基于UC3842芯片控制的60W反激开关电源的制作报告
- 格式:doc
- 大小:2.29 MB
- 文档页数:5
1 引言电源,即提供电能的设备,主要分三类:一次电源(将其它能量转换为电能),二次电源和蓄电池。
其中,二次电源指的是把输入电源(由电网供电)转换为电压、电流、频率、波形及在稳定性、可靠性(含电磁兼容,绝缘散热,不间断电源,智能控制)等方面符合要求的电能供给负载。
高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛的应用。
开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度,后者,较电压控制型有不可比拟的优点。
UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。
所谓电流型脉宽调制器是按反馈电流来调节脉宽的。
在脉宽比较器的输入端直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是比较理想的新型的控制器闭。
2 开关电源概述2.1 开关电源的分类开关型稳压电源的电路结构一般分类如下:(1)按驱动方式分,有自激式和他激式。
(2)按DC/DC变换器的工作方式分:①单端正激式和反激式、推挽式、半桥式、全桥式等;②降压型、升压型和升降压型等。
(3)按电路组成分,有谐振型和非谐振型。
(4)按控制方式分:①脉冲宽度调制(PWM)式;②脉冲频率调制(PFM)式;③PWM 与PFM混合式。
2.2 开关电源的控制原理开关电源是指电路中的电力电子器件工作在开关状态的稳压电源,是一种高频电源变换电路,采用直-交-直变换,能够高效率地产生一路或多路可调整的高品质的直流电压。
开关电源采用功率半导体器件作为开关器件,通过周期性间断工作,控制开关器件的占空比来调整输出电压。
开关电源的基本构成如图2.1所示,其中DC/DC变换器进行功率转换,它是开关电源的核心部分,此外还有起动、过流与过压保护、噪声滤波等电路。
基于UC3842的单端反激式开关电源的设计电源装置是技术应用的一个重要领域,其中高频开关式直流因为具有效率高、体积小和分量轻等突出优点,获得了广泛的应用。
的控制可以分为控制型和控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调节率精度,后者,较电压控制型有不行比拟的优点。
UC3842是由Unitrode公司开发的新型控制器件,是国内应用比较广泛的一种电流控制型脉宽调制器。
所谓电流型脉宽调制器是按反馈电流来调整脉宽的。
在脉宽的输入端挺直用流过输出线圈电流的信号与误差输出信号举行比较,从而调整占空比使输出的电感峰值电流尾随误差电压变幻而变幻。
因为结构上有电压环、电流环双环系统,因此,无论开关电源的电压调节率、负载调节率和瞬态响应特性都有提高,是比较抱负的新型的控制器闭。
1 电路设计和原理1.1 UC3842工作原理UC3842是单电源供电,带电流正向补偿,单路调制输出的集成芯片,其内部组成框图l所示。
其中脚1外接阻容元件,用来补偿误差放大器的频率特性。
脚2是反馈电压输入端,将取样电压加到误差放大器的反相输入端,再与同相输入端的基准电压举行比较,产生误差电压。
脚3是电流检测输入端,与协作,构成过流庇护电路。
脚4外接锯齿波外部定时电阻与定时,打算振荡频率,基准电压VREF为0.5V。
输出电压将打算的变压比。
由图1可见,它主要包括高频振荡、误差比较、欠压锁定、电流取样比较、脉宽调制锁存等功能电路。
UC3842主要用于高频中小容量开关电源,用它构成的传统离线式反激变换器电路在驱动隔离输出的单端开关时,通常将误差比较器的反向输入端通过反馈绕组经电阻分压得到的信号与内部2.5V基准举行比较,误差比较器的输出端与反向输入端接成PI补偿网络,误差比较器的输出端与电流采样电压举行比较,从而控制序列的占空比,达到电路稳定的目的。
1.2 系统原理本文以UC3842为核心控制部件,设计一款AC 220V输入,DC 24V输出的单端反激式开关稳压电源。
基于UC3842的反激式开关电源的设计与仿真华南理工大学电力学院冯自成摘要:反激式开关电源由于纹波小、体积小、效率高等诸多优点占据着小功率开关电源的大部分市场。
本文基于UC3842芯片设计了一款反激式开关电源,详细分析了主电路的工作原理、控制电路的设计以及保护电路的设计等,最后在开关电源仿真软件saber中搭建了仿真模型,验证了设计的正确性。
关键词:反激;开关电源;UC3842;反馈电路ABSTRACT:Flyback switching power source occupies most of the market of low switching power source due to the small ripple,small size,high efficiency advantages.This paper designs a flyback circuit based on the UC3842chip,detailedly describes the working principle of the main circuit,the design of the control circuit and protection circuit.Finally a simulation model was built in saber software to verify the correctness of the design.KEYWORDS:flyback;switching source;UC3842;feedback0引言随着开关电源技术的飞速发展,近年来开关稳压电源正朝着小型化、高频化、集成化的方向发展,高效率的开关电源得到越来越多的重视[1]。
单端反激式变换器因其电路简单可以高效提供直流输出等许多优点,特别适合用于小功率的开关电源的设计。
开关电源的控制可以分为电压型控制和电流型控制,相比单闭环控制的电压型控制,双闭环电流控制具有不可比拟的优点,因此被广泛采用[2]。
UC3842芯片设计开关电源_中文资料开关电源是一种将交流电转换为直流电的电源,其工作原理是由中文名称为“开关电压调制控制器”的芯片进行控制。
UC3842芯片是一种常用的开关电源控制芯片,下面将介绍UC3842芯片的设计和工作原理。
UC3842芯片的主要应用是在开关电源中,尤其是中小功率开关电源中,如适配器、电子镇流器、电源管理等领域。
它具有工作电压范围广、频率可调、输出稳定性好、过载和过温保护等优点,非常适合用于电源控制领域。
UC3842芯片的反馈引脚(FB)通过一个反馈电路来实现对输出电压的监测和控制。
当输出电压高于预设的标准电压时,反馈电压将减小,从而减小PWM信号的宽度,进而降低开关管的导通时间,使输出电压下降;反之,当输出电压低于标准电压时,PWM信号的宽度将增加,从而增加开关管的导通时间,使输出电压升高。
UC3842芯片还具有过载和过温保护功能。
当输出电流超过芯片所设定的峰值电流时,UC3842芯片会自动将PWM信号的宽度减小,从而限制输出电流的增加,保护开关电源不被过载;同时,当芯片温度超过一定值时,芯片会自动切断PWM信号,停止工作,以保护芯片不被过热。
总的来说,UC3842芯片是一款功能强大的开关电源控制芯片,具有高性能、稳定可靠的特点,可以广泛应用于开关电源等领域。
通过控制PWM信号的特性和振荡频率,UC3842芯片实现对开关电源的精确控制,提高了开关电源的效率和可靠性。
UC3842芯片设计开关电源_中文资料UC3842是一款常用的开关电源控制器芯片,它可以通过调节PWM(脉宽调制)信号的占空比来控制开关管开关时间,从而实现对开关电源输出的稳定调节。
UC3842芯片的设计和应用非常灵活,而且它的设计原理和工作方式较为简单。
下面我将为大家介绍UC3842芯片的基本特点以及设计开关电源的步骤。
一、UC3842芯片的基本特点:1.输入电压范围广:UC3842芯片的输入电压范围为7.6V~30V,适用于大多数开关电源设计。
2.输出电压的精度高:UC3842的输出电压精度为±5%,可以满足大部分应用的要求。
3.PWM控制方式:UC3842采用PWM控制方式,可以精确调节输出电压和电流。
4.内置反馈保护:UC3842内置有过电流保护、短路保护等功能,可以保护开关电源的稳定工作。
5.芯片内置30V功率管驱动器:UC3842芯片内部集成了30V功率管驱动器,可以直接驱动高压功率管,减少了外部驱动电路的设计和成本。
6.温度补偿:UC3842芯片内置了温度补偿电路,可以根据环境温度的变化调整输出电压的稳定性。
二、UC3842芯片的应用:1.确定输出电压和电流:根据具体应用的要求,确定所需的输出电压和电流。
2.选择外部元器件:根据芯片的特性和应用需求,选择合适的功率管、电感、电容等外部元器件。
3.连接芯片引脚:将UC3842芯片和外部元器件按照电路图连接好,注意引脚的正确连接。
4.设计反馈电路:根据输出电压的要求,设计合适的反馈电路,将输出电压与电压参考源进行比较,输出误差信号用于控制芯片的PWM输出。
5.调节PWM信号:通过调节UC3842芯片的PWM输入信号的占空比,控制开关管的开关时间,从而调节输出电压和电流。
6.测试和调试:将设计好的开关电源连接到负载上,进行测试和调试,确保输出电压和电流稳定,满足要求。
三、UC3842芯片设计开关电源的要点:1.控制丝印标注:通过丝印标注控制引脚的功能,方便布线和检查。
UC3842芯片设计开关电源_中文资料
UC3842的工作原理是基于PWM(脉宽调制)控制技术,通过控制开关
管的导通时间比例来调节输出电压。
UC3842芯片内置了一个错误放大器、一个PWM比较器、一个复位控制电路和一个延时电路。
通过错误放大器,UC3842能够检测到输出电压的变化,并通过PWM比较器产生调制信号。
复位控制电路和延时电路则用于控制开关管的导通时间。
UC3842的应用范围非常广泛,可以用于各种开关电源的设计。
例如,它可以应用在电视机、手机充电器、电脑电源等电子设备中。
由于
UC3842具有稳定、高效和可靠的特性,因此被广泛应用于工业控制、仪
器仪表、通信设备等领域。
在设计UC3842开关电源时,有几个关键要点需要注意。
首先是选择
合适的输入和输出滤波电容,以保证电源的稳定性和可靠性。
其次是选择
合适的功率管和变压器,以满足电源的输出功率需求。
此外,还需要合理
设计反馈回路,以实现恒定的输出电压。
最后,还需要对整个电路进行合
理布局和散热设计,以确保电源的工作稳定性和效率。
总之,UC3842是一款功能强大的开关电源控制芯片,它能够提供精
确的电源管理和保护功能。
在设计UC3842开关电源时,需要注意选择合
适的元器件和合理布局,以确保电源的稳定性和效率。
希望本文能够对
UC3842的设计和应用有所帮助。
毕业论文(设计)开题报告论文题目:基于UC3842开关稳压电源的设计系部名称:专业班级:学生姓名:学号:指导教师:教师职称:2010年3月12日毕业论文(设计)开题报告一、结合毕业论文(设计)任务书的要求,根据所查阅的文献资料,撰写3000字左右的文献综述:一、绪论随着电子技术的发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,对电源的要求更加灵活多样。
电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。
传统的线性稳压电源,调整管功耗较大,电源效率很低,一般只有45%左右,另外,由于调整管上消耗较大的功率,所以需要采用大功率调整管并装有体积很大的散热器,于是它很难满足电子设备发展的要求,从而促成了高效率、体积小、重量轻的开关电源的迅速发展。
开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。
PWM开关电源的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。
脉冲的占空比由开关电源的控制器来调节。
一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。
通过增加变压器的二次绕组数就可以增加输出的电压组数。
最后这些交流波形经过整流滤波后就得到直流输出电压PWM开关电源的组成模块,如下图1:图1二、开关稳压电源的发展开关稳压电源的发展经历了几个重要的阶段,下面分别从国际和国内两个角度对开关电源的发展进行概述:[1] 国际发展状况1955年美国罗耶(GH.Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换控制电路的开端,此后,利用这一技术的各种形式的精益求精直流变换器不断地被研制和涌现出来,从而取代了早期采用的寿命短、可靠性差、转换效率低的旋转和机械振子示换流设备。
由于晶体管直流变换器中的功率晶体管工作在开关状态,所以由此而制成的稳压电源输出的组数多、极性可变、效率高、体积小、重量轻,因而当时被广泛地应用于航天及军事电子设备。
基于UC3842的多端反激式开关电源的设计与实现共3篇基于UC3842的多端反激式开关电源的设计与实现1多端反激式开关电源是现代电子设备中广泛应用的一种电源,其特点是功率密度高、效率高、成本低,且能够适应多种电压等级的电子元器件。
本文将介绍基于UC3842的多端反激式开关电源的设计与实现。
开关电源的基本原理是将来自市电的交流电转化为直流电,并通过电感和电容构成的滤波电路,提供带有稳定直流电压和电流的电源。
反激式开关电源是一种常见的开关电源拓扑结构,它通过电容和电感构成的反激电路来实现AC/DC转换。
UC3842是一款常用的控制集成电路,它能够对开关管的开关频率、占空比、电压反馈等进行精确控制,以保证反激式开关电源的工作稳定性和高效性。
该芯片还具备过流保护、过温保护等功能,非常适合用于电源控制电路中。
设计多端反激式开关电源的第一步是确定电路的架构和元器件。
通常根据输出功率、输出电流、转换效率等因素综合考虑,选择合适的电容、电感、二极管、开关管等元器件。
在此基础上,根据UC3842的控制信号要求,设计控制电路和反馈回路。
控制电路的设计是多端反激式开关电源设计的关键之一。
UC3842需要提供稳定的控制信号,以保证开关管工作的可靠性和高效性。
控制电路包括电流采样电路、电压采样电路等,可通过适当的电路参数设计和优化,提高控制系统的响应速度和稳定性。
反馈回路是另一重要的电路模块,它通过采集输出电压和电流信息,实现对开关管的控制。
反馈回路需要满足精度高、响应速度快的要求,以提高多端反激式开关电源的工作效率和准确性。
在确定电路架构和元器件之后,多端反激式开关电源的实现需要进行优化和验证。
这包括元器件的选型和参数设计、电路板的布局和线路走线、电磁兼容(EMC)测试等。
在实现过程中,还需要对反馈回路和控制电路进行修整和验证,并对开关电源的电源输出特性进行测试和分析。
总的来说,基于UC3842的多端反激式开关电源的设计和实现需要综合考虑多种因素,包括稳定性、效率、成本等。
开关电源原理解析一、系统原理与理论分析计算本文以UC3842为核心控制部件,设计一款DC36V~60V输入,4A输出的单端反激式开关稳压电源。
开关电源控制电路是一个电压、电流双闭环控制系统。
变换器的幅频特性由双极点变成单极点,因此,增益带宽乘积得到了提高,稳定幅度大,具有良好的频率响应特性。
其电路原理图如图1所示。
图1电路原理图1、简要介绍其工作原理:本电路有三部分组成:主电路,控制电路和保护电路。
其中主电路采用的是单端反激式电路,它是升降压变换器的推演并加隔离变压器而得。
此电路的优点是:电路简单,能高效提供直流输出,且它是所有电路拓扑中输入电压范围最宽的。
这对于输入环境恶劣发热负载时比较好的。
它的缺点是:输出纹波较大,但这可以通过在输出端增加一级LC滤波器来减小纹波。
这种电路通常适合应用在输出功率在250W以下,电压和负载的调整率在5%~8%左右的电路中。
反激式电路也有电流连续和电流断续两种工作模式,但值得注意的是反激式电路工作于电流连续模式下会显著降低磁芯的利用率,所以本文设计电路工作在电流断续模式下。
控制电路是开关电源的核心部分,控制的好坏直接影响电路的整体性能,在这个电路中采用的是以UC3842为核心的峰值电流型双闭环控制模式。
即在输出电压闭环的控制系统中增加直接或间接的电流反馈控制。
电流模式控制可以使系统的稳定性增强,稳定域扩大,改善系统的动态性能,消除了输出电压中由输入电压引入的低频纹波。
保护电路是开关电源中必不可少的补充,在这个电路中引入了输入过流保护、输出过流保护、输出过压保护、过热保护等。
其中输入过流保护是通过在原边引入取样电阻R14,接到UC3842的3脚,当R14上的电压超过1V,会关断PWM 的输出从而起到保护作用,输出过压保护是通过输出电压分压后送到误差放大器的反相端,和电压基准比较从而来控制R9的电压,来控制UC3842的输出占空比,达到输出电压稳压的作用。
C6用来滤除芯片反馈网络调节误差比较器的输出端(1脚)的高频迭加信号。
基于UC3842的反激式开关电源设
高频开关稳压电源由于具有效率高、体积小、重量轻等突出优点而得到了广泛应用。
传统的开关电源控制电路普遍为电压型拓扑,只有输出电压单闭控制环路,系统响应慢,线性调整率精度偏低。
随着PWM 技术的飞速发展产生的电流型模式拓扑很快被大家认同和广泛应用。
电流型控制系统
是电压电流双闭环系统,一个是检测输出电压的电压外环,一个是检测开关管电流且具有逐周期限流功能的电流内环,具有更好的电压调整率和负载调整率,稳定性和动态特性也得到明显改善。
UC3842是一款单电源供电,带电流正向补偿,单路调制输出的高性能固定频率电流型控制集成芯片。
本设计采用UC3842 制作一款1 kW 铅酸电池充电器控制板用的辅助电源样机,并对其进行工作环境下的测试。
1 UC3842 的工作原理
UC3842 内部组成框图如图1所示。
其中: 1 脚是内部误差放大器的输出端,通常此脚与2 脚之间接有反馈网络,以确定误差放大器的增益和频响。
2 脚是反馈电压输入端,将取样电压加到误差放大器的反相输入端,再与同相输入端的基准电压(一般为2.5 V)进行比较,产生误差电压。
3 脚是电流检测输入端,与取样电阻配合,构成过流保护电路。
当电源电压异常时,功率开关管的电流增大,当取样电阻上的电压超过1 V时,U。
中山火炬职业技术学院开关电源项目考核报告
专业班级:电信092班
*名:***
学号: **********
指导老师:***
电子工程系
2011 年1 月7 日
二、项目内容及要求
基于UC3842芯片控制的60W反激开关电源的制作,输入电源电压:220V±15%,输出电流5A,输出电压12V,输出功率60W,开关频率60K,占空比最大为45%。
三、项目电路图
四、项目各部分电路的工作原理(输入EMI滤波电路、整流滤波电路、反激变换器、输出整流滤波电路、UC3842控制电路、反馈电路)
输入EMI滤波电路的工作原理:该电路在输入端首先由热敏电阻R2来抑制浪涌电流,再由保险管F2和压敏电阻ZR1来保护电路,ZR1不仅起到过压保护的作用,更为电路吸收了尖峰电压,差模电容C2、C3和差模电感L2构成差模滤波器滤除差模干扰信号,共模电容C4、C5和共模电感L1构成共模滤波器滤除共模干扰信号。
整流滤波电路的工作原理:该部分电路采用全桥整流,正半周时,回路为:C3+——D1——D3——C3-;负半周时,回路为:C3-——D2——D4——C3+。
反激变换器的工作原理:在该部分电路中,变压器T1的原边电感工作时,副边不工作;正半周时,Q2导通,原边电感极性上正下负,此时回路为:C3+——Np——Q1——C3-,D8不导通;负半周时,Q1关断,副边电感极性上正下负,此时回路为:NS——D8——L3——负载,原边辅助绕组作为辅助电源给UC3842提供16V的启动电压。
输出整流滤波电路的工作原理:该电路由二极管D8构成半波整流电路,整流后再用电容C10、C11、C12和电感L3进行整流。
UC3842控制电路的工作原理:该电路首先由电阻R3对电源进行限流从而给芯片提供16V 的启动电压,由芯片UC3842来控制占空比,稳定输出。
反馈电路的工作原理:该电路采用精密基准源TL431构成误差电压放大器,通过线性光耦PC817进行精确的调整,从而取样输出信号,当取样信号的电压值大于TL431内部基准电压2.5V时,TL431导通,因此线性光耦PC817也导通,从而将信号传送到UC3842,从而稳定输出;当取样信号的电压值小于TL431内部基准电压2.5V时,TL431关断,电路不能起到稳压作用。
五、高频变压器设计过程(采用AP法选取磁芯型号,计算原边电感量,副边电感量,原边绕组、副边绕组、辅助绕组的匝数及气隙,并计算原边副边电路中的电流并选取所需要的原边及副边漆包线线径,参照课件上的计算步骤)
采用AP法选取磁芯型号:根据公式
计算后选用EI33型PC40磁芯。
原边电感量:Lp=n*Ls
副边电感量:Ls=(V0+Vf)*(1-Dmax)*[1/(Fs*1000)]/^IsB*1000000
原边绕阻的匝数:Np=Lp*^Ipp/(^B*Ae)=38
副边绕阻的匝数:Ns=Np/n=5
辅助绕阻的匝数:Nv=(Vcc+Vf)/[(Vo+Vf)/Ns]=6
气隙:Ig=0.4*3.14*Np2*Ae*10(-8)/Lp=3
原边副边电路中的电流:
Isp=Io/(1-Dmax)+(^IsB/2)*^Ipp=^Isp/n=5A
原边及副边漆包线线径:Axp=Irms*0.77/J=0.6mm
六、反激开关电源各部分电路的调试过程(每一部分电路是怎样调试的?),并写出调试结果(输入是220V,输出电压为多少,电源输入功率是多少,负载功率是多少?),并计算电源的效率
输入EMI整流滤波电路的调试过程:在电路的输入端加入16V的电压,看电容C6两端是否有接近16V的输出电压,有,电路正常,否则,仔细检查电路。
UC3842控制电路的调试过程:在UC3842的7脚和5脚间加入16V的启动电压,看此时电路的电流是否为0.01至0.02安培,是则说明电路初步正常,接着测试8脚与5脚间的电压是否为5V,有则用示波器观察4脚有没锯齿波和6脚或开关管的门极有没脉冲输出,有则说明电路正常,记录下各数据,上述测试过程若有一步不通过则要仔细检查电路,看有没短路、接错线或器件是否损坏,直至出现以上现象为止。
反馈电路的的调试过程:在电路的输出端加入12V的电压,看电路的电流是否为0.01至0.02安培,是则说明电路初步正常,接着测试TL431的Vref的电压并调节电位器R17使其电压值为2.5V,若有,接着测试光耦PC817的3脚和4脚是否导通,导通则说明电路正常,上述测试过程若有一步不通过则要仔细检查电路,看有没短路、接错线或器件是否损坏,直至出现以上现象为止。
完整电路的调试过程:在以上各部分电路都调试成功的情况下,接好输入和输出导线,进而接入交流电源和假负载,看电路的电流是否为0,有则,慢慢的将交流电压往上调,看电路的电流是否在零点零几安培间变化,是则看电压加到三十多伏时输出端接的发光二极管是否亮,亮则测量输出端电压是否为12V左右,是则慢慢将电压往上调至220V,看输出电压是否还稳定在12V左右和输入功率是否为3.5W左右,是则将负载调大,直至输入功率为30W左右,看输出电压是否还稳定在12V左右,是则说明电路正常,测量并记录相应的数据,上述测试过程若有一步不通过则要仔细检查电路,看有没短路、接错线或器件是否损坏,直至出现以上结果为止。
调试结果:输入是220V,输出电压为11.86V,电源输入功率是32W,负载7.1欧姆,输出功率为P=U2/R=140.66/7.1=19.81W。
电源的效率为:K=P出/P入=19.81/32=62%。
七、开关电源板的正反面布线图(图片)
八、项目总结
这次实训,不仅让我再重温了小组分工合作、一起讨论的精神,更让我收获了这一过程的点点滴滴,获益匪浅······
我的第一点收获是,学会了怎样去分模块来设计和完成一个电路,要怎样分和该怎样分,在分的过程中要注意些什么。
第二点收获是重新了解了输入EMI滤波电路、整流滤波电路、反激变换器、输出整流滤波电路、UC3842控制电路、反馈电路等电路的组成和工作原理以及怎样去分析、调试这些电路、计算各项参数,怎样去寻找故障的所在,并排除它们。
第三点收获是学会了怎样去设计一个变压器,包括磁芯的选取、各项参数的计算、怎样去绕制、分析出现偏差的原因、原副边的分辨以及在电路中的实际运用。
第四点收获是了解了各个元器件在反激开光电源中的实际作用以及怎样去判别它们的好坏。
总之,这次实训充实了我、提升了我、启发了我······
谢谢在这一过程中指导我和帮助我的老师和同学!。