最新高中数学必修5《等差数列前n项和》教案及其分析精编版
- 格式:doc
- 大小:69.00 KB
- 文档页数:7
等差数列的前n项和教案一、教学目标:1. 让学生理解等差数列的概念,掌握等差数列的前n项和的公式。
2. 培养学生运用等差数列的前n项和公式解决实际问题的能力。
3. 培养学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 等差数列的概念及通项公式。
2. 等差数列的前n项和公式。
3. 等差数列的前n项和的性质。
三、教学重点与难点:1. 教学重点:等差数列的概念,等差数列的前n项和公式。
2. 教学难点:等差数列的前n项和的性质。
四、教学方法:1. 采用问题驱动法,引导学生探究等差数列的前n项和公式。
2. 运用案例分析法,让学生通过解决实际问题,巩固等差数列的前n项和公式。
3. 采用小组讨论法,培养学生的团队合作能力和逻辑思维能力。
五、教学过程:1. 导入:引导学生回顾等差数列的概念及通项公式。
2. 新课:讲解等差数列的前n项和公式,并通过案例分析让学生理解并掌握公式。
3. 练习:布置练习题,让学生运用前n项和公式解决问题。
4. 拓展:讲解等差数列的前n项和的性质,引导学生进行思考。
5. 总结:对本节课的内容进行总结,强调重点知识点。
6. 作业布置:布置课后作业,巩固所学内容。
六、教学活动:1. 课堂讨论:让学生举例说明在生活中哪些问题可以用等差数列的前n项和公式解决,促进学生对知识的理解和应用。
2. 小组合作:学生分组,每组选择一个实际问题,运用等差数列的前n项和公式进行解决,并展示解题过程和结果。
七、教学评价:1. 课堂提问:通过提问了解学生对等差数列的前n项和公式的掌握情况。
2. 课后作业:布置有关等差数列前n项和的练习题,评估学生对知识的吸收和运用能力。
3. 小组报告:评估学生在小组合作中的表现,包括问题选择、解题过程、结果展示等方面。
八、教学资源:1. PPT课件:制作包含等差数列前n项和公式的PPT课件,辅助教学。
2. 实际问题案例:收集一些生活中的实际问题,用于引导学生应用所学知识解决实际问题。
高中数学必修5《等差数列前n项和》教案及其分析精编版2022年高中数学必修5《等差数列前n项和》教案及其分析精编版课题:等差数列的前n项和教材:人教版数学必修5一、教学目标学问目标:把握等差数列前n项和公式,能较娴熟应用等差数列前n项和公式求和。
能力目标:通过对公式的推导提高同学讨论问题、分析问题、解决问题的能力。
情感目标:通过公式的推导与容易应用,激发同学的求知欲,鼓舞同学大胆尝试,培养同学敢于探究、创新的学习品质。
二、教学重点、难点重点:等差数列的前n项和公式难点:获得等差数列的前n项和公式推导的思路三、教学办法与手段启发引导、合作学习、多媒体辅助等多种手段相结合四、教学过程1、问题展现泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她雄伟壮观,纯白大理石砌建而成的主体建造叫人心醉神迷,成为世界七大奇迹之一。
陵寝以宝石镶饰,图案之细致令人叫绝。
传奇陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,奢侈之程度,可见一斑。
你知道这个图案一共花了多少宝石吗?2、探究发觉1+2+3 +…+99+100=(1+100) +(2+99)+ …+(50+51)=101 ×50 = 5050问题1:图案中,第1层到第21层一共有多少颗宝石?问题2:求1到n 的正整数之和。
123(1)n s n n =++++-+即问题3:{}?n n a n 如何求等差数列的前项和S3、公式应用例1、选用公式某长跑运动员7天里天天的训练量(单位:m )是:这位长跑运动员7天共跑了多少米?例2、变用公式等差数列-10,-6,-2,2,…的前多少项的和为54?变式练习:{}120,54,999,.n n n a a a s n ===在等差数列中,求例3、知三求二{}120,37,629,.n n n a n s a a ===在等差数列中,已知d 求及4、课堂小结1()12n n n a a S +=公式1(1)22n n n S na d -=+公式5、作业布置必做题:课本52页,练习1、2、3;选做题:在等差数列中,512156136,;220,a a a a a +++==21611、已知求s 、已知求s板书设计:教案说明一、教材分析:等差数列的前n 项和是人教版数学必修5其次章的内容,是在同学学习了等差数列的概念和性质的基础上学习和讨论的。
《等差数列的前n项和》教学设计(精选五篇)第一篇:《等差数列的前n项和》教学设计:等差数列的前n项和是人教实验版必修5第二章第3节的内容,是学生学习了等差数列的定义、通项公式后,对数列知识的进一步学习。
学情分析:学生通过对等差数列基本概念和通项公式的学习,对等差数列有了一定的了解。
但是由于学生是第一次接触到数列的求和,缺乏相关经验,因此,需要借助几何直观学习和理解。
教学目标:1、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。
2、过程与方法(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力;(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。
3、情感态度与价值观(1)获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。
(2)注重在学习过程中师生情感交流,鼓励学生自主发现,激发学生的学习热情,培养学生的探索精神与创新意识。
教学重点、难点:1、等差数列前n项和公式是重点。
2、获得等差数列前n项和公式推导的思路是难点。
设计理念:在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,由浅入深,层层深入,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。
教学资源:现代教育多媒体技术教学过程:(一)创设问题情境故事引入:德国伟大的数学家高斯“神述求和”的故事。
高斯在上小学四年级时,老师出了这样一道题“1+2+3……+99+100”高斯稍微想了想就得出了答案。
高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。
高斯的方法:首项与末项的和:1+100=101 第2项与倒数第2项的和:2+99=101 第3项与倒数第3项的和:3+98=101 ……第50项与倒数第50项的和:50+51=101 ∴前100个正整数的和为:101×50=50502.故事引入:泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。
等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。
2. 掌握等差数列的前n项和的公式。
3. 能够运用前n项和公式解决实际问题。
二、教学内容1. 等差数列的概念及其性质。
2. 等差数列的前n项和的公式。
3. 等差数列前n项和的性质。
三、教学重点与难点1. 教学重点:等差数列的概念及其性质,等差数列的前n项和的公式。
2. 教学难点:等差数列前n项和的性质的应用。
四、教学方法1. 采用讲授法,讲解等差数列的概念、性质和前n项和的公式。
2. 运用案例分析法,分析等差数列前n项和的性质在实际问题中的应用。
3. 引导学生通过小组讨论,探讨等差数列前n项和的性质。
五、教学过程1. 导入:通过生活中的实例,引导学生思考等差数列的概念,激发学生兴趣。
2. 新课导入:讲解等差数列的定义及其性质,引导学生理解等差数列的特点。
3. 公式讲解:讲解等差数列的前n项和的公式,让学生掌握计算等差数列前n项和的方法。
4. 案例分析:分析等差数列前n项和的性质在实际问题中的应用,让学生学会运用知识解决实际问题。
5. 课堂练习:布置练习题,让学生巩固所学知识。
6. 总结:对本节课的内容进行总结,强调等差数列前n项和的性质及其应用。
7. 作业布置:布置课后作业,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对等差数列概念和性质的理解程度。
2. 课堂练习:观察学生在练习中的表现,评估其对等差数列前n项和公式的掌握情况。
3. 课后作业:批改课后作业,评估学生对课堂所学知识的巩固程度。
七、教学反思1. 反思教学内容:检查教学内容是否全面,重点是否突出,难点是否讲清楚。
2. 反思教学方法:评估所采用的教学方法是否适合学生,是否有效激发学生的兴趣和参与度。
3. 反思教学效果:根据学生反馈和作业情况,评估教学目标的达成程度。
八、教学拓展1. 等差数列在实际生活中的应用:举例说明等差数列前n项和公式在生活中的运用,如计算工资、奖金等。
《等差数列的前n项和》教学设计一、总体设计指导思想本节课本着丰富学生的学习方式,改进学生的学习方法,培养学生的归纳总结能力,采用了启发引导,合作学习和多媒体辅助等手段,精心心设计课堂教学,将公式推导过程和应用(实际问题——受到启发——思考探究类比——得出结论)作为本节课的教学主线,关注学生的主体参与,师生互动参与。
以求学生理解并掌握推导过程和思想,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题。
二、教材分析1、教材中的地位本节课内容是人教版高级中学课本数学必修5第二章第三节。
本节是在学习了等差数列的概念和性质的基础上,使学生掌握等差数列求和公式,并能利用它求和解决数列和的最值问题等差数列求和公式的推导,采用了倒序相加法,思路的获得得益于等到差数列任意的第k项与倒数第k项的和都等于首项与末项的和这一性质的认识和发现通过对等差数列求和公式的推导,使学生能掌握“倒序相加”数学方法,并为后面等比数列的学习做铺垫。
2、重点难点教学重点:等差数列n项和公式的理解、推导及应用教学难点:灵活应用等差数列前n项公式解决一些简单的有关问题三、学情分析本节是在学习了等差数列的概念和性质的基础上,使学生掌握等差数列求和公式,并能利用它求和,解决数列和的最值问题。
等差数列求和公式的推导,采用了倒序相加法,通过对等差数列求和公式的推导,使学生能掌握“倒序相加”数学方法。
高中学生的认知体系基本形成,认知结构迅速发展,认知能力不断完善。
他们能够掌握基本的思维方法,特别是抽象逻辑思维、辩证思维、创造思维有了较大的发展。
观察力、记忆力、想象力有了明显的提高,认知活动的自觉性,认知系统的自我评价和自我控制能力也有了相应的发展。
由于本课时内容具体易懂,除了引导学生自主、探索、合作学习以外,还通过实际生活问题教学,来激发学生的学习兴趣和进一步培养他们分析、归纳、概括能力。
四、教学目标设计1.知识目标进一步熟练掌握等差数列的通项公式和前n项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前项和的公式研究的最值;2.能力目标(1)经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思(2)善于寻找生活与数学的结合。
等差数列前n项和优秀教案一、教学目标知识与技能:1. 理解等差数列的定义及其性质;2. 掌握等差数列前n项和的公式;3. 会运用等差数列前n项和公式解决实际问题。
过程与方法:1. 通过探究等差数列的性质,引导学生发现等差数列前n项和的规律;2. 利用公式法、图象法、列举法等多种方法求解等差数列前n项和;3. 培养学生的数学思维能力和解决问题的能力。
情感态度与价值观:1. 培养学生对数学的兴趣和自信心;2. 培养学生勇于探索、积极思考的精神;3. 培养学生运用数学知识解决实际问题的能力。
二、教学重点与难点重点:1. 等差数列前n项和的公式;2. 运用等差数列前n项和公式解决实际问题。
难点:1. 等差数列前n项和的公式的推导;2. 灵活运用等差数列前n项和公式解决复杂问题。
三、教学准备教师准备:1. 等差数列的相关知识;2. 等差数列前n项和的公式;3. 教学案例和练习题。
学生准备:1. 掌握等差数列的基本知识;2. 具备一定的数学思维能力;3. 准备笔记本,做好笔记。
四、教学过程1. 导入:通过复习等差数列的基本知识,引导学生回忆等差数列的性质,为新课的学习做好铺垫。
2. 探究等差数列前n项和的公式:引导学生发现等差数列前n项和的规律,引导学生利用已知的等差数列性质推导出前n项和的公式。
3. 讲解等差数列前n项和的公式:讲解公式的含义、推导过程及其应用,让学生理解并掌握公式的运用。
4. 运用公式法、图象法、列举法等多种方法求解等差数列前n项和:通过具体案例,让学生学会运用不同的方法求解等差数列前n项和,培养学生的数学思维能力和解决问题的能力。
5. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题,巩固所学内容。
五、课后反思教师在课后要对教案进行反思,分析教学过程中的优点与不足,针对性地调整教学方法,以提高教学效果。
关注学生的学习情况,了解学生在学习等差数列前n项和过程中遇到的问题,及时给予解答和指导。
等差数列前n项和教案(共5篇)第一篇:等差数列前n项和教案等差数列前n项和(第一课时)教案【课题】等差数列前n项和第一课时【教学内容】等差数列前n项和的公式推导和练习【教学目的】(1)探索等差数列的前项和公式的推导方法;(2)掌握等差数列的前项和公式;(3)能运用公式解决一些简单问题【教学方法】启发引导法,结合所学知识,引导学生在解决实际问题的过程中发现新知识,从而理解并掌握.【重点】等差数列前项和公式及其应用。
【难点】等差数列前项和公式的推导思路的获得【教具】实物投影仪,多媒体软件,电脑【教学过程】1.复习回顾 a1 + a2 + a3 +......+ an=sna1 + an=a2 + an-1 =a3 + an-2 2.情景自学问题一:一个堆放铅笔的V形架的最下面一层放1 支铅笔,往上每一层都比它下面一层多放一支,最上面一层放 100支,这个V 形架上共放着多少支铅笔?思考:(1)问题转化求什么能用最短时间算出来吗?(2)阅读课本后回答,高斯是如何快速求和的?他抓住了问题的什么特征?(3)如果换成1+2+3+…+200=?我们能否快速求和?,(4)根据高斯的启示,如何计算18+21+24+27+…+624=?3..合作互学(小组讨论,总结方法)问题二:Sn = 1 + 2 + 3 + … + n = ?倒序相加法探究:能把以上问题的解法推广到求一般等差数列的前n 项和吗?问题三:已知等差数列{an }中,首项a1,公差为d,第n项为an , 如何求前n项和Sn ?等差数列前项和公式: n(a1 + an)=2Sn问题四:比较以上两个公式的结构特征,类比于问题一,你能给出它们的几何解释吗?n(a1 + a n)=2Sn公式记忆——类比梯形面积公式记忆n(a1 + a n)=2S 问题五:两个求和公式有何异同点?能够解决什么问题?展示激学应用公式例1.等差数列-10,-6,-2,2的前多少项的和为-16 例2.已知一个等差数列的前10项和是310,前20项的和是1220,由这些条件能确定这个等差数列的前n项和的公式吗?【思考问题】如果一个数列{an }的前n项和Sn = pn2 + qn + r,(其中p,q,r为常数,且p ≠ 0),那么这个数列一定是等差数列吗?若是,说明理由,若不是,说明Sn必须满足的条件。
2.3 等差数列的前n项和2.3.1等差数列的前n项和(一从容说课“等差数列的前n项和”第一节课主要通过高斯算法来引起学生对数列求和的兴趣,进而引导学生对等差数列的前n项和公式作出探究,逐步引出求和公式以及公式的变形,初步形成对等差数列的前n项和公式的认识,让学生通过探究了解一些解决数学问题的一般思路和方法,体会从特殊到一般,再从一般到特殊的思维规律,所以,在教学中宜采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法.为了让学生较熟练地掌握公式,要采用设计变式题的教学手段通过本节的例题的教学,使学生感受到在实际问题中建立数学模型的必要性,以及如何去建立数学模型的方式方法,培养学生善于从实际情境中去发现数列模型,促进学生对本节内容的认知结构的形成教学重点等差数列的前n项和公式的理解、推导及应用教学难点灵活应用等差数列前n项和公式解决一些简单的有关问题教具准备多媒体课件、投影仪、投影胶片等三维目标一、知识与技能掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题二、过程与方法通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题、解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平三、情感态度与价值观通过公式的推导过程,展现数学中的对称美,通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感教学过程导入新课教师出示投影胶片1:印度泰姬陵a j M a h a是世界七大建筑奇迹之一,所在地阿格拉市,泰姬陵是印度古代建筑史上的经典之作,这个古陵墓融合了古印度、阿拉伯和古波斯的建筑风格,是印度伊斯兰教文化的象征陵寝以宝石镶饰,图案之细致令人叫绝.传说当时陵寝中有一个等边三角形图案,以相同大小的圆宝石镶饰而成,共有100层(如下图),奢华之程度,可见一斑.你知道这个图案中一共有多少颗宝石吗?(这问题赋予了课堂人文历史的气息,缩短了数学与现实之间的距离,引领学生步入探讨高斯算法的阶段)生只要计算出1+2+3+…+100的结果就是这些宝石的总数师对,问题转化为求这100个数的和.怎样求这100个数的和呢?这里还有一段故事教师出示投影胶片2:高斯是伟大的数学家、天文学家,高斯十岁时,有一次老师出了一道题目,老师说:“现在给大家出道题目:过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:教师问:“你是如何算出答案的?高斯回答说:因为1+100=101;2+99=101;…;50+51=101,所以101×50=5 050.师这个故事告诉我们什么信息?高斯是采用了什么方法来巧妙地计算出来的呢?生高斯用的是首尾配对相加的方法.也就是:1+100=2+99=3+98=…=50+51=101,有50个101,所以师对,高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,…,每组数的和均相等,都等于101,50个101就等于5 050了高斯算法将加法问题转化为乘法运算,迅速准确得到了结果作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西师问:数列1,2,3,…,100是什么数列?而求这一百个数的和1+2+3+…+100相当于什么?生这个数列是等差数列,1+2+3+…+100这个式子实质上是求这数列的前100项的和.师对,这节课我们就来研究等差数列的前n项的和的问题推进新课[合作探究]师我们再回到前面的印度泰姬陵的陵寝中的等边三角形图案中,在图中我们取下第1层到第21层,得到右图,则图中第1层到第21层一共有多少颗宝石呢生 这是求“1+2+3+…+21”奇数个项的和的问题,高斯的方法不能用了.要是偶数项的数求和就好首尾配成对了师 高斯的这种“首尾配对”的算法还得分奇、偶个项的情况求和,适用于偶数个项,我们是否有简单的方法来解决这个问题呢生 有!我用几何的方法,将这个全等三角形倒置,与原图补成平行四边形.平行四边形中的每行宝石的个数均为22个,共21行.则三角形中的宝石个数就是221)211(⨯+师 妙得很!这种方法不需分奇、偶个项的情况就可以求和,真是太好了!我将他的几何法写成式子就是:1+2+3+...+21, 21+20+19+ (1)对齐相加(其中下第二行的式子与第一行的式子恰好是倒序这实质上就是我们数学中一种求和的重要方法——“倒序相加法现在我将求和问题一般化:(1)求1到n 的正整数之和,即求1+2+3+…+(n -1)+n .(注:这问题在前面思路的引导下可由学生轻松解决(2)如何求等差数列{a n }的前n 项的和S n生1 对于问题(2),我这样来求:因为S n =a 1+a 2+a 3+…+a n , S n =a n +a n -1+…+a 2+a 1,再将两式相加,因为有等差数列的通项的性质:若m+n =p+q ,则a m +a n =a p +a q , 所以2)(1n n a a n S +=.(Ⅰ生2 对于问题(2),我是这样来求的:因为S n =a 1+(a 1+d )+(a 1+2d )+(a 1+3d )+…+[a 1+(n -1)×d ], 所以S n =na 1+[1+2+3+…+(n -1)]d =na 1+2)1(-n n d即S n =na 1+2)1(-n n d .(Ⅱ[教师精讲]两位同学的推导过程都很精彩,一位同学是用“倒序相加法”,后一位同学用的是基本量来转化为用我们前面求得的结论,并且我们得到了等差数列前n项求和的两种不同的公式.这两种求和公式都很重要,都称为等差数列的前n项和公式.其中公式(Ⅰ)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项a n,高是项数n,有利于我们的记忆[方法引导]师如果已知等差数列的首项a1,项数为n,第n项为a n,则求这数列的前n项和用公式(Ⅰ)来进行,若已知首项a1,项数为n,公差d,则求这数列的前n项和用公式(Ⅱ)来进行引导学生总结:这些公式中出现了几个量?生每个公式中都是5个量师如果我们用方程思想去看这两个求和公式,你会有何种想法生已知其中的三个变量,可利用构造方程或方程组求另外两个变量(知三求二师当公差d≠0时,等差数列{a n}的前n项和S n可表示为n的不含常数项的二次函数,且这二次函数的二次项系数的2倍就是公差[知识应用]【例1】(直接代公式)计算:(1)1+2+3+…+n;(2)1+3+5+…+(2n-1);(3)2+4+6+…+2n;(4)1-2+3-4+5-6+…+(2n-1)-2n(让学生迅速熟悉公式,即用基本量观点认识公式)请同学们先完成(1)~(3),并请一位同学回答生(1)1+2+3+…+n=2)1(+nn;(2)1+3+5+…+(2n-1)=2)11(-+nn=n2;(3)2+4+6+…+2n=2)22(+nn=n(n师第(4)小题数列共有几项?是否为等差数列?能否直接运用S n公式求解?若不能,那应如何解答?(小组讨论后,让学生发言解答生(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以原式= [1+3+5+…+(2n-1)]-(2+4+6+…+2n)=n2-n(n+1)=-n生上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:原式=(-1)+(-1)+(-1)+…+(-1)=-n师很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法.注意在运用求和公式时,要看清等差数列的项数,否则会引起错解【例2】(课本第49页例分析:这是一道实际应用题目,同学们先认真阅读此题,理解题意.你能发现其中的一些有用信息吗生由题意我发现了等差数列的模型,这个等差数列的首项是500,记为a1,公差为50,记为d,而从2001年到2010年应为十年,所以这个等差数列的项数为10.再用公式就可以算出来了师这位同学说得很对,下面我们来完成此题的解答.(按课本解答示范格式【例3】(课本第50页例2)已知一个等差数列的前10项的和是310,前20项的和是1 220,由此可以确定求其前n项和的公式吗?分析:若要确定其前n项求和公式,则必须确定什么?生必须要确定首项a1与公差d师首项与公差现在都未知,那么应如何来确定?生由已知条件,我们已知了这个等差数列中的S10与S20,于是可从中获得两个关于a1和d的关系式,组成方程组便可从中求得(解答见课本第50页师通过上面例题3我们发现了在以上两个公式中,有5个变量.已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二).运用方程思想来解决问题[合作探究]师 请同学们阅读课本第50页的例3,阅读后我们来互相进行交流(给出一定的时间让学生对本题加以理解师 本题是给出了一个数列的前n 项和的式子,来判断它是否是等差数列.解题的出发点是什么生 从所给的和的公式出发去求出通项师 对的,通项与前n 项的和公式有何种关系 生 当n =1时,a 1=S 1,而当n >1时,a n =S n -S n -1师 回答的真好!由S n 的定义可知,当n =1时,S 1=a 1;当n ≥2时,a n =S n -S n -1,即a n =S 1(nS n -S n -1(n ≥2).这种已知数列的S n 来确定数列通项的方法对任意数列都是可行的.本题用这方法求出的通项a n =2n -21,我们从中知它是等差数列,这时当n =1也是满足的,但是不是所有已知S n 求a n 的问题都能使n =1时,a n =S n -S n -1满足呢?请同学们再来探究一下课本第51页的探究问题生1 这题中当n =1时,S 1=a 1=p+q+r ;当n ≥2时,a n =S n -S n -1=2p n -p+q ,由n =1代入的结果为p+q ,要使n =1时也适合,必须有生2 当r=0时,这个数列是等差数列,当r≠0时,这个数列不是等差数列生3 这里的p≠0也是必要的,若p=0,则当n ≥2时,a n =S n -S n -1=q+r ,则变为常数列了,r≠0也还是等差数列师 如果一个数列的前n 项和公式是常数项为0,且是关于n 的二次型函数,则这个数列一定是等差数列,从而使我们能从数列的前n 项和公式的结构特征上来认识等差数列.实质上等差数列的两个求和公式中皆无常数项课堂练习等差数列-10,-6,-2,2,…前多少项的和是54? (学生板演解:设题中的等差数列为{a n },前n 项和为S n则a 1=-10,d =(-6)-(-10)=4,S n由公式可得-10n +2)1(-n n解之,得n 1=9,n 2=-3(舍去所以等差数列-10,-6,-2,2…前9项的和是(教师对学生的解答给出评价课堂小结师 同学们,本节课我们学习了哪些数学内容生 ①等差数列的前n 项和公式1:2)(1n n a a n S +=②等差数列的前n 项和公式2:2)1(1dn n na S n -+=师 通过等差数列的前n 项和公式内容的学习,我们从中体会到哪些数学的思想方法生 ①通过等差数列的前n 项和公式的推导我们了解了数学中一种求和的重要方法——“倒序相加法②“知三求二”的方程思想,即已知其中的三个变量,可利用构造方程或方程组求另外两个变量师 本节课我们通过探究还得到了等差数列的性质中的什么内容生 如果一个数列的前n 项和公式中的常数项为0,且是关于n 的二次型函数,则这个数列一定是等差数列,否则这个数列就不是等差数列,从而使我们能从数列的前n 项和公式的结构特征上来认识等差数列布置作业课本第52页习题2.3 A 组第2、3题板书设计等差数列的前n 项和(一)公式:2)1(2)(11dn n na a a n S n n -+=+=推导过程 例。
等差数列前n项和
一、教材分析
“等差数列的前n项和”是人教版高中数学必修五第二章的内容,这是数列的重要内容,也是数列研究的基本问题。
它是在学生们学习了等差数列的定义与性质之后学习的.这节内容既是对“等差数列”的知识的运用与巩固,也为后面继续数列的学习奠定了基础。
二、学情分析
学生们已经灵活掌握了函数、数列等相关知识,能够运用知识解决基本问题,并且在初中阶段已经学会了特殊的数列求和。
三、教学目标
知识与技能:探索并掌握等差数列的前n项和公式,并能简单运用。
过程与方法:在公式推导过程中,体验倒序相加的方法;体会从特殊到一般的认知规律与分类讨论的数学思想方法。
情感与态度:通过生动具体的现实问题,激发学生探究的兴趣和欲望,培养学生求真的态度,增强学生学好数学的心理体验,产生热爱数学的情感。
四、教学重点、难点
教学重点:等差数列前n项和公式的推导及运用,强调数列是一种特殊的函数模型。
教学难点:倒序相加法;建立等差数列的模型并能解决实际问题。
五、教学过程。
课题:等差数列的前n项和教材:普通高中课程标准实验教科书《数学》必修5(人民教育A版)一、背景分析1.教学内容分析《等差数列的前n项和》是按照从特殊到一般的探究方式,引导学生采用倒序相加法推导等差数列的前n项和公式,并体会公式的一些应用,同时让学生探究等差数列的前n项和公式与关于n 的二次函数之间的联系。
2.在教材中的地位等差数列前n项和是进一步学习数列、微积分的基础,与数学课程的其它内容(函数、三角、不等式等)有着密切的联系。
3.重点、难点定位重点:等差数列前n项和公式的理解、推导及应用。
难点:等差数列前n项和公式推导方法及它与二次函数的关系。
二、学生学情分析1、知识准备学生已经学习了等差数列的通项公式和性质,数列的和等有关内容。
2、能力储备学生经过初高中的数学学习,已具有一定的自主探究能力,从特殊到一般的类比推理能力,但学生对于倒序求和的思想还初次见到。
3、学生情况我所在的学校是省示X性高中,学生基础还不错,经过近几年的课改,已经形成了较浓的自主探究氛围与合作交流意识。
这些都为本节课突破难点提供了有利条件。
三、教学目标1、知识与技能(1)理解等差数列前项和的定义以及等差数列前项和公式推导的过程,并理解推导此公式的方法——倒序相加法,记忆公式的两种形式;(2)用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个量;(3)会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题.2、过程与方法(1)通过对历史有名的高斯求和的介绍,引导学生发现等差数列的第k项与倒数第k项的和等于首项与末项的和这个规律,然后体验从特殊到一般的研究方法。
通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。
(2)通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并运用数学知识和方法科学地解决问题.3、情感与价值观(1) 通过对数列知识的进一步学习,不断培养学生自主学习、合作交流、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,提高参与意识和合作精神;(2)通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,产生热爱数学的情感, 形成学数学、用数学的思维和意识,培养学好数学的信心,体验在学习中获得成功的成就感,为远大的志向而不懈奋斗。
2020年高中数学必修5《等差数列前n项和》教案及其分析精
编版
课题:等差数列的前n项和
教材:人教版数学必修5
一、教学目标
知识目标:掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。
能力目标:通过对公式的推导提高学生研究问题、分析问题、解决问题的能力。
情感目标:通过公式的推导与简单应用,激发学生的求知欲,鼓励学生大胆尝试,培养学生敢于探索、创新的学习品质。
二、教学重点、难点
重点:等差数列的前n项和公式
难点:获得等差数列的前n项和公式推导的思路
三、教学方法与手段
启发引导、合作学习、多媒体辅助等多种手段相结合
四、教学过程
1、问题呈现
泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。
陵寝以宝石镶饰,图案之细致令人叫绝。
传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,奢靡之程度,可见一斑。
你知道这个图案一共花了多少宝石吗?
2、探索发现
1+2+3 +…+99+100
=(1+100) +(2+99)+ …+(50+51)
=101 ×50 = 5050
问题1:图案中,第1层到第21层一共有多少颗宝石?
问题2:求1到n 的正整数之和。
123(1)n s n n =+++
+-+即
问题3:{}?n n a n 如何求等差数列的前项和S
3、公式应用
例1、选用公式
某长跑运动员7天里每天的训练量(单位:m )是:
这位长跑运动员7天共跑了多少米?
例2、变用公式
等差数列-10,-6,-2,2,…的前多少项的和为54?
变式练习:
{}120,54,999,.n n n a a a s n ===在等差数列中,求
例3、知三求二
{}120,37,629,.n n n a n s a a ===在等差数列中,已知d 求及
4、课堂小结
1()12
n n n a a S +=
公式 1(1)22n n n S na d -=+公式 5、作业布置
必做题:课本52页,练习1、2、3;
选做题:在等差数列中,
512156136,;
220,a a a a a +++==21611
、已知求s 、已知求s
板书设计:
教 案 说 明
一、教材分析:
等差数列的前n 项和是人教版数学必修5第二章的内容,是在学生学习了等差数列的概念和性质的基础上学习和研究的。
在推导等差数列前n项和公式的过程中,采用了:1.从特殊到一般的研究方法;2.等差数列的基本元表示;3.倒序相加求和。
不仅得出了等差数列前n 项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。
等差数列前n项和是学习极限、微积分的基础,与数学课程的其它内容(函数、三角、不等式等)有着密切的联系。
因此,本节课内容在教材中处于非常重要的位置。
二、本节课的教法特点:
《数学课程标准》强调,数学内容要按照“问题情境——探究发现——应用与拓展”的形式呈现,这样的呈现形式,其实也给教师组织教学提供了一个基本的模式。
本节课以一个传说为问题情境,引导学生进行思考,目的是激发学生的学习兴趣。
同时,采用以问题驱动、层层铺垫,从特殊到一般启发学生获得公式的推导方法。
课堂中设计了3道变式例题,通过通过“选用公式”、“变用公式”和“知三求二”三个层次促进学生新的认知结构的形成。
三、本节课的预期效果:
新课程标准与旧大纲相比较而言,更加重视过程。
因此,本节课的一大重点在于如何引导学生探究并推导出等差数列前n项和公式,而不是由教师包办到底。
通过本节课的学习,不仅要使学生会利用等差数列前n项和公式解决实际问题,更重要的意义在于让学生经历公式的形成与发展过程,提高学生分析问题、解决问题的能力,这才是新课标下教师应该传授的、学生应该掌握的知识。
课题:等差数列的前n项和(第一课
时)
参赛人:叶宇桦
内附:1、等差数列的前n项和教案
2、等差数列的前n项和教案说明
3、等差数列的前n项和(第一课时)说课稿。