初三数学试卷抛物线与三角形面积
- 格式:doc
- 大小:44.00 KB
- 文档页数:4
专题13 巧解二次函数与图形面积综合题知识解读因动点产生的图形面积问题,是抛物线与三角形、四边形相结合的重要形式,解决这类问题常常用到以下技巧:(1)图形的面积割补;(2)利用平行线的性质作等积变形;(3)等量代换,即把面积之比转化为线段之比;(4)“等底,等高,等面积”由二推一,即以其中任意两个为条件,第三个为结论,命题总成立.培优学案典例示范例1如图13-1,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)若点E是抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.【提示】(1)只需将A点,C点坐标代入解析式中即可;(2)思路一:△ACE的面积可由12AC×h表示,因为AC固定,若要它的面积最大,则只需h最大,即点E到直线AC的距离最大,如图13-2,若设一条平行于AC的直线,那么当该直线与抛物线有且只有一个公共点时,该点就是点E.不妨把这种方法形象的记忆为“平行切线法”。
思路二:基于“分割图形”考虑.如图13-3,过点E 作x 轴的垂线,交AC 于点F .设E (x ,x 2-4x +3),则S △AEC =S △AEF +S △CEF =32EF ,即△ACE 的面积取决于EF 的长。
若把EF 的长称为△ACE 的“竖直高”,把A ,C 两点横坐标之差的绝对值称为△ACE 的“水平宽”,则△ACE 的面积可直接记为“12×竖直高×水平宽”。
思路三:基于“补全图形”考虑。
但要分点E 在x 轴下方和上方两种情况讨论(为什么要分两种情况?),如图13-4,同时一定要搞清楚线段长度与点坐标的关系,长度是正的,要用大坐标减去小坐标,若不能区分,加上绝对值,请读者自行完成。
【跟踪训练】1.如图13-5,抛物线223212--=x x y 交x 轴正半轴于点A ,交y 轴于点B ,点C 是线段AB 方的抛物线上的一点,求ABC ∆的面积的最大值,并求出此时点C 的坐标。
专题04 铅垂法求面积 铅垂法1: 铅垂法2: 铅垂法3:A B ABC x x CD S -⋅=21△ A C ABC x x BD S -⋅=21△ C B ABC x x AD S -⋅=21△一、求三角形面积最值 例1.如图,抛物线y =x 2﹣x +与x 轴交于A 、B 点,直线l :y =kx ﹣3k +4与抛物线交于E ,F 两点.(1)直线l 过定点: ;(2)求S △BEF 的最小值.例2.如图,抛物线y =﹣x 2+2x +1和y 轴交于点A ,与它的对称轴直线x =1交于点B ,过定点的直线y =kx ﹣k +4(k <0)与该抛物线交于点M ,N .若△BMN 的面积等于1,求k 的值.对应练习:1.(2024•凉州区二模)如图,已知:关于y的二次函数y=x2+bx+c的图象与x 轴交于点A(2,0)和点B,与y轴交于点C(0,6),抛物线的对称轴与x 轴交于点D.(1)求二次函数的表达式.(2)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达B点时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出面积.2.(2024•沂源县一模)如图,已知抛物线y=ax2+bx+5经过A(﹣5,0),B (﹣4,﹣3)两点,与x轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值及点P的坐标;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.3.(2024•鼓楼区校级模拟)已知抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B的左侧),与y轴交于点C.(1)直接写出A,B,C三点的坐标;(2)如图,点P为直线BC下方抛物线上一点,PD⊥BC于点D,求PD的最大值;4.(2024•翠屏区校级模拟)在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,当△ACE面积的最大值时,求出此时点E的坐标;5.(2024秋•长沙期中)如图,直线与y轴、x轴分别交于点B、点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A(﹣1,0).(1)求二次函数的解析式;(2)点P为该二次函数的图象在第一象限上一点,当△BCP的面积最大时,求P点的坐标;6.(2024秋•阜阳期中)如图,在直角坐标系中,二次函数的图象与x轴相交于点A(﹣2,0)和点B(6,0),与y轴交于点C.(1)求b、c的值;(2)若点P是抛物线BC段上的一点,当△PBC的面积最大时求出点P的坐标,并求出△PBC面积的最大值;7.(2024秋•西岗区校级月考)如图,二次函数的图象与x轴交于A、B两点,与y轴交于点C,点A的坐标为(﹣1,0),点C的坐标为(0,﹣3),连接BC.(1)求该二次函数和直线BC的解析式;(2)点P是抛物线在第四象限图象上的任意一点,作PQ⊥x轴于点Q,交BC于点H,当PH的长度最大时,求点P的坐标;(3)在(2)的条件下,若△BCP的面积最大时,BC边上的高PN的值为.8.(2024秋•吉林月考)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c 的图象与x轴交于A、B两点,与y轴交于点C(0,3),点B的坐标为(3,0),点P是抛物线上一个动点,且在直线BC的上方.(1)求该二次函数的解析式;(2)求点A的坐标;(3)连接CP、BP,当点P运动到什么位置时,△BPC的面积最大?请求出点P的坐标和△BPC面积的最大值;9.(2023秋•大丰区月考)如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于点A(﹣4,0)和点B,与y轴相交于点C(0,4).(1)求该二次函数的解析式;(2)点D在线段OA上运动,过点D作x轴的垂线,与AC交于点Q,与抛物线交于点P.连接AP,CP,当三角形ACP的面积最大时,求此时点P的坐标;10.(2024•深圳三模)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与轴交于A,B点,与y轴交于点C(0,3),点B的坐标为(3,0),点P是抛物线上一个动点.(1)求二次函数解析式;(2)若P点在第一象限运动,当P运动到什么位置时,△BPC的面积最大?请求出点P的坐标和△BPC面积的最大值;二、求四边形面积最值例3.(2024•南召县开学)综合与探究如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于点A(﹣4,0)和点B,与y轴相交于点C(0,4).(1)求该二次函数的解析式;(2)点D在线段OA上运动,过点D作x轴的垂线,与AC交于点Q,与抛物线交于点P,连接AP、CP,当四边形AOCP的面积最大时,求点P的坐标和四边形AOCP面积的最大值.对应练习:1.(2023秋•新会区校级月考)如图,二次函数y=ax2+bx+c的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2).(1)求二次函数的解析式;(2)若点M为该二次函数图象在第四象限内的一个动点,当四边形ACMB 的面积最大时求出此时点M的坐标及四边形ACMB面积的最大值;2.(2024春•江北区校级期末)如图,在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于点A(﹣1,0)和点B(4,0),与y轴交于点C,连接BC,过点A作AD∥BC交y轴于点D,连接BD.(1)求二次函数的表达式;(2)如图,点P在第一象限内的抛物线上,连接PB、PC,当四边形BPCD的最大值;的面积最大时,求出此时点P的坐标以及S四边形BPCD3.(2024•吐鲁番市二模)如图,在平面直角坐标系xOy中,二次函数y=x2+bx+c的图象与x轴交于A,B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于点C(0,﹣3),点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式;(2)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标和四边形ABPC的最大面积;。
2021-2021学年九年级数学中考数学二次函数之铅垂法求三角形面积冲刺试题二次函数与面积解这类问题一般用到以下与面积相关的知识:图形割补、等积转换、等比转化.课前练习如图1,过匚0C的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫二0C的"水平宽〞〔4〕,中间的这条直线在n3c内部线段的长度叫匚0C的"铅垂高〔刀〕〞.我们可得出一种计算三角形面积的新方法:5为曲=, ah,即三角形面积等于水平宽与铅垂高乘积的一半.解答问题:如图2,顶点为C 〔1,4〕的抛物线〕,=4/+云+.交x轴于点,4 〔3,0〕,交y轴于点B.〔1〕求抛物线和直线AB的解析式;〔2〕点尸是抛物线〔在第一象限内〕上的一个动点,连接RI, PB,当尸点运动到顶点C时,求nc铝的铅垂高8及;口是否存在抛物线上一点P,使以加=5M/?假设存在,求出尸点的坐标;假设不存在,请说明理由.图1图2备用图模型讲解竖切面积公式均为同"横切面积公式均为s="总结这种“铅垂高X水平宽的一半〞的求解方法可过三角形的任意一点,并且“横竖〞均可.而在选择时,如何选用,取决于点.的坐标哪种更易求得.例题1一次函数y=〔左+3〕 x+ 〔hl〕的图像与x轴、y轴分别相交于点A. B, P〔-1, -4〕.〔1〕假设口.3尸的面积为3,求〞的值;〔2〕假设CUO3的面积为1,求〞的值.例题2如图,二次函数G+C的图像的顶点为C, 一次函数y=f+3的图像与这个二次函数的图像交于以、3两点〔其中点4在点3的左侧〕,与它的对称轴交于点D〔1〕求点.的坐标;〔2〕假设点C与点.关于x轴对称,且匚88的面积为4,求此二次函数的关系式.例题3抛物线y=a『+6x+c与x轴交于上、B两点、,与1y轴交于点C,其中点3在x轴的正半轴上,点.在〕,轴正半轴上,线段.3、0.的长〔OBVOC〕是方程十-10工+16 = 0的两个根,且抛物线的对称轴是直线x=-2.〔1〕求抛物线解析式;〔2〕假设点石时线段W5上的一个动点〔与点以、3不重合〕,过点石作石厂二NC 交BC于点、F,连接CE,设/£:的长为加,口底尸的面积为S,求S与〃?之间的函数关系式,并写出自变量初的取值范围.稳固练习1.直线y=2x+4与x轴、〉轴分别交于4.两点,抛物线y=-;片+反+c 经过点4.,点3是抛物线与x轴的另一个交点.〔1〕求这条抛物线的解析式及点B的坐标;〔2〕设点河是直线月.上一点,且求点Af的坐标;2.如图,抛物线〕,=*+区+.与一直线相交于d 〔—1,0〕, C 〔2,3〕两点, 与1y 轴交于点N,其顶点为..〔1〕抛物线及直线4C的函数关系式;〔2〕假设尸是抛物线上位于直线/C上方的一个动点,直接写出匚qPC的面积的最大值及此时点尸的坐标.3.如图,在平面直角坐标系xQy中,抛物线〉二62-2〃、-3〃〔.<0〕与x轴交于A, B两点〔点A在点B的左侧〕,经过点A的直线/:y=kx+b与y轴交于点C, 与抛物线的另一个交点为“且8=44C.〔1〕直接写出点4的坐标,并求直线/的函数表达式〔其中队b用含.的式子表示〕⑵点E是直线,上方的抛物线上的一点,假设匚浜的面积的最大值坦,求.的值;4.:二次函数>=49+乐+6〔4至0〕的图象与x轴交于&B两点、〔点以在点3的左侧〕,点4、点3的横坐标是方程片-叙-12 = 0的两个根.〔1〕求出该二次函数的表达式及顶点坐标;〔2〕如图,连接.4C、5C,点尸是线段.3上一个动点〔点尸不与点.、8重合〕,过点尸作尸.二月.交BC于点.,当匚CP.的面积最大时,求点尸的坐标.5.:在直角坐标系中,点.的坐标为〔0, - 2〕,点且与点3在x轴上,且点A与点B的横坐标是方程片-3x-4 = 0的两个根,点A在点B的左侧.〔1〕求经过d、B、C三点的抛物线的关系式.〔2〕点.的坐标为〔2, 0〕,点尸〔利,〃〕是该抛物线上的一个动点〔其中加>0, n<0〕连接CZX CP,设二CD尸的面积为S,当S取某一个值时,有两个点P与之对应,求此时S的取值范围?7、如图,在平面直角坐标系中,点O为坐标原点,直线/与抛物线>=7心2+内相交于乂〔1, 3〕, B〔4, 0〕两点.〔1〕求出抛物线的解析式;〔2〕点尸是线段.43上一动点,〔点尸不与点以、3重合〕,过点尸作加二.4, 交笫一象限内的抛物线于点回,过点河作AfCJx轴于点C,交AB于点M假设匚3cM 匚的面积S/心满足Sgc,=2Sgwv,求出竺的值,并求出此时点可NC的坐标.。
备考2023年中考数学一轮复习-图形的性质_三角形_三角形的面积-综合题专训及答案三角形的面积综合题专训1、(2018赤峰.中考真卷) 阅读下列材料:如图1.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,可以得到:证明:过点A作AD⊥B C,垂足为D.在Rt△ABD中,∴∴同理:∴(1)通过上述材料证明:(2)运用(1)中的结论解决问题:如图2,在中,,求AC的长度.(3)如图3,为了开发公路旁的城市荒地,测量人员选择A、B、C三个测量点,在B点测得A在北偏东75°方向上,沿笔直公路向正东方向行驶18km到达C点,测得A在北偏西45°方向上,根据以上信息,求A、B、C三点围成的三角形的面积.(本题参考数值:sin15°≈0.3,sin120°≈0.9,≈1.4,结果取整数)2、(2019长春.中考真卷) 图①、图②、图③均是6×6的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B、C、D、E、F均在格点上。
在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,所画图形的顶点均在格点上,不要求写出画法。
(1)在图①中以线段AB为边画一个△ABM,使其面积为6。
(2)在图②中以线段CD为边画一个△CDN,使其面积为6。
(3)在图③中以线段EF为边画一个四边形EFGH,使其面积为9,且∠EFG=90° 3、(2018连云港.中考真卷) 在数学兴趣小组活动中,小亮进行数学探究活动,△ABC是边长为2的等边三角形,E是AC上一点,小亮以BE为边向BE的右侧作等边三角形BEF,连接CF.(1)如图1,当点E在线段AC上时,EF、BC相交于点D,小亮发现有两个三角形全等,请你找出来,并证明;(2)当点E在线段AC上运动时,点F也随着运动,若四边形ABFC的面积为,求AE的长;(3)如图2,当点E在AC的延长线上运动时,CF、BE相交于点D,请你探求△ECD的面积S1与△DBF的面积S2之间的数量关系,并说明理由;(4)如图2,当△ECD的面积S1=时,求AE的长.4、(2019灌南.中考模拟) 正方形ABCD的边长为1,点O是BC边上的一个动点(与B,C不重合),以O为顶点在BC所在直线的上方作∠MON=90°(1)当OM经过点A时,①请直接填空:ON(可能,不可能)过D点:(图1仅供分析)②如图2,在ON上截取OE=OA,过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD 于H,求证:四边形EFCH为正方形;③如图2,将②中的已知与结论互换,即在ON上取点E(E点在正方形ABCD外部),过E点作EF垂直于直线BC,垂足为点F,作EH⊥CD于H,若四边形EFCH 为正方形,那么OE与OA是否相等?请说明理由;(2)当点O在射线BC上且OM不过点A时,设OM交边AB于G,且OG=2.在ON上存在点P,过P点作PK垂直于直线BC,垂足为点K,使得S△PKO = S△OBG,连接GP,则当BO为何值时,四边形PKBG的面积最大?最大面积为多少?5、(2019.中考模拟) 如图,已知AD是△ABC的中线,∠ADC=45°,把△ADC沿AD 对折,点C落在点E的位置,连接BE,若BC=6cm.(1)求BE的长;(2)当AD=4cm时,求四边形BDAE的面积.6、(2018嘉兴.中考模拟) 如图,已知一次函数y=x﹣2与反比例函数y= 的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出一次函数值小于反比例函数值的x的取值范围;(3)坐标原点为O,求△AOB的面积.7、(2019河南.中考模拟) 如图,抛物线y=ax2+bx+6过点A(6,0),B(4,6),与y 轴交于点C.(1)求该抛物线的解析式;(2)如图1,直线l的解析式为y=x,抛物线的对称轴与线段BC交于点P,过点P作直线l的垂线,垂足为点H,连接OP,求△OPH的面积;(3)把图1中的直线y=x向下平移4个单位长度得到直线y=x-4,如图2,直线y=x-4与x轴交于点G.点P是四边形ABCO边上的一点,过点P分别作x轴、直线l的垂线,垂足分别为点E,F.是否存在点P,使得以P,E,F为顶点的三角形是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.8、(2017揭西.中考模拟) 在矩形ABCD中,AB=4cm,AD=6cm,延长AB到E,使BE=2AB,连接CE,动点F从A出发以2cm/s的速度沿AE方向向点E运动,动点G从E点出发,以3cm/s的速度沿E→C→D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止,设动点运动的时间为t秒.(1)当t为何值时,FC与EG互相平分;(2)连接FG,当t<时,是否存在时间t使△EFG与△EBC相似?若存在,求出t的值;若不存在,请说明理由.(3)设△EFG的面积为y,求出y与t的函数关系式,求当t为何值时,y有最大值?最大值是多少?9、(2019汇川.中考模拟) 如图,在中,,,点在上,经过点的与相切于点,交于点.(1)求证:平分;(2)若,求图中阴影部分的面积(结果保留).10、(2019顺城.中考模拟) 如图,在平面直角坐标系中,抛物线y=ax2+bx﹣与y轴交于点C,与x轴交于点A(﹣1,0),B(3,0).(1)求这个抛物线的解析式;(2)将△AOC以每秒一个单位的速度沿x轴向右平移,平移时间为t秒,平移后的△A′O′C′与△BOC重叠部分的面积为S,A与B重合时停止平移,求S与t的函数关系式;(3)点P在x轴上,连接CP,点B关于直线CP的对称点为B′,若点B′落在这个抛物线的对称轴上,请直接写出所有符合条件的点P的坐标.11、(2019德惠.中考模拟) 等腰Rt△ACB,∠ACB=90°,AC=BC,点A、C分别在x 轴、y轴的正半轴上.(1)如图1,求证:∠BCO=∠CAO(2)如图2,若OA=5,OC=2,求B点的坐标=18.分别以AC、(3)如图3,点C(0,3),Q、A两点均在x轴上,且S△CQACQ为腰在第一、第二象限作等腰Rt△CAN、等腰Rt△QCM,连接MN交y轴于P 点,OP的长度是否发生改变?若不变,求出OP的值;若变化,求OP的取值范围.12、(2020新泰.中考模拟) 如图1,抛物线y=﹣[(x﹣2)2+n]与x轴交于点A (m﹣2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连结BC.(1)求m、n的值;(2)如图2,点N为抛物线上的一动点,且位于直线BC上方,连接CN、BN.求△NBC面积的最大值;(3)如图3,点M、P分别为线段BC和线段OB上的动点,连接PM、PC,是否存在这样的点P,使△PCM为等腰三角形,△PMB为直角三角形同时成立?若存在,求出点P的坐标;若不存在,请说明理由.13、(2019平邑.中考模拟) 如图1,在平面直角坐标系中,直线与抛物线交于两点,其中, .该抛物线与轴交于点,与轴交于另一点.(1)求的值及该抛物线的解析式;(2)如图2.若点为线段上的一动点(不与重合).分别以、为斜边,在直线的同侧作等腰直角△ 和等腰直角△ ,连接,试确定△ 面积最大时点的坐标.(3)如图3.连接、,在线段上是否存在点,使得以为顶点的三角形与△ 相似,若存在,请直接写出点的坐标;若不存在,请说明理由.14、(2020南充.中考真卷) 如图,边长为1的正方形ABCD中,点K在AD上,连接BK,过点A,C作BK的垂线,垂足分别为M,N,点O是正方形ABCD的中心,连接OM,ON.(1)求证:AM=BN;(2)请判断△OMN的形状,并说明理由;(3)若点K在线段AD上运动(不包括端点),设AK=x,△OMN的面积为y,求y关于x的函数关系式(写出x的范围);若点K在射线AD上运动,且△OMN的面积为,请直接写出AK长.15、(2020吉林.中考真卷) 如图,是等边三角形,,动点P从点A出发,以的速度沿向点B匀速运动,过点P作,交折线于点Q,以为边作等边三角形,使点A,D在异侧.设点P的运动时间为,与重叠部分图形的面积为.(1)的长为________ (用含的代数式表示).(2)当点D落在边上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.三角形的面积综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
备考2023年中考数学一轮复习-图形的性质_三角形_三角形的面积三角形的面积专训单选题:1、(2018宿迁.中考真卷) 在平面直角坐标系中,过点(1,2)作直线l,若直线l 与两坐标轴围成的三角形面积为4,则满足条件的直线l的条数是()。
A . 5B . 4C . 3D . 22、(2020河南.中考模拟) 如图,△PAB与△PCD均为等腰直角三角形,点C在PB 上,若△ABC与△BCD的面积之和为10,则△PAB与△PCD的面积之差为()A . 5B . 10C . l5D . 203、(2018杭州.中考真卷) 如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1, S2,()A . 若,则B . 若,则C . 若,则 D . 若,则4、(2019中山.中考模拟) 如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为()A .B .C .D .5、(2022任城.中考模拟) 如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )① ;② ;③若,则平分;④若,则A . ①③B . ②③C . ②④D . ③④6、(2019南宁.中考模拟) 如图,某商标是由三个半径都为R的圆弧两两外切得到的图形,则三个切点间的弧所围成的阴影部分的面积是()A . (﹣π)R2B . (+ π)R2C . (﹣π)R2D . (+π)R27、(2021四川.中考模拟) 如图,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )A . 4B . 6.25C . 7.5D . 98、(2019西藏自治区.中考真卷) 如图,在矩形中,,动点满足,则点到两点距离之和的最小值为()A .B .C .D .9、(2019西安.中考模拟) 如图,若△ABC和△DEF的面积分别为S1, S2,则( )A . S1=S2B . S1=S2C . S1=S2D . S1=S210、如图,正方形边长为4,点在边上运动(不含端点),以为边作等腰直角三角形,∠AEF=90°,连接.下面四个说法中有几个正确()①当时,;②当时,点,,共线;③当三角形与三角形面积相等时,则DE=;④当平分∠EAF时,则DE=A . 1个B . 2个C . 3个D . 4个填空题:11、(2018宿迁.中考真卷) 如图,将含有30°角的直角三角板ABC放入平面直角坐标系,顶点AB分别落在x、y轴的正半轴上,∠OAB=60°,点A的坐标为(1,0),将三角板ABC沿x轴右作无滑动的滚动(先绕点A按顺时针方向旋转60°,再绕点C按顺时针方向旋转90°,…)当点B 第一次落在x轴上时,则点B运动的路径与坐标轴围成的图形面积是________.12、(2019宁波.中考模拟) 如图,把一副三角板按如图放置,∠ACB=∠ADB=90°,∠CAB=30°,∠DAB=45°,点E是AB的中点,连结CE,DE,DC.若AB=8,则△DEC的面积为________.13、(2019.中考模拟) 已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为________.14、(2019.中考模拟) 将一副三角板按如图1位置摆放,使得两块三角板的直角边AC和MD重合.已知AB=AC=8cm,将△MED绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是________cm2.15、(2019河南.中考模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,以点A为圆心,AC的长为半径作交AB于点E,以点B为圆心,BC的长为半径作交AB于点D,则阴影部分的面积为________.16、(2019黄冈.中考真卷) 如图,一直线经过原点O,且与反比例函数相交于点A、点B,过点A作AC⊥y轴,垂足为C,连接BC。
2023年九年级数学中考专题:二次函数综合压轴题(面积问题)1.如图,二次函数25y ax bx =++的图象经过点(1,8),且与x 轴交于A 、B 两点,与y 轴交于点C ,其中点(1,0)A -,M 为抛物线的顶点.(1)求二次函数的解析式; (2)求MCB △的面积;(3)在坐标轴上是否存在点N ,使得BCN △为直角三角形?若存在,求出点N 的坐标;若不存在,请说明理由.2.如图,抛物线212y x bx c =-++(b 、c 为常数)经过()4,0A 和()0,4B 两点,其顶点为C .(1)求该抛物线的表达式及其顶点坐标;(2)若点M 是拋物线上第一象限的一个动点.设ABM 的面积为S ,试求S 的最大值; (3)若抛物线222y mx mx m =-++与线段AB 有两个交点,直接写出m 的取值范围. 3.如图,抛物线22(0)y ax ax c a =-+>与y 轴交于点C ,与x 轴交于A ,B 两点,点A 在点B 左侧.点A 的坐标为(1,0),3OC OA -=.(1)求抛物线的解析式;(2)在直线BC 下方的抛物线上是否存在一点P ,使得PBC 的面积等于ABC 面积的三分之二?若存在,求出此时OP 的长;若不存在,请说明理由.(3)将直线AC 绕着点C 旋转45︒得到直线l ,直线l 与抛物线的交点为M (异于点C ),求M 点坐标.4.如图1,抛物线24y ax bx a =+-经过()10A -,,()04C ,两点,与x 轴交于另一点B .(1)求抛物线和直线BC 的解析式;(2)如图2,点P 为第一象限抛物线上一点,是否存在使四边形PBOC 面积最大的点P ?若存在,求出点P 的坐标;若不存在,请说明理由;(3)如图3,若抛物线的对称轴EF (E 为抛物线顶点)与直线BC 相交于点F ,M 为直线BC 上的任意一点,过点M 作MN EF ∥交抛物线于点N ,以E ,F ,M ,N 为顶点的四边形能否为平行四边形?若能,请求出点N 的坐标;若不能,请说明理由. 5.如图,抛物线24y ax bx =+-与x 轴交于点()2,0A -,()4,0B ,与y 轴交于点C ,顶点为D .(1)求抛物线的解析式和顶点D 的坐标;(2)动点P ,Q 以相同的速度从点O 同时出发,分别在线段,OB OC 上向点B ,C 方向运动,过点P 作x 轴的垂线,交抛物线于点E . ①当四边形OQEP 为矩形时,求点E 的坐标;①过点E 作EM BC ⊥于点M ,连接,PM QM ,设BPM △的面积为1S ,CQM 的面积为2S ,当PE 将BCE 的面积分成1:3两部分时,请直接写出12S S 的值. 6.如图,抛物线2(0)y ax bx c a =++≠与x 轴相交于A ,B 两点,抛物线的对称轴为直线=1x -,其中点A 的坐标为(3,0)-.(1)求点B 的坐标;(2)已知1a =,C 为抛物线与y 轴的交点,求抛物线的解析式; (3)若点P 在抛物线上,且4POCBOCSS=,求点P 的坐标;(4)设点Q 是线段AC 上的动点,过点Q 作QD y 轴交抛物线于点D ,求线段QD 长度的最大值.7.如图,在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()30A -,,()10B ,两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △的面积最大时,求点P 的坐标;(3)Q 是x 轴上一动点,M 是第二象限内抛物线上一点,若以A ,C ,M ,Q 为顶点的四边形是平行四边形,直接写出点Q 的坐标.8.如图,直线132y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c =-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求四边形ABCM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90°得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围.9.如图,已知抛物线与x 轴交于()1,0A - 、()4,0B 两点,与y 轴交于点()0,3C .(1)求抛物线的解析式; (2)求直线BC 的函数解析式;(3)在抛物线上,是否存在一点P ,使PAB 的面积等于ABC 的面积?若存在,求出点P 的坐标;若不存在,请说明理由.10.如图,抛物线26y ax bx =++与x 轴交于点()6,0B ,()2,0C -,与y 轴交于点A ,点P 是线段AB 上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P 运动到什么位置时,PAB 的面积最大?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 作PE x ∥轴交抛物线于点E ,连接DE .是否存在点P ,使PDE △为等腰直角三角形?若存在,求点P 的坐标;若不存在,请说明理由.11.如图,直线l :112y x =-+与x 轴,y 轴分别交于点B ,C ,经过B ,C 两点的抛物线2y x bx c =++与x 轴的另一个交点为A .(1)求该抛物线的解析式;(2)若点P 在直线l 下方的抛物线上,过点P 作PD ①x 轴交l 于点D ,PE ①y 轴交l 于点E ,求PD PE +的最大值;(3)若点P 在直线l 下方的抛物线上,F 为直线l 上的点,以A ,B ,P ,F 为顶点的四边形能否构成平行四边形?若能,直接写出点F 的坐标;若不能,请说明理由. 12.已知顶点为()1,5A 的抛物线2y ax bx c =++经过点()5,1B ,(1)求抛物线的解析式;(2)设C ,D 分别是x 轴、y 轴上的两个动点.①当四边形ABCD 的周长最小时,在图1中作直线CD ,保留作图痕迹并直接写出直线CD 的解析式;①点()(),>0P m n m 是直线y x =上的一个动点,Q 是OP 的中点,以PQ 为斜边按图2所示构造等腰Rt PQR △.在①的条件下,记PQR 与COD △的公共部分的面积为S ,求S 关于m 的函数关系式,并求S 的最大值.13.抛物线24y x x =-与直线y x =交于原点O 和点B , 与x 轴交于另一点A , 顶点为D .(1)填空: 点B 的坐标为___________, 点D 的坐标为___________.(2)如图1 , 连结OD P ,为x 轴上的动点, 当以O D P ,,为顶点的三角形是等腰三角形时, 请直接写出点P 的坐标;(3)如图2, M 是点B 关于拋物线对称轴的对称点, Q 是拋物线上的动点, 它的横坐标为 (05)m m <<, 连结MQ BQ MQ ,,与直线OB 交于点E . 设BEQ 和BEM △的面积分别为1S 和2S , 设12S t s =, 试求t 关于m 的函数解析式并求出t 的最值. 14.如图,二次函数的图象经过点()10A -,,()30B ,,()03C -,,直线22y x =-与x 轴、y 轴交于点D ,E .(1)求该二次函数的解析式(2)点M 为该二次函数图象上一动点.①若点M 在图象上的B ,C 两点之间,求DME 的面积的最大值. ①若MED EDB ∠∠=,求点M 的坐标.15.如图,在平面直角坐标系中,抛物线24y ax bx =+-与x 轴交于()2,0A -,B 两点,其对称轴直线2x =与x 轴交于点D .(1)求该抛物线的函数表达式为______;(2)如图1,点P 为抛物线上第四象限内的一动点,连接CD ,PB ,PC ,求四边形BDCP 面积最大值和点P 此时的坐标;(3)如图2,将该抛物线向左平移得到抛物线y ',当抛物线y '经过原点时,与原抛物线的对称轴相交于点E ,点F 为抛物线y '对称轴上的一点,点M 是平面内一点,若以点A ,E ,F ,M 为顶点的四边形是以AE 为边的菱形,请直接写出满足条件的点M 的坐标______.16.如图,已知抛物线2y x bx c =++与x 轴交于点()21,0A m -和点()2,0B m +,与y 轴交于点C ,对称轴轴为直线=1x -.(1)求抛物线的解析式;(2)点P 是直线AC 上一动点,过点P 作PQ y ∥轴,交抛物线于点Q ,以P 为圆心,PQ 为半径作P ,当P 与坐标轴相切时,求P 的半径;(3)直线()340y kx k k =++≠与抛物线交于M ,N 两点,求AMN 面积的最小值.17.如图,在平面直角坐标系中,抛物线23y ax bx =+-与x 轴交于两点()1,0A -和()3,0B ,与y 轴交于点C ,抛物线上有一动点P ,抛物线的对称轴交x 轴于点E ,连接EC ,作直线BC .(1)求抛物线的解析式;(2)若点P 为直线BC 上方抛物线上一动点时,连接,PB PC ,当23EBC PBC S S =△△时,求点P 坐标;(3)如果抛物线的对称轴上有一动点Q ,x 轴上有一动点N ,是否存在四边形PQCN 是矩形?若存在,在横线上直接写出点N 的坐标,若不存在,请说明理由. 18.如图,直线122y x =-+交y 轴于点A ,交x 轴于点C ,抛物线214y x bx c=-++经过点A ,点C ,且交x 轴于另一点B .(1)直接写出点A ,点B ,点C 的坐标及抛物线的解析式;(2)在直线AC 上方的抛物线上有一点M ,求三角形ACM 面积的最大值及此时点M 的坐标;(3)将线段OA 绕x 轴上的动点(),0P m 顺时针旋转90︒得到线段O A '',若线段O A ''与抛物线只有一个公共点,请结合函数图象,求m 的取值范围(直接写出结果即可).参考答案:1.(1)245y x x =-++; (2)15(3)存在,点N 的坐标为(5,0)-或(0,5)-或(0,0).2.(1)2142y x x =-++,91,2⎛⎫⎪⎝⎭(2)S 的最大值为4 (3)2m ≥或1249m -<≤-3.(1)抛物线的解析式为2=23y x x -- (2)不存在这样的点P , (3)M 点坐标是(45),或315()24-,4.(1)抛物线的解析式:234y x x =-++;直线BC 的解析式为4y x =-+;(2)当()26P ,时,四边形PBOC 面积最大; (3)能,点N 的坐标为52124⎛⎫ ⎪⎝⎭,或724⎛- ⎝或724⎛- ⎝.5.(1)2142y x x =--,91,2D ⎛⎫- ⎪⎝⎭.(2)①(-;①1215S S =或1279S S =6.(1)(1,0) (2)223y x x =+- (3)(4,21)或()4,5- (4)947.(1)224233y x x =--+(2)3(2P -,5)2(3)(5,0)-或(1,0)-8.(1)03A (,),20B -(,),60C (,),抛物线解析式为:2134y x x =-++; (2)3a =时,四边形ABCM 面积最大,其最大值为754,此时M 的坐标为153,4⎛⎫⎪⎝⎭;(3)当3m -≤≤-33m ≤≤时,线段O A ''与抛物线只有一个公共点.9.(1)239344y x x =-++(2)334y x =-+(3)存在,点P 的坐标为:()13,3P ,23P ⎫-⎪⎪⎝⎭,33P ⎫-⎪⎪⎝⎭10.(1)21262y x x =-++(2)153,2P ⎛⎫ ⎪⎝⎭(3)点P 坐标为()46,或()55.11.(1)2512y x x =-+ (2)3(3)13,2⎛⎫- ⎪⎝⎭或1(1,)212.(1)21119424y x x =-++(2)①4y x =-+;①当02m <≤时,218PQRSm =;当823m <≤时,27448S m m =-+-;当843m ≤≤时,21244S m m =-+;S 的最大值为:47答案第3页,共3页 13.(1)()5,5;()2,4-;(2)点P的坐标为()或()-或()4,0或()5,0; (3)()2150566t m m m =-+<<,当52m =时,t 的最大值为2524.14.(1)该二次函数的解析式是()()21323y x x x x =+-=--;(2)①DME 的面积的最大值为52;①点M的坐标为⎝⎭或()12--.15.(1)214433y x x =-- (2)PBDC S 四边形的最大值为17,此时点P 的坐标为()3,5-(3)⎛ ⎝⎭或⎛ ⎝⎭或⎛- ⎝⎭或8,⎛- ⎝⎭16.(1)223y x x =+-(2)2或4(3)817.(1)2=23y x x --(2)⎝⎭或⎝⎭ (3)存在,⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭18.(1)()0,2A ,()2,0B -,()4,0C ,211242y x x =-++ (2)2,()2,2(3)34m -≤≤-或32m -+≤。
图1 图2 中考数学经典综合题—存在性探索,二次函数动点及最值(三条边均不在坐标轴上的三角形面积的求法)1如图1,在平面直角坐标系xOy 中,二次函数y =ax 2+bx +c (a >0)的图象顶点为D ,与y 轴交于点C ,与x 轴交于点A 、B ,点A 在原点的左侧,点B 的坐标为(3,0),OB =OC ,tan ∠ACO = 13.(1)求这个二次函数的解析式;(2)如图2,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上的一动点,当点P 运动到什么位置时,△AGP 的面积最大?求此时点P 的坐标和△AGP 的最大面积.26、解:(1)由OC=OB=3,知C (03)-,连接AC ,在Rt △AOC 中,OA=OC ×tan ∠ACO=1313⨯=,故A 10-(,)设所求二次函数的表达式为(1)(3)y a x x =+- 将C (03)-,代入得3(01)(03)a -=+-,解得1a =, ∴这个二次函数的表达式为223y x x =--。
(2)过点P 作y 轴的平行线与AG 交于点Q ,(将所求三角形面积一分为二的方法) 把G (2,y )代入抛物线的解析式223y x x =--得G (23)-,。
由A (10)-,可得直线AG 的方程为1y x =--设2(23)P x x x --,,则(1)Q x x --,,22PQ x x =-++,213(2)22APG APQ GPQ S S S PQ G A x x ∆∆∆=+=⋅-=-++横坐标横坐标)( 当12x =时,△APG 的面积最大。
此时P 点的坐标为115()24-,,△APG 的面积最大值为278。
中考数学经典综合题—存在性探索,二次函数动点及最值(三条边均不在坐标轴上的三角形面积的求法)2如图,在直角坐标系中,点A的坐标为(-2,0),连结OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由.(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△P AB是否有最大面积?若有,求出此时P点的坐标及△P AB22.解:(1)B(1(2)设抛物线的解析式为y=ax(x+a),代入点B(1, ,得a=,因此2y+(3)如图,抛物线的对称轴是直线x=—1,当点C位于对称轴与线段AB的交点时,△BOC的周长最小.设直线AB为y=kx+b.所以20.kk bk bb⎧=⎪⎧+=⎪⎪⎨⎨-+=⎪⎩⎪=⎪⎩解得,因此直线AB为y x,当x=-1时,y=,因此点C的坐标为(-1.(4)如图,过P作y轴的平行线交AB于D.2221()()213212PAB PAD PBD D P B A S S S y y x x x x x x ∆∆∆=+=--⎡⎤⎫=+-+⨯⎢⎥⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦=⎫=+⎪⎝⎭当x =-12时,△P AB1,2P ⎛- ⎝⎭. 中考数学经典综合题—存在性探索,二次函数动点及最值(三条边均不在坐标轴上的三角形面积的求法)3如图,在平面直角坐标系中,点A C 、的坐标分别为(10)(0-,、,,点B 在x 轴上.已知某二次函数的图象经过A 、B 、C 三点,且它的对称轴为直线1x =,点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F . (1)求该二次函数的解析式;(2)若设点P 的横坐标为m ,用含m 的代数式表示线段PF 的长. (3)求PBC △面积的最大值,并求此时点P 的坐标.25.解:(1)设二次函数的解析式为2(0)y ax bx c a a b c =++≠,、、为常数,由抛物线的对称性知B点(第25题)y坐标为(30),,依题意得:0930a b c a b c c ⎧-+=⎪++=⎨⎪=⎩ ································································ 1分解得:3a b c ⎧=⎪⎪⎪⎪=-⎨⎪⎪⎪=⎪⎩······················································· 2分∴所求二次函数的解析式为2y x x =-········· 3分 (2)P Q 点的横坐标为m ,P ∴2····························· 4分 设直线BC 的解析式为(0)y kx b k k b =+≠,、是常数,依题意,得30k b b +=⎧⎪⎨=⎪⎩3k b ⎧=⎪∴⎨⎪=⎩故直线BC的解析式为y x =···································································· 5分 ∴点F的坐标为3m ⎛- ⎝,2(03)3PF m m ∴=-+<< ········································································ 6分(3)PBC Q △的面积12CPF BPF S S S PF BO =+=△△·(将所求三角形面积一分为二的方法)=2213323228m m⎛⎫⎫⨯-+⨯=--+⎪⎪⎪⎝⎭⎝⎭∴当32m=时,PBC△的最大面积为8····························································· 8分把32m=代入233y m=-4y=-∴点P的坐标为32⎛-⎝⎭,10分中考数学经典综合题—存在性探索,二次函数动点及最值5.如图,抛物线223y x x=-++与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF DE∥交抛物线于点F,设点P的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设BCF△的面积为S,求S与m的函数关系式.24.解:(1)A(-1,0),B(3,0),C(0,3). ················································ 2分抛物线的对称轴是:x=1.····································································· 3分(2)①设直线BC的函数关系式为:y=kx+b.把B(3,0),C(0,3)分别代入得:303k bb+=⎧⎨=⎩,解得:k= -1,b=3.所以直线BC的函数关系式为:3y x=-+.当x=1时,y= -1+3=2,∴E(1,2).当x m=时,3y m=-+,∴P(m,-m+3). ············································································ 4分在223y x x=-++中,当1x=时,4y=.∴()14D,.(第24题)当x m =时,223y m m =-++,∴()223F m m m -++,. ·························· 5分 ∴线段DE =4-2=2,线段()222333PF m m m m m =-++--+=-+. ··········· 6分 ∵PF DE ∥,∴当PF ED =时,四边形PEDF 为平行四边形.由232m m -+=,解得:1221m m ==,(不合题意,舍去).因此,当2m =时,四边形PEDF 为平行四边形. ··································· 7分 ②设直线PF 与x 轴交于点M ,由()()3000B O ,,,,可得:3OB OM MB =+=. ∵BPF CPF S S S =+△△.(将所求三角形面积一分为二的方法)8分即1111()2222S PF BM PF OM PF BM OM PF OB =+=+=g g g g . ∴()()221393303222S m m m m m =⨯-+=-+≤≤. ······························ 9分中考数学经典综合题—存在性探索,二次函数动点及最值(三条边均不在坐标轴上的三角形面积的求法)6如图11,抛物线)1)(3(-+=x x a y 与x 轴相交于A 、B 两点(点A 在点B 右侧),过点A 的直线交抛物线于另一点C ,点C 的坐标为(-2,6).(1)求a 的值及直线AC 的函数关系式;(2)P 是线段AC 上一动点,过点P 作y 轴的平行线,交抛物线于点M ,交x 轴于点N.①求线段PM 长度的最大值;②在抛物线上是否存在这样的点M ,使得△CMP 与△APN 相似?如果存在,请直接写出所有满足条件的点M 的坐标(不必写解答过程);如果不存在,请说明理由.23.解:(1)由题意得 6=a(-2+3)(-2-1)∴a=-2 1分 ∴抛物线的函数解析式为y=-2(x+3)(x-1)与x 轴交于B (-3,0)、A (1,0) 设直线AC 为y=kx+b ,则有0=k+b6=-2k+b 解得 k=-2 b=2 ∴直线AC 为y=-2x+2 3分 (2)①设P 的横坐标为a(-2≤a ≤1),则P (a,-2a+2),M (a,-2a2-4a+6) 4分 ∴PM=-2a2-4a+6-(-2a+2)=-2a2-2a+4=-2a2+a+14+92=-2a+122+92 ∴当a=-12时,PM 的最大值为92 6分 ②M1(0,6)7分 M2-14,678 9分中考数学经典综合题—存在性探索,二次函数动点及最值(三条边均不在坐标轴上的三角形面积的求法)7如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; (3)在直线AC 上方的抛物线上有一点D ,使得DCA △的面积最大,求出点D 的坐标.26.解:(1)Q 该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-. 将(40)A ,,(10)B ,代入,得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩,∴此抛物线的解析式为215222y x x =-+-. ················································ (3分)(2)存在. ···························································································· (4分)如图,设P 点的横坐标为m ,则P 点的纵坐标为215222m m -+-,当14m <<时,4AM m =-,215222PM m m =-+-.又90COA PMA ∠=∠=Q °,∴①当21AM AO PM OC ==时,APM ACO △∽△,即21542222m m m ⎛⎫-=-+- ⎪⎝⎭.解得1224m m ==,(舍去),(21)P ∴,. ···················································· (6分)②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m m m -=-+-. 解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,. ······································································ (7分)类似地可求出当4m >时,(52)P -,. ························································ (8分) 当1m <时,(314)P --,.综上所述,符合条件的点P 为(21),或(52)-,或(314)--,. ························· (9分) (3)如图,设D 点的横坐标为(04)t t <<,则D 点的纵坐标为215222t t -+-. 过D 作y 轴的平行线交AC 于E .(将所求三角形面积一分为二的方法) 由题意可求得直线AC 的解析式为122y x =-. ··········································· (10分) E ∴点的坐标为122t t ⎛⎫- ⎪⎝⎭,.2215112222222DE t t t t t ⎛⎫∴=-+---=-+ ⎪⎝⎭. ········································· (11分)22211244(2)422DAC S t t t t t ⎛⎫∴=⨯-+⨯=-+=--+ ⎪⎝⎭△.∴当2t =时,DAC △面积最大.(21)D ∴,. ··························································································· (13分)。
抛物线内接三角形面积的计算通法一、问题的提出(2016年酒泉中考题)如图1(1),已知抛物线经过(3,0)A ,(0,3)B 两点.(1)求此抛物线的解析式和直线AB 的解析式;(2)如图1(1),动点E ,从O 点出发,沿着OA 的方向以1个单位/秒的速度向终点A 匀速运动,同时,动点F 从点A 出发,沿着AB /秒的速度向终点B 匀速运动,当EF 中任意一点到达终点时另一点也随之停止运动.连结EF ,设运动时间为t 秒,当t 为何值时,AEF V 为直角三角形?(3)如图1(2),取一根橡皮筋,两端点分别固定在A ,B 处,用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 与A ,B 两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P 的坐标;如果不存在,请简要说明理由.本题第(3)问是求抛物线内接不规则三角形的最大面积问题,解这类问题有没有一种通用的方法呢?值得我们探究.二、几种特殊情况1.抛物线内接三角形有一边在x 轴上:(这里约定A 点的横坐标记为A x ,A 点的纵坐 标记为为A y )如图2(1),有1122ABC A B C S AB OC x x y ∆=⨯=-⨯. 如图2(2),有1122ABC A B C S AB DC x x y ∆=⨯=-⨯. 如图2(3),有 1122ABC A B C S AB DC x x y ∆=⨯=-⨯. 2.抛物线内接三角形有一边与x 轴平行:如图3(1),有1122ABC A B C D S AB DC x x y y ∆=⨯=-⨯-, 或1122ABC B A D C S AB OC x x y y ∆=⨯=-⨯-; 如图3(2),有 1122ABC A B C D S AB DC x x y y ∆=⨯=-⨯-, 或1122ABCB A DC S AB OC x x y y ∆=⨯=-⨯-.在以上特殊情况下,只要求出A 、B 、C 、D 的坐标,代入即可以求出抛物线内接三角形的面积.三、建立模型当抛物线内接三角形的三边均不与坐标轴平行时(如图4),三角形的面积又该怎么计算呢?解题的基本思路是将任意三角形转化为上述特殊的三角形,然后类比解决.如图4,过点C 作“轴的垂线交AB 于点D ,则ABC ∆被分成了两个以CD 为一公共边的三角形.过点A 作AE CD ⊥于点E ,过B 作BF CD ⊥于点F ,则11()22ABC CDA ABC S S S CD AE CD BF CD AE BF ∆∆∆=+=⨯+⨯=⨯+,C D CD y y =-,C A B C AE BF x x x x +=-+-.A CB x x x <<Q ,A B AE BF x x ∴+=-,12ABC A B C D S x x y y ∆∴=---. 综合上述,已知三角形三个顶点坐标,可得抛物线内接ABC ∆的面积公式: 设,A B D a x x h y C y =-=-- .a 为两点的横坐标之差,可看成是两点之间的水平距离,可以称为水平宽; h 表示的是两点的纵坐标之差,可称为铅直高.在坐标系中,不规则三角形的面积公式可表示为:12ABC S ah ∆=. 此公式适用于坐标系中的任意三角形,它和一般三角形的面积公式形成了完美的一致. 当三角形的三个顶点都在抛物线上时,点的横坐标不可能州样,不妨设A C B x x x <<. 则A a x x B =--,即是水平宽.过点C 作x 轴的垂线,与直线AB 的交点记为D ,则C D h y y =-,即是铅直高,于是有1122ABC A B C D S ah x x y y ∆==-⋅-. 四、问题解决上述问题中,过点P 作//PN x 轴,垂足为N ,交AB 于点M (如图1(2)),抛物线解析式为223y x x =-++,直线AB 的解析式为3y x =-+.设(,3)N x x -+,则2(,23)M x x x -++.于是有 12ABC A B P M S x x y x ∆=-⋅- 21(30)(23)(3)2x x x ⎡⎤=-⋅-++--+⎣⎦ 23922x x =-+23327()228x =--+, 即当32x =时,ABP V 面积最大,最大面积是278,此时P 点的坐标为327(,)28. 五、模型应用(动点B 在定点A 与C 之内)例1 如图5,二次函数与x 轴交于点C ,与y 轴交于点A ,B 为直线AC 下方抛物线上一点,求ABC V 面积的最大值.解 易得点(0,4)A -,点(6,0)C ,则水平宽6A C a x x =-=.直线AC 的解析式为243y x =-. 设点B 的坐标为213(,4)34x x x --, 则点D 的坐标为2(,4)3x x -. 铅垂高22144(4)323B D h y y x x =-=----2123x x =-+, 故222116(2)6(3)923ABC S x x x x x ∆=⨯⨯-+=-+=--+. 06x <<Q ,当3x =时,即当点(3,5)B -时,ABC ∆面积最大,最大面积是9.评注 题中的ABC ∆满足公式中的,A C 为定点,B 为一动点,但在运动过程中,B 的横坐标介于,A C 的横坐标之间,所以直接套用公式即得.由此题可看出,在这种动点问题中,水平宽是两个定点间的水平跨度,铅直高即是由动点向x 轴作垂线,垂线与两定点的连线交于一点,动点和这个交点在竖直方向的跨度.六、模型拓展(动点P 在定点A 与C 之外)例2 如图6(1),二次函数与x 轴交于点C ,与y 轴交于点A ,直线AB 与x 轴平行,且点B 在抛物线上,点P 是直线AC 上方抛物线上的动点,是否存在点P ,使2P A C A B C S S ∆∆=,若存在,求出点P 的坐标,若不存在,说明理由.解析 由题意不难得出8ABC S ∆=,要使2PAC ABC S S ∆∆=,即求16PAC S ∆=.因为PAC ∆为动点三角形,由通用公式PAC S ah ∆=,其中a 为水平宽,6C A a x x =-=, h 为铅直高,应该过动点P 向x 轴作垂线;交直线AC 于点D ,则P D h y y =-.问题是此时动点P 不在两定点,A C 之间,而是运动到了两定点,A C 之外,那么通用公式还成立吗?由图6(2)可知,当动点P 在两定点,A C 之外时,1122PAC PDC PDA S S S PD CE PD AF ∆∆∆=-=⨯-⨯ 111()()222C A PD CE AF PD x x ah =-=⨯-=. 由此可见,当动点运动到两定点之外时,通用公式依然成立.区别是:动点在两定点之间时,动点图形的面积是两个规则图形的面积之和,用的是加法运算;动点在两定点之外时,动点图形的面积是两个规则图形的面积之差,用的是减法运算.。
2022年中考数学二次函数--图形面积与最值问题压轴题专项训练1.如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0),与y轴交于点C(0,﹣3).(1)求该抛物线的解析式及顶点坐标;(2)若P是线段OB上一动点,过P作y轴的平行线交抛物线于点H,交BC于点N,设OP=t时,△BCH的面积为S.求S关于t的函数关系式;若S有最大值,请求出S的最大值,若没有,请说明理由.(3)若P是x轴上一个动点,过P作射线PQ∥AC交抛物线于点Q,在抛物线上是否存在这样的点Q,使以A,P,Q,C为顶点的四边形为平行四边形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2.已知抛物线y=ax2+bx+3与x轴交于A、B两点(点A在点B的左侧).与y轴交于点C.其中OC=OB,tan∠CAO=3(1)求抛物线的解析式;(2)P是第一象限内的抛物线上一动点,Q为线段PB的中点,求△CPQ面积的最大值时P点坐标:(3)将抛物线沿射线CB方向平移个单位得新抛物线y′.M为新抛物线y′的顶点.D为新抛物线y′上任意一点,N为x轴上一点.当以M、N、C、D为顶点的四边形是平行四边形时,直接写出所有符合条件的点N 的坐标.并选择一个你喜欢的N点.写出求解过程.3.如图,抛物线223=-++与x轴交于,A B两点(A点在B点的左侧),与y轴交于点C,连接AC,y ax axBC,A点的坐标是(1-,0),点P是抛物线上的一个动点,其横坐标为m,且m>0.(1)求此抛物线的解析式;(2)若点Q是直线AC上的一个动点,且位于x轴的上方,当PQ∥y轴时,作PM⊥PQ,交抛物线于点M(点M在点P的右侧),以PQ,PM为邻边构造矩形PQNM,求该矩形周长的最小值;(3)设抛物线在点C与点P之间的部分(含点C和P)最高点与最低点的纵坐标之差为h.①求h关于m的函数解析式,并写出自变量m的取值范围;②当h=16时,直接写出△BCP的面积.4.在一个三角形中,如果其中某两边的长度之和等于第三边长度的两倍,则称该三角形为“调和三角形”例如我们学过的等边三角形就是“调和三角形”.(1)已知一个“调和三角形”三条边的长度分别为4,6,m﹣1,求m的值.(2)已知Rt△ABC是“调和三角形”,它的三边长分别为a,b,c,且a<b<c.①求a:b:c的值;②若△ABC周长的数值与面积的数值相等,求a,b,c的值.(3)在(2)的条件下,动点P从点A出发以每秒2个单位长度的速度沿路线A→B→C运动,动点Q从点C 出发以每秒1个单位长度的速度向点A运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t秒,设y=PQ2.①求y关于t的函数关系式;②求y的最小值.5.如图1,抛物线C1:y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,且顶点为C,直线y=kx+2经过A,C两点.(1)求直线AC的表达式与抛物线C1的表达式;(2)如图2,将抛物线C1沿射线AC方向平移一定距离后,得到抛物线为C2,其顶点为D,抛物线C2与直线y=kx+2的另一交点为E,与x轴交于M,N两点(M点在N点右边),若S△MDE=23S△MAE,求点D的坐标;(3)如图3,若抛物线C1向上平移4个单位得到抛物线C3,正方形GHST的顶点G,H在x轴上,顶点S,T 在x轴上方的抛物线C3上,P(m,0)是射线GH上一动点,则正方形GHST的边长为,当m=时,PSPT有最小值.6.如图,已知抛物线212y x bx c =++经过()4,0A -,()0,4B -,()2,0C 三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.7.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 的图象与轴交于A (﹣1,0),B (4,0),与y 轴交于点C (0,﹣3),连接AC 、BC .(1)求抛物线的函数表达式;(2)如图1,点D 是抛物线上位于第四象限内的一点,连接AD ,点E 是AD 的中点,连接BE 、CE ,求△BCE 面积的最小值;(3)如图2,点P 是抛物线上位于第四象限内的一点,点Q 在y 轴上,∠PBQ =∠OBC ,是否存在这样的点P 、Q 使BP =BQ ,若存在,求出点P 的坐标;若不存在,请说明理由.8.如图,抛物线y=ax2+bx+4交x轴于点A(﹣1,0)、B(4,0),交y轴于点C,点P是直线BC上方抛物线上的一点.(1)求抛物线的解析式;(2)求△PBC的面积的最大值以及此时点P的坐标;(3)在(2)的条件下,将直线BC向右平移74个单位得到直线l,直线l交对称轴右侧的抛物线于点Q,连接PQ,点R为直线BC上的一动点,请问在在平面直角坐标系内是否存在一点T,使得四边形PQTR为菱形,若存在,请直接写出点T的坐标;若不存在,请说明理由.9.如图1,在平面直角坐标系中,已知矩形ABCD的三个顶点A(﹣3,4)、B(﹣3,0)、C(﹣1,0).以D为顶点的抛物线y=ax2+bx+c过点B.动点P以每秒1个单位的速度从点D出发,沿DC边向点C运动,运动的时间为t秒.过点P作PE⊥CD交BD于点E,过点E作EF⊥AD于点F,交抛物线于点G.(1)求该抛物线的解析式;(2)连接BG ,求△BGD 的面积最大值;(3)如图2,在点P 运动的同时,点Q 从点B 出发,沿BA 边以每秒1个单位的速度向点A 运动.动点P 、Q 运动的过程中,在矩形ABCD 内(包括其边界)是否存在点H ,使以B ,Q ,E ,H 为顶点的四边形是菱形?若不存在,请说明理由;若存在,请直接写出t 的值:t = .10.如图,抛物线26y ax bx =++与直线2y x =+相交于15,22A ⎛⎫ ⎪⎝⎭、()4,6B 两点,点P 是线段AB 上的动点(不与A 、B 两点重合),过点P 作PC x ⊥轴于点D ,交抛物线于点C ,点E 是直线AB 与x 轴的交点.(1)求抛物线的解析式;(2)当点C 是抛物线的顶点时,求BCE 的面积;(3)是否存在点P ,使得BCE 的面积最大?若存在,求出这个最大值:若不存在,请说明理由.11.综合与探究:如图,在平面直角坐标系中,直线y =﹣3x ﹣3与x 轴交于点A ,与y 轴交于点C .抛物线y =x 2+bx +c 经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧).(1)求抛物线的解析式及点B 坐标;(2)设该抛物线的顶点为点H ,则S △BCH = ;(3)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及点M 的坐标;(4)在(3)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.12.如图,抛物线y =243x bx c -++经过点A (3,0),B (0,2),连接AB ,点P 是第一象限内抛物线上一动点.(1)求抛物线的表达式;(2)过点P 作x 轴的垂线,交AB 于点Q ,判断是否存在点P ,使得以P 、Q 、B 为顶点的三角形是直角三角形,若存在,请求出点P 的坐标,若不存在,请说明理由;(3)点C与点B关于x轴对称,连接AC,AP,PC,当点P运动到什么位置时,△ACP的面积最大?求△ACP 面积的最大值及此时点P的坐标.13.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式;(2)如图1,抛物线在第四象限的图象上有一点M,求四边形ABMC面积的最大值及此时点M的坐标;(3)如图2,直线CD交x轴于点E,若点P是线段EC上的一个动点,是否存在以点P、E、O为顶点的三角形与△ABC相似.若存在,请直接写出点P的坐标;若不存在,请说明理由.14.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F 在抛物线的对称轴上,且EF ∥x 轴,若以点D ,E ,F 为顶点的三角形与△ABD 相似,求出此时点E 的坐标;(3)若点P 为坐标平面内一动点,满足tan ∠APB =3,请直接写出△P AB 面积最大时点P 的坐标及该三角形面积的最大值.15.如图,抛物线23y ax bx =++与x 轴交于(2,0)A -、(6,0)B 两点,与y 轴交于点C .直线l 与抛物线交于A 、D 两点,与y 轴交于点E ,点D 的横坐标为4.(1)求抛物线的解析式与直线l 的解析式;(2)若点P 是抛物线上的点且在直线l 上方,连接PA 、PD ,求当PAD ∆面积最大时点P 的坐标及该面积的最大值;(3)若点Q 是抛物线上的点,且45ADQ ∠=︒,请直接写出点Q 的坐标.16.如图,抛物线y =ax 2+bx +2交x 轴于点A (﹣3,0)和点B (1,0),交y 轴于点C .已知点D 的坐标为(﹣1,0),点P 为第二象限内抛物线上的一个动点,连接AP 、PC 、CD .(1)求这个抛物线的表达式.(2)点P 为第二象限内抛物线上的一个动点,求四边形ADCP 面积的最大值.(3)①点M 在平面内,当△CDM 是以CM 为斜边的等腰直角三角形时,求出满足条件的所有点M 的坐标; ②在①的条件下,点N 在抛物线对称轴上,当∠MNC =45°时,求出满足条件的所有点N 的坐标.17.如图,已知抛物线212y x bx c =-++的顶点C 的坐标为()3,2-,此抛物线交x 轴于点A ,B 两点,点P 为直线AD 上方抛物线上一点,过点P 作PE x ⊥轴垂足为E ,连接AP ,PD .(1)求抛物线和直线AD 的解析式;(2)求线段PN 的最大值;(3)当APD △的面积是ABC 的面积的54时,求点P 的坐标.18.如图,直线y 12=x +2与x 轴,y 轴分别交于点A ,C ,抛物线y 12=-x 2+bx +c 经过A ,C 两点,与x 轴的另一交点为B ,点D 是抛物线上一动点.(1)求抛物线的解析式;(2)当点D 在直线AC 上方时,连接BC ,CD ,BD ,BD 交AC 于点E ,令△CDE 的面积为S 1,△BCE 的面积为S 2,求12S S 的最大值; (3)点F 是该抛物线对称轴上一动点,是否存在以点B ,C ,D ,F 为顶点的平行四边形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.19.如图所示,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为C (3,6),并与y 轴交于点B (0,3),点A 是对称轴与x 轴的交点.(1)求抛物线的解析式;(2)如图①所示,P 是抛物线上的一个动点,且位于第一象限,连接BP ,AP ,求△ABP 的面积的最大值;(3)如图②所示,在对称轴AC 的右侧作∠ACD =30°交抛物线于点D ,求出D 点的坐标;并探究:在y 轴上是否存在点Q ,使∠CQD =60°?若存在,求点Q 的坐标;若不存在,请说明理由.20.如图,抛物线2y x bx c =-++与x 轴交于A (-1,0),B (3,0)两点,与y 轴交于点C ,直线3y x =-+经过B,C两点,连接AC.(1)求抛物线的表达式;(2)点E为直线BC上方的抛物线上的一动点(点E不与点B,C重合),连接BE,CE,设四边形BECA的面积为S,求S的最大值;(3)若点Q在x轴上,则在抛物线上是否存在一点P,使得以B,C,P,Q四点为顶点的四边形是平行四边形?若存在,请直接写出P点的坐标;若不存在,请说明理由.参考答案:1.解:把点A (﹣1,0),点C (0,﹣3)代入抛物线的解析式为y =x 2+bx +c 中得:103b c c -+=⎧⎨=-⎩解得:23b c =-⎧⎨=-⎩∴抛物线的解析式为y =x 2﹣2x ﹣3∵y =x 2﹣2x ﹣3=(x ﹣1)2﹣4∴顶点的坐标为(1,﹣4)(2)如图1,设直线BC 的解析式为y =kx +d (k ≠0)当y =0时,x 2﹣2x ﹣3=0解得:x 1=3,x 2=﹣1∴B (3,0)将B (3,0),C (0,﹣3)代入y =kx +d 中得:303k d d +=⎧⎨=-⎩,解得:13k d =⎧⎨=-⎩ ∴直线BC 的解析式为y =x ﹣3∵OP =t设点P 的坐标为(t ,0),则点N 的坐标为(t ,t ﹣3),H (t ,t 2﹣2t ﹣3) ∴NH =t ﹣3﹣(t 2﹣2t ﹣3)=﹣t 2+3t ∴223327()22813(3)22BCH S t t S NH OB t ===-+=--+△∵0≤t≤3,32-<,∴当t32=时,S取最大值,最大值为278;(3)分两种情况:①当Q在x轴的上方时,如图2和图4,四边形ACPQ是平行四边形根据A(﹣1,0)和C(0,﹣3)可知:点Q的纵坐标为3当y=3时,x2﹣2x﹣3=3解得:x1=1x2=1∴P(20)或(20)②当Q在x轴的下方时,如图3,四边形ACQP是平行四边形,当y=﹣3时,由对称得:Q(2,﹣3)∴P (1,0)综上,P 点的坐标为(2,0)或(20)或(1,0)2.∵抛物线解析式为23y ax bx =++,令x =0,得y =3,∴点C 坐标为(0,3),∴OC=OB =3,∴B 坐标为(3,0).∵tan ∠CAO =3,即3OC OA=, ∴OA =1,∴点A 坐标为(-1,0),∴可设抛物线解析式为y =a (x +1)(x ﹣3),代入C 点坐标得:y =a (0+1)(0﹣3)解得:a =-1,∴22(1)(3)23(1)4y x x x x x =-+-=-++=--+,∴抛物线解析式为:2y x 2x 3=-++;(2)∵Q 为线段PB 中点,∴S △CPQ =12S △CPB ,当S △CPB 面积最大时,△CPQ 面积最大.设P 坐标(a ,223a a -++),如图,过点P 作//PH y 轴交BC 于点H ,∴H 坐标为(a ,-a +3),∴223(23)(3)PH a a a a a =-++-=-+-+ ∴22113327()(3)3()22228PB B C C PH x x a S a a =⋅-=-+⨯=--+, ∴当32a =时,即P 坐标为(32,154)时,CPB S 面积最大,最大值为278, ∴127216CPQ CPB S S ==; (3)沿CB 方向平移2个单位,向下2个单位,∴新抛物线解析式为2(3)2y x =--+,∴M (3,2),C 坐标为(0,3),设N 点坐标为(n ,0),根据平行四边形的性质,分类讨论①当22C N M D y y y y ++=时,即23022D y ++=, 解得:1=D y .∴21(3)2x =--+解得:1242x x ==,∴xD =4或xD =2,当xD =4时,22C N M D x x x x ++=,即03422N x ++=, 解得:7N x =;当xD =2时,22C N M D x x x x ++=,即03222N x ++=, 解得:5N x =;∴N 坐标为(7,0)或(5,0);①当 22C D M N y y y y ++=时,即32022D y ++=, 解得:1D y =-.∴21(3)2x -=--+解得:1233x x ==∴3D x =3D x =当3D x =22C D M N x x x x ++=32N x +=,解得:N x当3D x =22C D M N x x x x ++=32N x +=,解得:N x =∴N 0)或(0);综上,可知N 点坐标为(7,0)或(5,00)或(0); 3.解:∵抛物线223y ax ax =-++与x 轴交于,A B 两点(A 点在B 点的左侧),与y 轴交于点C ,连接AC ,BC ,A 点的坐标是(1-,0),∴令0x =,则3y =,()0,3C ∴将点()1,0A -代入得023a a =--+解得1a =则抛物线的解析式为2y x 2x 3=-++ (2)点P 是抛物线上的一个动点,其横坐标为m ,且m >0.点Q 是直线AC 上的一个动点,且位于x 轴的上方,PQ ∥y 轴Q ∴点在P 点上方,()1,0A -,()0,3C ,设直线AC 的解析式为y kx b =+30b k b =⎧⎨-+=⎩解得33k b =⎧⎨=⎩∴直线AC 的解析式为33y x =+设()2,23P m m m -++,则(),33Q m m +()223323PQ m m m m m ∴=+--++=+抛物线的解析式为2y x 2x 3=-++()214x =--+对称轴为1x =,顶点坐标为()1,4, PM PQ ⊥P M y y ∴= 根据对称性可得21P PM x =-21m =-设矩形PQNM 的周长为l ,①当1m =时,0PM =,不能构成矩形,②当01m <<时, 22PM m =-则()22222224l m m m m m =++-=-+ 当21222x -=-=⨯时,2min 1117224142222l ⎛⎫=⨯-⨯+=-+= ⎪⎝⎭ ③当1m 时,22PM m =-则()22222264l m m m m m =++-=+- 对称轴为63222x =-=-⨯ 则当1m 时,不存在最小值综上所述,矩形PQNM 的周长的最小值为72(3)当0<0m≤1时,h=-m 2+2m+3-3=-m 2+2m ;当1<m≤2时,h=4-3=1;当m >2时,h=4-(-m 2+2m+3)=m 2-2m+1;②当h=16时,m 2-2m+1=16,解得m=5或m=-3(舍),∴P (5,-12),过点P 作PQ ⊥x 轴交直线BC 与点Q ,令y=0,则-x 2+2x+3=0,解得x=-1或x=3,∴B (3,0),设直线BC 的解析式为y=k'x+b',3,30b k b =⎧∴⎨+=''⎩' 3,1b k =⎧∴⎨=-'⎩' ∴y=-x+3,∴Q (5,-2),∴PQ=10,∴S △PCB =S △CPQ -S △BPQ =12×5×10-12×10×2=25-10=15. 4. 解:“调和三角形”某两边的长度之和等于第三边长度的两倍, ∴①当462(1)m +=-时, 解得6m =,②当1426m -+=⨯时,解得9m =,③当6124m +-=⨯时,解得3m =(不合题意舍去),综上,m 的值为6或9;(2)解:①Rt ABC 是“调和三角形”,且a b c <<, 222a b c ∴+=,①2a c b +=,②由②,得2a c b +=,代入①, 得222()2a c a c ++=, 整理得(53)()0a c a c -+=, a ,b ,c 为三角形三边,0a b c ∴<<<,530a c ∴-=,故:3:5a c =,同理可得,:3:4a b =,::3:4:5a b c ∴=;②若ABC ∆周长的数值与面积的数值相等, 即12a b c ab ++=, ::3:4:5a b c =,43b a ∴=,53c a =, 12a b c ab ∴++=, 即45143323a a a a a ++=⨯,解得6a =或0a =(舍去), 6a ∴=,8b =,10c =;(3)解:①(Ⅰ)当P 点在AB 上时,即05t 时, 过P 作PD AC ⊥于D ,则有2AP t =,CQ t =,A A ∠=∠,90PDA BCA ∠=∠=︒,APD ABC ∴∆∆∽,::3:4:5PD AD AP ∴=,65PD t ∴=,85AD t =, 8138855DQ t t t ∴=--=-, 222PQ PD DQ =+,222261341208()(8)645555PQ t t t t ∴=+-=-+; (Ⅱ)当P 在BC 上时,即58t <时,此时,6102162PC t t =+-=-,CQ t =,222222(162)564256PQ PD DQ t t t t ∴=+=-+=-+,综上,y 关于t 的函数关系式:()22412086405{55564256(58)t t t y t t t -+=-+<;②由y 关于t 的函数关系式可知当P 在AB 上时有最小值, 224120841104230464()55541205y t t t =-+=-+, ∴当10441t =,y 有最小值为2304205.5.解:如图1,∵直线y=kx+2经过A(﹣1,0),∴﹣k+2=0,解得k=2,∴直线AC的表达式为y=2x+2;由抛物线与x轴交于A(﹣1,0),B(3,0)两点,得抛物线的对称轴为直线x=1,当x=1时,y=2×1+2=4,∴抛物线的顶点C的坐标为(1,4);设抛物线的表达式为y=a(x﹣1)2+4,则4a+4=0,解得a=﹣1,∴抛物线C1的表达式为y=﹣(x﹣1)2+4,即y=﹣x2+2x+3.(2)解:如图2,作DQ⊥x轴于点Q,EF⊥DQ于点F,设抛物线C2的顶点D的横坐标为t.∵抛物线C 2由抛物线C 1沿射线AC 方向平移得到,∴D (t ,2t +2),∴抛物线C 2的表达式可表示为y =﹣(x ﹣t )2+2t +2,由222()22y x y x t t =+⎧⎨=--++⎩,得2x +2=﹣(x ﹣t )2+2t +2, 解关于x 的方程,得x 1=t ﹣2,x 2=t ,则点E 、F 的横坐标分别为t ﹣2、t ,∴EF =t ﹣(t ﹣2)=2,∵S △MDE =23S △MAE , ∴DE AE =23 , ∴DE DA =25; ∵EF ∥AQ ,∴△DEF ∽△DAQ , ∴25EF DE AQ DA ==, ∴2=25AQ , ∴AQ =5,∴OQ =5﹣1=4;当x =4时,y =2×4+2=10, ∴D (4,10).(3)解:由(1)得,抛物线C 1的表达式为y =﹣(x ﹣1)2+4,将抛物线y =﹣(x ﹣1)2+4向上平移4个单位得到的抛物线为y =﹣(x ﹣1)2+8,即y =﹣x 2+2x +7,∴抛物线C 3的表达式为y =﹣x 2+2x +7.由题意可知,正方形GHST 与抛物线C 3有相同的对称轴直线x =1,如图3,设H (t ,0),则S (t ,2t ﹣2),∴﹣t 2+2t +7=2t ﹣2,解得t 1=3,t 2=﹣3(不符合题意,舍去),∴H (3,0).∴SH =2(t ﹣1)=2×(3﹣1)=4,∴正方形的边长为4;将△PSH 绕点S 顺时针90°得到△KST ,取SK 的中点R ,连结TR 、PR ,则点K 在GT 上, 设PS =KS =t (t >0),则TR =SR =12KS =12t ,由旋转得,∠PSR =90°,∴PR t , ∵PR +TR ≥PT ,t +12t ≥PT , ∴t PT ≥即PS PT ≥∴PS PT ; 如图4,当PS PT时,则点R 落在PT 上. 设PT 交SH 于点L .∵∠PSL =∠TSR =∠PTS ,∠SPL =∠TPS (公共角),∴△PLS ∽△PST , ∴SL PS TS PT =, ∴SL ==2; ∵∠KTS =∠LST =90°,ST =TS (公共边),∠TSK =∠STL ,∴△KST ≌△LTS (ASA ),∴PH =KT =SL =2,∴OP =2=,∴P (,0),∴m =.故答案为:4,. 6.解:把A (-4,0),C (2,0)代入y =12x 2+bx +c 得, 11640214202b c b c ⎧⨯-+=⎪⎪⎨⎪⨯++=⎪⎩,解得14b c =⎧⎨=-⎩,∴抛物线的解析式为y=12x2+x-4;(2)解:如图,过点M作MN⊥AC,垂足为N,抛物线y=12x2+x-4与y轴的交点B坐标为(0,-4),即OB=4,又∵M(m,12m2+m-4),∴ON=-m,MN=-12m2-m+4,AN=4-(-m)=4+m,∴S△ABM=S△ANM+S梯形MNOB-S△AOB=12(4+m)(-12m2-m+4)+12(-12m2-m+4+4)(-m)-12×4×4=-m2-4m=-(m+2)2+4,∴当m=-2时,S最大=4,答:S与m的函数关系式为S=-m2-4m,S的最大值为4.7.解:∵抛物线y=ax2+bx+c的图象与轴交于A(﹣1,0),B(4,0),∴设该抛物线的函数表达式为y=a(x+1)(x﹣4),将C(0,﹣3)代入,得:﹣4a=﹣3,解得:a=34,∴y=34(x+1)(x﹣4)=34x2﹣94x﹣3,∴该抛物线的函数表达式为y=34x2﹣94x﹣3;(2)(2)设直线BC 的解析式为y =kx +n ,∵B (4,0),C (0,﹣3),∴403k n n +=⎧⎨=-⎩, 解得:343k n ⎧=⎪⎨⎪=-⎩, ∴直线BC 的解析式为y =34x ﹣3, 过点E 作EM ∥y 轴,交BC 于M ,设D (t ,34t 2﹣94t ﹣3), ∵点E 是AD 的中点,∴E (12t -,38t 2﹣98x ﹣32), ∴M (12t -,3278t -), ∴EM =38t 2﹣98x ﹣32﹣3278t -=38t 2﹣32x +158, ∴S △BCE =12EM •OB =2(38t 2﹣32x +158)=34 (t ﹣2)2+34, ∵34>0, ∴当t =2时,S △BCE 取得最小值34;(3)解:存在,P 20116927⎛⎫- ⎪⎝⎭,,Q (0,-6427). 如图2,在BC 上截取BE =BO =4,过点E 作EG ∥OC 交x 轴于G ,作EF ⊥BC 交y 轴于F,交抛物线于P ,∵B (4,0),C (0,﹣3),∴OB =4,OC =3,CE =BC ﹣BE =1,∵∠BOC =90°,∴BC5=,∵EG ∥OC ,∴△BEG ∽△BCO , ∴EG BG BE OC OB BC ==, ∴4345EG BG ==, ∴EG =125,BG =165, ∴OG =OB ﹣BG =4﹣16455=, ∴E (45,﹣125), ∵EF ⊥BC ,∴∠CEF =∠COB =90°,∵∠ECF =∠OCB ,∴△ECF ∽△OCB , ∴CE OC CF BC =,即135CF =, ∴CF =53, OF =OC ﹣CF =3﹣5433=, ∴F (0,﹣43), 设直线EF 的解析式为y =k 1x +n 1,∵E (45,﹣125),F (0,﹣43), ∴1114125543k n n ⎧+=-⎪⎪⎨⎪=-⎪⎩,解得:114343k n ⎧=-⎪⎪⎨⎪=-⎪⎩, ∴直线EF 的解析式为y =43-x 43-, 联立方程组,得:2443349334y x y x x ⎧=--⎪⎪⎨⎪=--⎪⎩, 解得:1110x y =-⎧⎨=⎩(舍去),2220911627x y ⎧=⎪⎪⎨⎪=-⎪⎩, ∴P 20116927⎛⎫- ⎪⎝⎭,, 在Rt △BPE 中,PE6427=, ∵∠PBQ =∠OBC ,∴∠PBE +∠CBQ =∠CBQ +∠QBO ,∴∠PBE =∠QBO ,在△PEB 和△QOB 中,PBE QBO BE BOPEB QOB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PEB ≌△QOB (ASA ),∴BP =BQ ,OQ =PE =6427, ∴Q (0,-6427), ∴存在,P 20116927⎛⎫- ⎪⎝⎭,,Q (0,-6427).8.解:将A (﹣1,0)、B (4,0)代入抛物线公式,如下:0401644a b a b =-+⎧⎨=++⎩, 求得13a b =-⎧⎨=⎩. 抛物线解析式为:y =﹣x 2+3x +4.(2)解:设P 到直线BC 的距离为d ,P 点坐标为(x ,﹣x 2+3x +4)(0<x <4),∵y =﹣x 2+3x +4交y 轴于点C ,令x =0,∴y =4,∴C (0,4),由B (4,0),C (0,4)两点求得直线BC 的解析式为:y +x ﹣4=0.做直线BC 的平行线K :y =﹣x +m ,因为K 与BC 平行,我们将K 平移,根据题意,点P 是直线BC 上方抛物线上的一点,∴随着K 平行移动,以BC 为底的△PBC 的高d 在逐渐增大,当K 与抛物线y =﹣x 2+3x +4恰有一个交点时,此时以BC 为底的△PBC 的高d 最大,即此时△PBC 面积最大. ∵此时K :y =﹣x +m 与抛物线y =﹣x 2+3x +4相交,且仅有一个交点,∴﹣x +m =﹣x 2+3x +4,m =8.∴直线K :y =﹣x +8.此时求K 和抛物线的交点为:﹣x +8=﹣x 2+3x +4,解得x =2,将x =2代入直线K :y =﹣x +8,解得y =6.因此P (2,6).现在我们来求P 到直线BC 的距离,即△PBC 的高d :过P 作垂直于BC 的直线k :y =x +m .∵P 在直线k 上,∴6=2+m ,∴m =4,直线k =x +4.直线K 与直线k 的交点为:44y x y x =-+⎧⎨=+⎩, 解得交点坐标(0,4),即交点为C 点.因此的△PBC 的高d 即为B 点和C 点两点之间的距离,∴d =|BC|=在△PBC 中,∵|BC |=△PBC 的面积的最大值S △PBC 12=|BC |•d 12=⨯=8. (3) 解:存在.直线BC 向右平移74个单位得到直线l , ∴l :y =﹣(x 74-)+4=﹣x 234+. 223434y x y x x ⎧=-+⎪⎨⎪=-++⎩,解得127212x x ⎧=⎪⎪⎨⎪=⎪⎩. 二次函数y =﹣x 2+3x +4对称轴为x 32=, ∵直线l 交对称轴右侧的抛物线于点Q ,∴x 72=,代入y =﹣x 23944+=. ∴Q (7924,). 设T (a ,b ).∵R 为直线BC 上的一动点,∴设R(x,﹣x+4).(Ⅰ)假设T在Q点左侧:∴72a<.此时P(2,6),T(a,b)为菱形对称顶点,Q(7924,),R(x,﹣x+4)为菱形对称定点.在菱形中PTQR中,|PR|=|QT|,=①又∵对角线互相垂直平分,且对称顶点横纵坐标的中点相等,即:72222946422xaxb⎧+⎪+=⎪⎪⎨⎪-++⎪=⎪⎩,②由①,②解得113.53871.7887ab=⎧⎨=-⎩,220.53872.2887ab=-⎧⎨=⎩,又∵a72<,∴此时T点坐标为:T(﹣0.5387,2.2887).(Ⅱ)假设T在Q点右侧:∴a72>.此时P(2,6),Q(7924,)为菱形对称顶点,T(a,b),R(x,﹣x+4)为菱形对称定点.在菱形PTQR中,|PR|=|PT|,③又∵对角线互相垂直平分,且对称顶点横纵坐标的中点相等,即:96442722b xa x⎧+⎪=-+⎪⎨⎪+=+⎪⎩,④由③,④解得a2697562=>,符号题意.此时b27756=.此时T点坐标为:T(26956,27756).综上所述:T存在两点,分别为:T(﹣0.5387,2.2887)和T(26956,27756).9.(1)∵矩形ABCD的三个顶点的坐标分别为A(﹣3,4)、B(﹣3,0)、C(﹣1,0),∴D(﹣1,4),由抛物线的顶点为D(﹣1,4),设抛物线的解析式为y=a(x+1)2+4,∵抛物线经过点B(﹣3,0),∴4a+4=0,解得a=﹣1,∴该抛物线的解析式为y=﹣(x+1)2+4,即y=﹣x2﹣2x+3;(2)如图1,设直线BD的解析式为y=kx+d,则304k dk d-+=⎧⎨-+=⎩,解得,∴y=2x+6,设G(x,﹣x2﹣2x+3)(﹣3<x<﹣1),则E(x,2x+6),∴GE=﹣x2﹣2x+3﹣(2x+6)=﹣x2﹣4x﹣3,∵AD=﹣1﹣(﹣3)=2,∴S△BGD=12GE•AF+12GE•DF=12GE•AD=12×2(﹣x2﹣4x﹣3)=﹣(x+2)2+1,∴当x=﹣2时,S△BGD最大=1,∴△BGD面积的最大值为1.(3)存在.理由如下:如图2,菱形BQHE 以BE 为一边.由题意,得BQ =PD =EF =t ,∵PQ ∥EF ,∴四边形BQFE 是平行四边形,∴当BQ =QF =t 时,四边形BQFE 是菱形,此时点H 与点F 重合.∵QF ∥BD ,∴∠AQF =∠QBD ,∵AD =2,AB =4,∠A =90°,∴BD =∴AQ AB QF BD ===,∴AQ BQ =,∴4t +=,解得20t =-如图3,菱形BQEH 以BE 为对角线,连结QH 交BE 于点R ,则QH ⊥BE ,BR =ER , ∴∠BRQ =90°,∴BR AB BQ BD ==∴BR =, 同理,PD CD DE BD ===∴DE ==,∴2= 解得2013t =,综上所述,20t =-2013t =,故答案为:20-2013.10.解:把15,22A ⎛⎫ ⎪⎝⎭、()4,6B 代入抛物线26y ax bx =++中得:115642216466a b a b ⎧++=⎪⎨⎪++=⎩ 解得:28a b =⎧⎨=-⎩∴抛物线的解析式为:2286y x x =-+.(2)解:如图1,∵()22286222y x x x =-+=--∴顶点()2,2C -对于直线2y x =+,当2x =时,224y =+=∴()426PC =--=当0y =时,20x +=,解得2x =-∴()2,0E -∴PC BCE B E P C S S S =+△△()1122B D PC ED PC x x =⨯+⨯- ()()1122D E B D PC x x PC x x =⨯-+⨯- ()12B E PC x x =⨯- ()16422=⨯⨯+ 18=∴△BCE 的面积为18.(3)解:存在设点P 的坐标为(),2m m +,则()2,286C m m m -+∴()222286294PC m m m m =+--+=-+-∴BCE S ()12B E PC x x =⨯- ()()21294422m m =⨯-+-⨯+ 29147648m ⎛⎫=--+ ⎪⎝⎭ ∵60-<∴当94m =时,BCE S 最大,这个最大值是1478. 11.解:∵直线y =﹣3x ﹣3与x 轴、y 轴分别交于点A 、C , ∴A (﹣1,0),C (0,﹣3),∵抛物线y =x 2+bx +c 经过点A (﹣1,0),C (0,﹣3), ∴ 103b c c -+=⎧⎨=-⎩, 解得 23b c =-⎧⎨=-⎩ , ∴抛物线的解析式为y =x 2﹣2x ﹣3.当y =0时,由x 2﹣2x ﹣3=0,得x 1=﹣1,x 2=3, ∴B (3,0).(2)解:如图1,设抛物线的对称轴交BC 于点F ,交x 轴于点G .设直线BC的解析式为y=kx﹣3,把B(3,0)代入得3k﹣3=0,解得k=1,∴y=x﹣3;∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点H(1,﹣4),当x=1时,y=x﹣3=1﹣3=﹣2,∴F(1,﹣2),∴FH=﹣2﹣(﹣4)=2,∴S△BCH=12FH•OG+12FH•BG=12FH•OB=12×2×3=3.故答案为:3.(3)解:设E(x,x2﹣2x﹣3)(0<x<3),则M(x,x﹣3),∴ME=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x=﹣(x﹣32)2+94,∴当x=32时,ME最大=94,此时M(32,-32).(4)解:存在.如图2,由(3)得,当ME 最大时,则D (32,0),M (32,-32), ∴DO =DB =DM =32; ∵∠BDM =90°,∴DE 垂直平分OB∴OM =BM∵OM 2=BM 2= DB 2 +DM 2 =(32)2+(32)2=92∴OM =BM = 当点P 与原点O 重合时,则PM =BM , △PBM 是等腰三角形,此时点P 的坐标是(0,0),即P 1(0,0);当BP =BM P 在点B 的左侧时, △PBM 是等腰三角形,则OP =3∴点P 0),即P 20); 当点P 与点D 重合时,则PM =PB =32, 此时△PBM 是等腰三角形,∴点P 的坐标为(32,0),即P 3(32,0);当BP =BM P 在点B 的右侧时, △PBM 是等腰三角形,则OP =∴点P 0),即P 40).综上所述,P 1(0,0),P 2,0),P 3(32,0),P 40). 12.解:∵抛物线y =﹣43x 2+bx +c 经过点A (3,0),B (0,2), 把点A (3,0),B (0,2)代入解析式得:493032b c c ⎧-⨯++=⎪⎨⎪=⎩, 解得1032b c ⎧=⎪⎨⎪=⎩, ∴二次函数的解析式为:241033y x =-+x +2; (2)解:设P (m ,﹣43m 2+103m +2), 当∠BPQ =90°时,则有BP ∥x 轴,如图,∴点P 的纵坐标为2,∴﹣43x 2+103x +2=2, 解得:x 1=0(舍去)或x 2=52, ∴P 1(52,2); 当∠PBQ =90°时,过点P 作PM ⊥y 轴,垂足为M ,如图,则∠PBM +∠BPM =90°,PM =m ,BM =﹣43m 2+103m +2﹣2=﹣43m 2+103m , ∵∠PBQ =90°,∴∠PBM +∠OBA =90°,∴∠OBA =∠BPM ,∴△PMB ∽△BOA , ∴PM BO =MB OA , 即2m =2410333m m +, 解得:m =0(舍)或m =118, ∴P 2(118,6516), 综上所述,当以PQB 为顶点的三角形是直角三角形时,点P 的坐标为(52,2)或(1165,816);(3)解:设PQ 的延长线交AC 与点N ,∵B (0,2),点C 与点B 关于x 轴对称,∴C (0,﹣2),设直线AC 的表达式为:y =k 1x +a 1,把A ,C 代入得:111302k a a +=⎧⎨=-⎩,解得11232k a ⎧=⎪⎨⎪=-⎩, ∴直线AC 的表达式为:223y x =-, 设点P (n ,241033n -+n +2),则N (n ,223n -), ∴PN =241033n -+n +2﹣(223n -)=24833n -+n +4, ∴S △APC =12PN ×OA =12(24833n -+n +4)×3=﹣2n 2+4n +6=﹣2(n ﹣1)2+8, ∵a =﹣2<0,S △APC 有最大值,且0<n <3,∴当n =1时,△APC 的面积最大,最大面积是8,此时,P (1,4),综上所述,△APC 面积的最大值是8,点P 的坐标是(1,4).13.设抛物线的表达式为y =a (x ﹣1)2﹣4,将点C (0,﹣3)代入得:4a ﹣4=0,解得a =1,∴抛物线表达式为:y =(x ﹣1)2﹣4;(2)连接BC ,作MN ∥y 轴交BC 于点N ,交AB 于点E ,作CF ⊥MN 于点F ,如图,由(1)知,抛物线表达式为y =(x ﹣1)2﹣4=x 2﹣2x ﹣3,令y =0,可解得x 1=﹣1,x 2=3,∴点A 坐标(﹣1,0),点B 坐标(3,0),设直线BC 的表达式为y =kx +b ,将点B (3,0),C (0,﹣3)代入得:303k b b +=⎧⎨=-⎩, ∴13k b =⎧⎨=-⎩, ∴直线BC 表达式为y =x ﹣3,设M 点(m ,m 2﹣2m ﹣3),则点N (m ,m ﹣3),222393(23)3()24M N MN y y m m m m m m =-=----=-+=--+ ∴S 四边形ABMC =S △ABC +S △BCM=S △ABC +S △CMN +S △BMN =1122AB OC MN CF ⨯⨯+⨯⨯+12MN BE ⨯⨯ =1143()22MN CF BE ⨯⨯+⨯⨯+ =6+132MN ⨯⨯ =23375()228m --+ 当32m =时,即点M 坐标315(,)24-时,四边形ABMC 面积的最大值758; (3) 如图,作PQ 垂直x 轴,设直线CD :y =px +q ,将点C ,D 分别代入得,43p q q +=-⎧⎨=-⎩,解得13p q =-⎧⎨=-⎩, ∴直线BC :y =﹣x ﹣3,当y =0时,解得x =﹣3,∴点E 坐标为(﹣3,0),∵OE =OC =OB =3,∴∠OEC =∠OBC =45°,在Rt △OBC 中,BC①当△BAC ∽△EPO 时,AB EPBC EO =3EP =,解得EP =在Rt △EPQ 中,∠OEC =45°,∴sin 45°=PQ EP, 解得PQ =2,∴EQ =PQ =2,此时点P 坐标(﹣1,﹣2);②当△BAC ∽△EOP 时,BA EOBC EP =3EP=,解得EP 在Rt △EPQ 中,∠OEC =45°,∴sin 45°=PQ EP , 解得94PQ = ∴94EQ PQ ==,此时点P 坐标39(,)44--; 综上所述,当点P 坐标为(﹣1,﹣2)或39(,)44--时,点P 、E 、O 为顶点的三角形与△ABC相似.14.∵直线y=﹣x+3与y轴、x轴分别交于A、B两点、∴A(0,3),B(3,0),将A(0,3)、B(3,0)代入y=x2+bx+c,得:3093cb c=⎧⎨=++⎩,解得:43bc=-⎧⎨=⎩,∴抛物线的函数表达式为y=x2﹣4x+3,∵y=x2﹣4x+3=(x﹣2)2﹣1∴抛物线的顶点D的坐标为(2,﹣1).(2)∵A(0,3),B(3,0),D(2,﹣1),∴AB2=32+32=18,AD2=(2﹣0)2+(3+1)2=20,BD2=(3﹣2)2+(0+1)2=2,∴AB2+BD2=AD2,∴△ABD为直角三角形,且∠ABD=90°,设点E(m,m2﹣4m+3)(m>2).∵EF∥x轴,∴DF=m2﹣4m+3+1=m2﹣4m+4,FE=m﹣2,∠DFE=90°,∴∠DFE=∠ABD=90°,∴如图1,以点D,E,F为顶点的三角形与△ABD相似,且∠FDE=∠BAD,则DF FE AB BD=,由AB2=32+32=18,BD2=(3﹣2)2+(0+1)2=2,得AB=,BD= 2=解得m1=5,m2=2(不符合题意,舍去).∴E(5,8);如图2,以点D,E,F为顶点的三角形与△ABD相似,且∠FDE=∠BDA,则DF FE BD AB=,2=解得m173=,m2=2(不符合题意,舍去),∴E(73,89-).综上所述,点E的坐标为(5,8)或(73,89-).(3)由(2)得,tan∠ADB==3,∵tan∠APB=3,∴∠APB=∠ADB,∴点P在过A、B、D三点,即以AD为直径的圆上.如图3,取AD的中点Q,以点Q为圆心,以QA为半径作圆,连接QB,∵QB12=AD=QA,∴点B在⊙Q上;连接并延长OQ、QO分别交AB于点G、⊙Q于点H,作PR⊥AB于点R,连接PG、PQ.∵QB=P A,OB=OA,∴HG垂直平分AB,由PG≤QG+PQ,得PG≤GH,∵PR≤PG,∴PR≤GH;∵S △P AB 12=AB •PR , ∴当点P 与点H 重合时,△P AB 的面积最大,此时S △P AB 12=AB •GH .由AD 2=(2﹣0)2+(3+1)2=20,得AD =∵∠ABQ =90°,AQ 12=AD =AG 12=AB =,∴QG =∵HQ =AQ =∴GH =∴S △P AB 最大12=⨯= 过点H 作HL ⊥x 轴于点L ,∵∠OHL =90°﹣∠HOL =90°﹣∠BOG =∠OBA =45°,∴OL =OH •tan45°=;∵OG 12=AB =,∴OH =GH ﹣OG ==,∴HL =OL ==∴H . ∵此时点P 与点H 重合,∴P .综上所述,△P AB P ). 15. 解:抛物线23y ax bx =++与x 轴交于(2,0)A -、(6,0)B 两点, ∴设抛物线的解析式为2(2)(6)412y a x x ax ax a =+-=--, ∴123a -=, 解得14a =-,∴抛物线的解析式为211(2)(6)344y x x x x =-+-=-++, ∵点D 在抛物线上,当x =4时2144334y =-⨯++=,∴点D (4,3),直线l 经过(2,0)A -、(4,3)D ,设直线l 的解析式为(0)y kx m k =+≠,代入坐标得: 2043k m k m -+=⎧⎨+=⎩, 解得,121k b ⎧=⎪⎨⎪=⎩, ∴直线l 的解析式为112y x =+; (2)解:如图1中,过点P 作//PF y 轴交AD 于点F .设点P 的横坐标为m , ∴21(,3)4P m m m -++,则112,F m m ⎛⎫+ ⎪⎝⎭.()132PAD D A S x x PF PF ∆=⋅-⋅=, ()2221111193121424244PF m m m m m m =-++--=-++=--+, ∴()2Δ3273144PAD S PF m ==--+, 304-<,抛物线开口向下,函数有最大值, 1m ∴=时, PAD S ∆最大=274,当m =1, 211151134444y =-⨯++=-+=, ∴15(1,)4P . (3) (3)如图2中,将线段AD 绕点A 逆时针旋转90︒得到AT , ∴y =4-(-2)=6,-2-x =3-0,解得x =-5 则(5,6)T -,设DT 交抛物线于点Q ,则45ADQ ∠=︒, (4,3)D ,∴直线DT 的解析式为11333y x =-+, ∴213411333y x x y x ⎧=-++⎪⎪⎨⎪=-+⎪⎩, 43359x y ⎧=⎪⎪⎨⎪=⎪⎩或43x y =⎧⎨=⎩, 4(,9)335Q ∴, 作点T 关于AD 的对称点(),T x y ',。
初三数学试卷抛物线与三角形面积
初三数学试题抛物线与三角形面积
抛物线与三角形面积
抛物线与三角形面积问题涉及代数、几何知识,有一定难度。
本文通过举例来谈这类题的解法。
【一】顶点在抛物线y=ax2+bx+c的三角形面积的一般情况有:(1)、以抛物线与x轴的两交点和抛物线的顶点为顶点的三角形,其底边的长是抛物线与x轴两交点间的距离,高的长是抛物线顶点的纵坐标的绝对值。
其面积为:
S= |x1-x2|| |= | |
(2)、以抛物线与x轴、y轴的三个交点为顶点的三角形。
其底边的长是抛物线与x轴两交点间的距离,高的长是抛物线与y轴上的截距(原点与y轴交点构成的线段长)的绝对值。
其面积为:
S= |x1-x2||c|= |c|
(3)、三角形三个顶点在抛物线其他位置时,应根据图形的具体特征,灵活运用几何和代数的有关知识。
【二】 1.求内接于抛物线的三角形面积。
例1.抛物线的顶点C(2, ),它与x轴两交点A、B的横坐标是方程x2-4x+3=0的两根,求ABC的面积。
解:由方程x2-4x+3=0,得x1=1, x2=3,
AB=|x2-x1|=|3-1|=2.
SABC= 2 = .
交于D点,顶点为C,求四边形ACBD的面积。
解:如图1,S四边形ACBD=SABC+SABD
= | |+ |2|= .
例3.如图:抛物线y=x2-2x+3与直线y=2x相交于A、B,抛物线与y轴相交于C点,求ABC的面积。
解:由
得点A的坐标为(1,2),点B的坐标为(3,6);抛物线与y轴交点C的坐标为
(0,3)如图2,由A、B、C三点的坐标可知,AB= =2 ,
BC= =3 ,AC= = 。
∵ AC2+BC2=AB2,
ABC为直角三角形,并且BCA=900,
SABC= ACBC= 3 =3。
2.求抛物线的【解析】式
例4.抛物线y=x2+bx+c与x轴交于点A、B,其对称轴为直线x=-2,顶点为M,且SAMB=8,求它的【解析】式。
解:∵ 对称轴为直线x=-2,
- =-2, b=4,
y=x2+4x+c,
∵ SAMB= | |= | |=8,
c=0, y=x2+4x.
交于点C,假设AC=20,
ACB=90,SACB=150,求二次函数的【解析】式。
解:如图3,∵ SACB= ACBC,
即150= 20BC, BC=15,
AB= = =25,
又∵ OCAB, SACB= ABOC
即150= 25OC, OC=12,故C点坐标为(0,12),
AO= =16,OB=AB-AO=25-16=9,
点A为(-16,0),点B为(9,0),
∵ 二次函数的图像过A、B、C三点,
解得,
所求【解析】式为:y=- x2- x+12.
3.求抛物线【解析】式中字母系数的值。
例6.抛物线y=x2-mx+m-2,
(1)求证:不论m为何实数,抛物线与x轴总有两个交点;
(2)假设以抛物线与x轴、y轴三交点为顶点的三角形面积为4 ,求m的值。
解:
(1)=(-m)2-41(m-2)=m2-4m+8=(m-2)2+40,
不论m为何实数,抛物线与x轴总有两个交点。
(2)S= |c|= |m-2|=4 .
即 (m-2)4+4(m-2)2-320=0
解得 m=6或m=-2.
例7.设O和B为抛物线y=-3x2-2x+k与x轴的两个相异交点,O 为原点,M为抛物线的顶点,当OMB为等腰直角三角形时,求k 的值。
解:如图4,作MNx轴于N点,∵ OMB为等腰直角三角形, MN= OB,即| |= ,
k1=0, k2=- .
又∵ 抛物线与x轴有两个相异交点,
=(-2)2-4(-3)k=4+12k0.
k- ,故取k=0。