴∥,AD ⊂平面PMA ,GF ⊄平面PMA ,GF ∴∥平面PMA ,又EG GF G =,∴平面EFG ∥平面PMA ,(2)由已知MA ⊥平面ABCD ,PD MA ∥,PD ∴⊥平面ABCD , 又BC ⊂平面ABCD ,PD BC ∴⊥, 四边形ABCD 为正方形,BC DC ∴⊥, 又PDDC D =,BC ∴⊥平面PDC ,在PBC △中,G ,F 分别为PB ,PC 的中点,GF BC ∴∥,GF ∴⊥平面PDC ,又GF ⊂平面EFG ,∴平面PDC ⊥平面EFG .20.【答案】(1)证明:2AB =,BD =,4AD =,222AB BD AD ∴=+,AB BD ∴⊥,平面EBD ⊥平面ABD ,且平面EBD ⋂平面ABD BD =,AB ∴⊥平面EBD ,DE ⊂平面EBD ,AB DE ∴⊥,(2)由(1)知AB BD ⊥,CD AB ∥,CD BD ∴⊥,从而折叠后DE BD ⊥, 在Rt DBE △中,2DB =2DE DC AB ===,12DBE S DB DE ∴=⋅=△ 又AB ⊥平面EBD ,BE ⊂平面EBD ,AB BE ∴⊥, 4BE BC AD ===,412·ABE S AB BE ∴==△, DE BD ⊥,平面EBD ⊥平面ABD ,ED ∴⊥平面ABD , 又AD ⊂平面ABD ,ED AD ∴⊥,142ADE S AD DE ∴=⋅=△,综上,三棱锥E —ABD 的侧面积8S =+21.【答案】(1)如图(1),取1AA 的中点M ,连接EM ,BM , E 是1DD 的中点,四边形11ADD A 为正方形,EM AD ∴∥,在正方体1111-ABCD A B C D 中,AD ⊥平面11ABB A ,EM ∴⊥平面11ABB A ,从而EBM ∠为直线BE 与平面11ABB A 所成的角,设正方体1111-ABCD A B C D 的棱长为2,则2EM AD ==,3BE =, 在Rt BEM △中,2sin 3EM EBM BE ∠==, 即直线BE 与平面11ABB A 所成的角的正弦值为23.(2)在棱11C D 上存在点F ,使1B F ∥平面1A BE , 证明如下:如图(2),分别取11C D 和CD 的中点F 和G ,连接EG ,BG ,1CD ,FG ,1B F1111A D B C BC ∥∥,且11 A D BC =, ∴四边形11A BCD 为平行四边形,11D C A B ∴∥, 又E ,G 分别为D 1D ,CD 的中点,1EG D C ∴∥, 1EG A B ∴∥,1A ∴,B ,G ,E 四点共面,BG ∴⊂平面1A BE , 在正方体1AC 中,F 和G 分别为11C D 和CD 的中点, GF ∴綊1C C 綊1B B ,∴四边形1B BGF 为平行四边形, 1B F BG ∴∥,又1B F ⊄平面1A BE ,BG ⊂平面1A BE ,1B F ∴∥平面1A BE ,22.【答案】(1)证明:由已知,得1AA BC ⊥,AC BC ⊥,则BC ⊥平面11AAC C ,又1C D ⊂平面11AAC C ,则1BC C D ⊥,①因为D 为1AA 的中点,所以1AD AC ==,又AD AC ⊥,则CAD △为等腰直角三角形,所以45ADC ∠=︒,同理1145A DC ∠=︒,所以190CDC ∠=︒,即1CD C D ⊥,② 结合①②得,1C D ⊥平面BCD ,(2)作1CE C D ⊥,垂足为E ,连接BE ,如图, 因为BC ⊥平面11AAC C ,所以1BC C D ⊥,所以1C D ⊥平面BCE , 则1C D BE ⊥,所以BEC ∠为二面角1B C D C --的平面角,因为1111A D A C ==,所以1C D =在1CC D △中,12CC =,1CC 边上的高为1,则其面积为1,所以由112=得CE =,在Rt BCE △中,tan BC BEC CE ∠==,则 60BEC ∠=︒, 所以二面角1B C D C --的大小为60︒.。
高中数学模块考试(必修2)
一、选择题
1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( B )
A.3
B.-2
C. 2
D. 不存在
2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( A )
A .072=+-y x
B .012=-+y x
C .250x y --=
D .052=-+y x 3. 下列说法不正确的....
是( D ) A.空间中,一组对边平行且相等的四边形是一定是平行四边形;
B .同一平面的两条垂线一定共面;
C. 过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内;
D. 过一条直线有且只有一个平面与已知平面垂直.
4.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线的方程是( B )
A .524=+y x
B .524=-y x
C .52=+y x
D .52=-y x
5. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( C )
x y O x y O x y O x
y
O
A .
B .
C .
D . 6. 已知a 、b 是两条异面直线,c ∥a ,那么c 与b 的位置关系( C )
A.一定是异面
B.一定是相交
C.不可能平行
D.不可能相交 7. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是 ( A ) (A )①和②
(B )②和③ (C )③和④ (D )①和④
8. 圆2
2
(1)1x y -+=
与直线y x =
的位置关系是( A ) A .相交 B . 相切 C .相离 D .直线过圆心
9. 两圆相交于点A (1,3)、B (m ,-1),两圆的圆心均在直线x -y +c=0上,则m+c 的值为( A )
A .-1
B .2
C .3
D .0
10. 在空间四边形ABCD 各边AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF 、GH 相交于点P ,那么( A )
A .点P 必在直线AC 上
B.点P 必在直线BD 上
C .点P 必在平面DBC 内 D.点P 必在平面ABC 外
11. 若M 、N 分别是△ABC 边AB 、AC 的中点,MN 与过直线BC 的平面β的位置关系是(C ) A.MN ∥β B.MN 与β相交或MN ⊂≠
β
C. MN ∥β或MN ⊂≠β
D. MN ∥β或MN 与β相交或MN ⊂≠
β
12. 已知A 、B 、C 、D 是空间不共面的四个点,且AB ⊥CD ,AD ⊥BC ,则直线BD 与AC ( A ) A.垂直 B.平行 C.相交 D.位置关系不确定 二 填空题
13.已知A (1,-2,1),B (2,2,2),点P 在z 轴上,且|PA|=|PB|,则点P 的坐标为 ; 14.已知正方形ABCD 的边长为1,AP ⊥平面ABCD ,且AP=2,则PC = ;
15. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________; 16.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4)A -,(0,2)B -,则圆C 的方程为 . 一、选择题(5’×12=60’)
二、填空题:(4’×4=16’) 13. (0,0,3) 14. 15 y=2x 或x+y-3=0 16. (x-2)2+(y+3)2=5
三 解答题
17(12分) 已知△ABC 三边所在直线方程为AB :3x +4y +12=0,BC :4x -3y +16=0,CA :2
x +y -2=0 求AC 边上的高所在的直线方程.
由⎩⎨⎧=+-=++0
16364012463x x 解得交点B (-4,0),211,=-=∴⊥AC BD
k k AC BD . ∴AC 边上的高线BD 的方程 为042),4(2
1=+-+=y x x y 即.
18(12分) 如图,已知△ABC 是正三角形,EA 、CD 都垂直于平面ABC ,且EA=AB=2a,DC=a,F 是BE 的中点,求证:
(
1) FD ∥
平面ABC;
(2) AF ⊥平面EDB.
(1)取AB 的中点M,连FM,MC,
∵ F 、M 分别是BE 、BA 的中点 ∴ FM ∥EA, FM=
12
EA ∵ EA 、CD 都垂直于平面ABC ∴ CD ∥EA ∴ CD ∥FM 又 DC=a, ∴ FM=DC ∴四边形FMCD 是平行四边形 ∴ FD ∥MC FD ∥平面ABC
(2)
因M 是AB 的中点,△ABC 是正三角形,所以CM ⊥AB 又 CM ⊥AE,所以CM ⊥面EAB, CM ⊥AF, FD ⊥AF, 因F 是BE 的中点, EA=AB 所以AF ⊥EB.
19(12分)如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是CB 、CD 、CC 1的中点, (1) 求证:平面A B 1D 1∥平面EFG; (2) 求证:平面AA 1C ⊥面EFG.
20(12分) 已知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y =x 上截得弦长为27;③圆心在直线x -3y =0上. 求圆C 的方程.
设所求的圆C 与y 轴相切,又与直线交于AB ,∵圆心C 在直线03=-y x 上, ∴圆心C (3a ,a ),又圆与y 轴相切,∴R=3|a |. 又圆心C 到直线y -x =0的距离
7||,72||.||22
|
3|||===-=
BD AB a a a CD
在Rt △CBD 中,33,1,1.729,)7(||222222±=±===-∴=-a a a a a CD R . ∴圆心的坐标C 分别为(3,1)和(-3,-1),故所求圆的方程为9)1()3(22=-+-y x 或9)1()3(22=+++y x .
21(12分) 设有半径为3km 的圆形村落,A 、B 两人同时从村落中心出发,B 向北直行,A 先向东直行,出村后不久,改变前进方向,沿着与村落周界相切的直线前进,后来恰与B 相遇.设A 、B 两人速度一定,其
速度比为3:1,问两人在何处相遇?
解:如图建立平面直角坐标系,由题意可设A 、B 两人速度分别为3v 千米/小时 ,v 千米/小时,再设出发x 0小时,在点P 改变方向,又经过y 0小时,在点Q 处与B 相遇.则P 、Q 两点坐标为(3vx 0, 0),(0,vx 0+vy 0).
由|OP|2+|OQ|2=|PQ|2知,………………3分
(3vx 0)2+(vx 0+vy 0)2=(3vy 0)2,即0)45)((0000=-+y x y x .
000045,
0y x y x =∴>+ ……①………………6分 将①代入.4
3
,3000-=+-
=PQ PQ k x y x k 得……………8分 又已知PQ 与圆O 相切,直线PQ 在y 轴上的截距就是两个相遇的位置. 设直线9:4322=++-
=y x O b x y 与圆相切,则有.4
15
,
34
3|4|22=
∴=+b b ……11分 答:A 、B 相遇点在离村中心正北4
3
3
千米处………………12分 22(14分)已知圆C :()2
2
19x y -+=内有一点P (2,2),过点P 作直线l 交圆C 于A 、B 两点.
(1) 当l 经过圆心C 时,求直线l 的方程; (2) 当弦AB 被点P 平分时,写出直线l 的方程; (3) 当直线l 的倾斜角为45º时,求弦AB 的长.
23 已知圆C :()2
2
19x y -+=的圆心为C (1,0),因直线过点P 、C ,所以直线l 的斜率为2,
直线l 的方程为y=2(x-1),即 2x-y-20.
(1) 当弦AB 被点P 平分时,l ⊥PC, 直线l 的方程为1
2(2)2
y x -=-
-, 即 x+2y-6=0 (2) 当直线l 的倾斜角为45º时,斜率为1,直线l 的方程为y-2=x-2 ,即 x-y=0
圆心C 到直线l
3,弦AB。