实数导学案
- 格式:doc
- 大小:1.96 MB
- 文档页数:3
3.2 实数【要点预习】1.无理数的概念:象2这种 小数叫做无理数.2.实数的概念: 和 统称为实数.3.实数的分类:⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎫⎧⎪⎨⎬⎪⎩⎭⎩正有理数有理数零负有理数实数正无理数无理数无限不循环小数负无理数 4.实数与数轴上的点 .5.实数的大小比较:在数轴上表示的两个实数, 的数总比 的数大.【课前热身】1. 9的算术平方根是_____________. 答案:32. 如果一个数的平方根是±3,那么这个数是 . 答案:93.请任意写出一个无理数 . 答案:24.5的绝对值是 .答案:5【讲练互动】【例1】判断下列说法是否正确,并说明理由。
(1) 无理数是循环小数;(2) 无理数是除有限小数以外的所有小数; (3) 有理数是除无理数以外的所有小数.【分析】应搞清无理数的概念及实数的分类.无限不循环小数叫做无理数.有理数与无理数统称为实数.解:(1)错. 因为无理数是无限不循环小数.(2)错. 无限小数中还有无限循环小数,它是有理数;只有无限不循环小数才是无理数. (3)对. 在所有小数中,除了无限不循环小数(无理数)以外,还有有限小数和无限循环小数,它们都是有理数.【绿色通道】要特别注意无理数和有理数的区别,注意无限不循环小数与无限循环小数的差别,前者不能化为分数,后者则可以. 【变式训练】1. 下列说法:①无尽小数是无理数;②有理数都是有尽小数;③带根号的数都是无理数. 其中正确的有…………………………………………………………………………( )A. 0句B. 1句C. 2句D. 3句 答案:A【例2】下列各数中,哪些是有理数?哪些是无理数?23-,0, 3.141592-,1.313113111…(两个“3”之间依次多一个“1”),2.95∙,2π,25,3. 【分析】根据有理数与无理数的概念来判别.解:有理数有23-、0、 3.141592-、2.95∙、25;无理数有 1.313113111…、2π、3. 【绿色通道】所有的整数和分数都是有理数,无限不循环小数是无理数. 注意25=5. 【变式训练】2.下列实数中是无理数的是…………………………………………( ) A.0B.0.38 C.2D.35答案:C【例3】在数轴表示下列各数,并把它们按从小到大的顺序排列,用“>”连接:-∙3.0,-2,25,0,π 【分析】对于-2,可以通过画边长为1的正方形的对角线得到.对于π等无理数,可取适当的近似值,近似地表示在数轴上. 解: -∙3.0,-2,25,0,π在数轴上表示如图所示.由图得到: 50.302π∙<-<<<-2. 【绿色通道】对于实数的比较大小,可把实数表示在数轴上,根据”在数轴上表示的两个实数,右边的数总比左边的数大”得到结果. 【变式训练】 3.在三个数0.5、53、13-中,最大的数是……………………………( ) A. 0.5 B.53 C. 13- D. 不能确定 解析:∵13-=13,0.5=1.53,5的整数部分是2, ∴可知最大的数是53. 答案:B【同步测控】基础自测 1.25的相反数是…………………………………………………………( )A .5B .5-C .5±D .252.比较2.537-,,的大小,正确的是……………………………………( )A.3 2.57-<< B.2.537<-< C.37 2.5-<<D.7 2.53<<-3.下列说法正确的是………………………………………………………( )A .无限小数是无理数B .不循环小数是无理数C .无理数的相反数还是无理数D .两个无理数的和还是无理数4. 写出一个有理数和无理数,使它们都是大于2-的负数: .5. 用“<”、“>”号或数字填空:∵ 2.2362()522.2372∴ 2.2365 2.237∴5≈ (保留三个有效数字)6. 比较大小:2-_________3-(填:“<、>、=”)。
实数第1课时导学案
一、导学
1.导入课题:
(1)用计算器把下面的有理数化为小数的形式,你有什么发现?
3, 25, -53, 427, 911, 11
9. (2)还有一些数如,5,3,2π等这些数有什么特征呢?这些数如何分类呢?这节课我们就来学习6.3 实数.
2.学习目标:
(1)知道什么叫无理数?什么叫实数?
(2)会给实数进行分类.
3.学习重、难点:
重点:无理数和实数的概念;实数的分类; 难点:无理数和实数的概念.
4.自学指导:
(1)自学内容:P53
(2)自学时间:8分钟.
(3)自学要求:认真阅读课文,将重要的概念做上记号;弄清实数的两种分类方法.
(4)自学参考提纲:
①任何一个有理数都可以写成一个什么样的小数?
②什么样的数叫无理数?什么样的数叫实数?
③你能将实数用两种方法分类吗?
④说出下列各数哪些是有理数?哪些是无理数?哪些是实数? -2, 16, π, 3.14159, 37,0.1717717771…(以后每两个1之间多一个7).
二、自学:同学们可结合自学指导进行自学.
三、助学:
(1)明了学情:
(2)差异指导:
四、 强化:
(1)无理数和实数的概念;实数的分类方法.
(2)练习:把下列各数进行分类:
,之间依次多一个每两个)01(010010001.1....,11111.0,16,8,5,3
8,0,53,23- 有理数集合{ }; 无理数集合{ } 实数集合{ }
五、评价:
1.学生学习的自我评价:
2.教师对学生的评价:
(1)表现性评价;
(2)纸笔评价:课堂评价检测
3.教师的自我评价(教学反思)。
5.9 实数(导学案)一、学习目标:1、掌握实数的概念及分类。
(重点)2、掌握实数与数轴的关系(难点)二、导学流程:(一)、情境导入:前面我们已经学习了无理数,自从无理数的引入,使数的范围得到了扩充。
实际上,有理数和无理数统称为实数。
今天我们学习的就是本章的最后一节——实数。
本节的学习目标是:(略)(二)、自主学习:自学课本p153、p154练习上部分(10分钟)完成下列自学题目:1、将153页实数的分类完成2、按定义将实数分类3、实数与数轴上的点是一一对应的,你能解释“一一对应”的意思吗?展示一下你自学的成果吧:写下你的疑惑:1、按定义分类:实数:有理数:整数:正整数负整数分数:正分数负分数无理数:正无理数负无理数2、按性质分类:实数:正实数:正有理数正无理数负实数:负有理数负无理数3、“一一对应”:每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都有一个实数与之对应。
(三)合作交流:我们已经学过平面直角坐标系,你知道有序实数对与坐标平面上的点有什么关系吗?交流一下吧!展示成果:“一一对应”的关系(四)精讲点拨:点拨1 实数中的非负数(1)任何一个实数a的绝对值是非负数,即a 0(2)任何一个实数a 的平方是非负数,即a 2≥0(3)任何一个非负数的算术平方根是非负数,即a ≥0(a ≥0) 例如:已知3-x +1-y +(z+2)2=0,求x,y,z 的值。
(学生解答)点拨 2例1、在-25,-π,321 ,-722 ,3.14,0这些实数中,有理数个数是( ) A.4 B.3 C.2 D.1例2、把下列各数分别填在相应的集合中:8,-0.3,0,310 ,720,321 ,2π,25,316-,-27,364-,|—10|自然数集合:{ …}整数集合:{ …}分数集合:{ …}正有理数集合:{ …}正无理数集合:{ …}负实数集合:{ …}师:关键是要掌握各数集的分类及它们之间的关系。
《实数的概念》导学案一、学习目标1、理解实数的概念,包括有理数和无理数。
2、能够区分有理数和无理数,并掌握它们的特征。
3、了解实数的分类方法,能对给定的数进行正确的分类。
二、学习重点1、实数的概念及分类。
2、无理数的概念及常见类型。
三、学习难点1、对无理数的理解和识别。
2、实数与数轴上的点一一对应关系的理解。
四、知识链接1、回顾有理数的概念和分类有理数包括整数(正整数、0、负整数)和分数(正分数、负分数)。
有理数都可以表示为两个整数之比的形式。
2、复习数轴的概念数轴是规定了原点、正方向和单位长度的直线。
数轴上的点与有理数一一对应。
五、学习过程(一)引入在数学的世界里,我们已经认识了有理数,但是,仅仅有理数就能完全描述我们所遇到的数吗?比如,一个正方形的边长为 1,它的对角线长度是多少呢?这个数就不是有理数。
今天,我们就来一起探索更广泛的数的世界——实数。
(二)探索新知1、无理数的概念思考:面积为 2 的正方形的边长是多少?假设边长为 x ,则 x²= 2 ,解得 x =√2 。
√2 是一个无限不循环小数,像这样的数叫做无理数。
无理数的定义:无限不循环小数叫做无理数。
常见的无理数类型:(1)含根号且开方开不尽的数,如√3 、√5 等。
(2)圆周率π以及与π有关的数,如2π 、π 1 等。
(3)有一定规律但不循环的无限小数,如***********……(相邻两个 1 之间依次多一个 0)。
2、实数的概念有理数和无理数统称为实数。
实数的定义:有理数和无理数的统称。
3、实数的分类(1)按定义分类实数分为有理数和无理数。
有理数分为整数和分数。
整数分为正整数、0 、负整数。
分数分为正分数和负分数。
无理数分为正无理数和负无理数。
(2)按性质分类实数分为正实数、0 、负实数。
正实数分为正有理数和正无理数。
负实数分为负有理数和负无理数。
(三)例题讲解例 1:下列各数中,哪些是有理数?哪些是无理数?314 , 4/3 , 057 ,√5 ,π , 0 ,√9 ,***********……解:有理数有:314 , 4/3 , 057 , 0 ,√9 。
《实数》(1)导教案一、 学 :1、认识无理数和 数的观点,会 数依据必定的 准 行分 ;2、认识分 准与分 果的关系, 一步领会“会合”的含 :3、认识在 数范 内相反数、 的意 ,会求一个 数的相反数。
二、知 :1、用 算器 算,把以下有理数写成小数的形式,你能 什么: 3,- 3,47 , 9 , 11, 5 。
58119 9任何一个有理数都能够写成有限小数或无穷循 小数的形式。
2、在全面我 学 了求一个数的平方根和立方根 ,有些数的平方根或立方根是无穷不循小数, 它 不可以化成分数。
我 把无穷不循 小数叫做无理数。
如:2,- 335,2,3 ⋯都是无理数, π = 3.14159265⋯也是无理数。
3、以下各数哪些是有理数?哪些是无理数?1 3.1 .020*******2 ⋯, 2 ,- π , 38 , 36 , 3 25 ,π。
324、用根号表示的数必定是无理数 ?5、 数:有理数和无理数 称 数。
① 回 有理数分 ,画出有理数的分 。
② 画出无理数分 。
③ 数的 相反数同有理数一 。
三全能1、把以下各数填在相 的会合里:13.1 .020******** ⋯,2 ,- π ,3 8 , 36 , 3 25 ,π。
32整数会合{ ⋯ } 分数会合{ ⋯ } 分数会合{ ⋯ } 有理数会合{ ⋯ } 无理数会合―{⋯}2、求以下各数的相反数 :2.5,- 7 , -π, 0,32 , 3, -2,3-64 , π - 353、求以下各式中 数 X :(1)x =-3 , ( 2)求 足 x4 3 的整数 x.。
24、比 - 275 与 -4 17 的大小。
四、拓展 探察例 :∵4< 7< 9 ,那么 2< 7<3∴ 7 的整数部分 2,小数部分 ( 7 -2)假如2 的小数部分 a,3 的小数部分 b.求:2·a + 3·b -5 的 。
《实数》(2)导教案一、课标导学1、知道实数在数轴上的点一一对应2、学会比较两个实数的大小,能娴熟地进行实数运算。
第六章 实 数6.3 实 数 第1课时 实 数 (导学案)(2011人教版七年级下册)湖北省竹山县茂华中学 杨文彬学习目标1、知识与技能:了解无理数实数的概念,并能将实数按要求进行分类。
了解实数与数轴上的点一一对应,能用数轴上的点表示无理数。
2、过程与方法:经历实数概念和实数与数轴上点之间关系的学习,让学生体会从特殊到一般,数形结合等数学思想方法。
3、情感态度与价值观:在探究新知的过程中,让学生学会合作与交流,培养学生团队合作意识。
学习重点正确理解实数的概念及其分类。
学习难点正确理解实数的概念及其与数轴的关系。
学习过程一、情景导入1、 我们知道有理数包括整数和分数,把下列分数写成小数的形式,它们有什么特征? 52= 35-= 274= 119= 911= 2. 任意写一个分数,把它化成小数,是否仍然具有这个特征?整数能写成小数的形式吗? 思考 由此你可以得到什么结论?二、新知探究探究(一):无理数的概念1、我们在前面探究了2有多大时,它是整数吗?它是分数吗?它是什么数?学过的数是否都是有理数呢?请举例说明。
2、常见的无理数有哪些形式?思考:π 是无理数吗?1.010 010 001 000 01…是无理数吗?探究(二)、实数的分类思考:我们将有理数和无理数统称为实数,仿照有理数的分类吗?你能给实数分类吗?探究(三)、实数与数轴上的点思考1: 如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点从原点到达A 点,则数轴上表示点A 的数是多少?思考2:你能在数轴上表示出2和2-吗?0 -2 -1 1 3 2 4把两个边长为1的小正方形通过剪、拼,得到一个大正方形,大正方形的边长为 ,从而说明边长为1的小正方形的对角线为 .由思考1、2我们可以得到实数与数轴上的点之间有什么关系?三、巩固练习1.判断快枪手——看谁最快最准!(1)实数不是有理数就是无理数. ( )(2)无理数都是无限不循环小数. ( )(3)带根号的数都是无理数. ( )(4)无理数都是无限小数. ( )(5)无理数一定都带根号. ( )2. 将下列各数分别填入下列相应的括号内:39,14,7,π,16-,5-,38-,49,0,25,0.3737737773…… 无理数有理数正实数负实数3.下列说法正确的是( )A.a 一定是正实数B. 2217是有理数 C. 22是有理数 D.数轴上任一点都对应一个有理数4.有一个数值转换器,原理如下,当输x =81时,输出的y 是 ( )A 、9B 、3C 、3D 、3±四、课堂小结通过本节课的学习,你觉得自己有哪些收获愿意和同学们一起分享呢?五、课后作业课本75页上的1、2、6、7题 是无理数输入x 取算术平方根 输出y 是有理数 0 -2 -1 1 3 2 4。
北师大版八年级上册《实数》导学案第二章实数第一节认识无理数研究目标】1、通过拼图活动,感受无理数产生的实际背景和引入的必要性。
2、借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想。
3、能够判断一个数是有理数还是无理数。
研究过程】环节一、自学和研读一)知识准备1、有理数的概念:整数和分数统称为有理数。
2、有理数总可以用分数或小数表示,反过来分数或小数也都是有理数。
二)、教材研读1、理解无理数的概念1)通过剪、拼两个边长为1的小正方形,得到一个大正方形,设大正方形的边长为a,计算a=√2,小组讨论:a可能是整数吗?a可能是分数吗?2)b=2/√2,b是有理数吗?3)估计数值的大小判断如图所示三个正方形的边长之间的大小关系,说明理由。
边长a1<a<2能否判断面积为2的正方形的边长a的大致范围?a是有限小数吗?a是什么数?借助计算器进行探索,完成表格)面积S1<S<41.96<S<2.251.9881<S<2.01641.<S<2.1.xxxxxxxx<S<2.xxxxxxxx4)归纳:称为无理数。
例如:圆周率π=3.xxxxxxxx……是一个无限不循环小数,因此它是一个无理数。
再如:0.xxxxxxxxxxxxxxx……(相邻两个1之间2的个数逐次加1)它也是一个无限不循环小数,因此它是无理数。
环节二:例1、判断:1、无限不循环小数是无理数(√2=1.xxxxxxxx……)反思感悟:2、带根号的数是无理数(√3)3、无理数是无限不循环小数(π=3.xxxxxxxx……)4、22/7是无理数(√2<22/7<√3)例2:下列各数中,哪些是有理数?哪些是无理数?0.7.0.4583.3.-π。
-1/7.18.注意:形成练:教材第25页环节三形成提升1、在Rt△ABC中,∠C=90°,回答下列问题:1)若a=3,b=4,则c=5;(2)若a=5,c=13,则b=12;3)若a=2,b=3,则c²=13,c是无理数。
初中数学七年级下册第六章实数学案〔人教版〕学习目标1.了解实数的意义, 能对实数按要求进行分类2.知道实数与数轴上的点具有一一对应的关系3.了解实数范围内有理数、相反数、绝对值的意义4.掌握实数的运算律和运算性质新知形成知识点一、实数的分类按定义分类:按性质符号分类:注:0既不是正数也不是负数.知识点二、实数的相关概念相反数(1)代数意义:只有符号不同的两个数, 我们说其中一个是另一个的相反数.0的相反数是0.(2)几何意义:在数轴上原点的两侧, 与原点距离相等的两个点表示的两个数互为相反数, 或数轴上, 互为相反数的两个数所对应的点关于原点对称.(3)互为相反数的两个数之和等于0.a、b互为相反数 a+b=0.绝对值|a|≥0.倒数〔1〕0没有倒数 (2)乘积是1的两个数互为倒数.a、b互为倒数 .知识点三、实数与数轴数轴定义:规定了原点, 正方向和单位长度的直线叫做数轴, 数轴的三要素缺一不可.知识点四、实数大小的比拟 1.对于数轴上的任意两个点, 靠右边的点所表示的数较大.2.正数都大于0, 负数都小于0, 两个正数, 绝对值较大的那个正数大;两个负数;绝对值大的反而小.3.无理数的比拟大小:知识点五、实数的运算同号两数相加, 取相同的符号, 并把绝对值相加;绝对值不相等的异号两数相加, 取绝对值较大的加数的符号, 并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数同0相加, 仍得这个数.:减去一个数等于加上这个数的相反数.几个非零实数相乘, 积的符号由负因数的个数决定, 当负因数有偶数个时, 积为正;当负因数有奇数个时, 积为负.几个数相乘, 有一个因数为0, 积就为0.除以一个数, 等于乘上这个数的倒数.两个数相除, 同号得正, 异号得负, 并把绝对值相除.0除以任何一个不等于0的数都得0.(1)an 所表示的意义是n 个a 相乘, 正数的任何次幂是正数, 负数的偶次幂是正数, 负数的奇次幂是负数.(2)正数和0可以开平方, 负数不能开平方;正数、负数和0都可以开立方. (3)零指数与负指数知识点六、有效数字和科学记数法1.有效数字:一个近似数, 从左边第一个不是0的数字起, 到精确到的数位为止, 所有的数字, 都叫做这个近似数的有效数字. 2.科学记数法:把一个数用 (1≤ <10, n 为整数)的形式记数的方法叫科学记数法.稳固练习例1.对于实数x, 我们规定[x]表示不大于x 的最大整数, 如[4]=4, [ √3 ]=1, [﹣2.5]=﹣3.现对82进行如下操作:82 →第1次[ [√82] ]=9 →第2次[ 93]=3 →第3次[√3]=1, 这样对82只需进行3次操作后变为1, 类似地,对121只需进行多少次操作后变为1〔〕A. 1B. 2C. 3D. 4 C【解析】解:121 第1次⇁[12111]=11第2次⇁[11√11]=3第3次⇁[3√3]=1∴对121只需进行3次操作后变为1. 应选C .【分析】[x]表示不大于x 的最大整数, 依据题目中提供的操作进行计算即可.例2观察以下各数:1, 43, 97, 1615, …, 按你发现的规律计算这列数的第6个数为〔 〕 A. 2531 B. 3635 C. 3663 D. 6263 C【解析】观察该组数发现:1, 43, 97, 1615, … 第n 个数为n 22n −1,当n=6时, n 22n −1=6226−1= 3663.应选C .【分析】观察数据, 发现第n 个数为n 22n −1, 再将n=6代入计算即可求解.1.在以下各数0, √3, √273, π,113, 0.1010010001...〔两个1之间, 依次增加1个0〕, 其中无理数有〔〕A. 2个B. 3个C. 4个D. 5个 2.以下说法中, 正确的选项是〔〕A. 立方根等于本身的数只有0和1B. 1的平方根等于1的立方根C. 3< √6 <4D. 面积为6的正方形的边长是√6 3.以下各数中, 大于1且小于2的数是〔〕A. -1.5B. ﹣1C. √2D. 524.有理数a 、b 、c 在数轴上的对应点的位置如下图, 假设a 与c 互为相反数, 那么a 、b 、c 三个数中绝对值最大的数是〔〕A. aB. bC. cD. 无法确定 5.估计√5的值在〔〕A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间 6.以下数的大小比拟中, 正确的选项是〔〕. A. 0<−2B. −1<−2C. π<3.14D. −5<−(−3)7.如图, 数轴上A 、B 两点分别对应实数a 、b, 那么以下结论正确的选项是〔〕 A. a +b >0B. ab >0C. a −b <0D. a 2<b 28.n 是正整数, 并且n -1<3+ √26 <n, 那么n 的值为( )A. 7B. 8C. 9D. 10 9.面积为20的正方形的边长介于哪两个连续整数之间〔〕A. 2和3B. 3和4C. 4和5D. 5和610.假设0<x<1, 那么x,1x,√x,x2的大小关系为〔〕A.x<1x <√x<x2B.x2<x<√x<1xC.1x<x<x2<√x D.√x<1x<x<x2参考答案1. B2. D3. C4. B5. B6. D7. D8. C9. C 10. B第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A.y:正方形的面积, x:这个正方形的周长B.y:等边三角形的周长, x:这个等边三角形的边长C.y:圆的面积, x:这个圆的直径D.y:一个正数的平方根, x:这个正数3.以下关系式中, y不是..x的函数的是()A.y=x B.y=x2+1C.y=|x|D.|y|=2x4.(泸州)以下曲线中不能..表示y是x的函数的是()5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x表示乘公共汽车的站数, y表示应付的票价.x/站12345678910y/元1112233344A.y是x的函数B.y不是x的函数C.x是y的函数D.以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h(单位:m)与上的台阶数m(单位:个)之间的函数关系式是()A.h=6m B.h=6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是()9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是() A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是()A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是()A .7B .-3C .-3或7D .±3或7 二、拓展提升13.在国内投寄本埠平信应付邮资如下表:信件质量x /g 0<x ≤2020<x ≤4040<x ≤60邮资y /元(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:品种 价格(单位:元/棵)成活率 劳务费(单位:元/棵)A 15 95% 3 B2099%4设购置(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?第26章反比例函数实际问题与反比例函数2一、根底稳固1.某工厂现有原材料100吨, 每天平均用去x吨, 这批原材料能用y天, 那么y与x之间的函数表达式为〔〕A.y=100x B.y=C.y=+100D.y=100﹣x2.如图, 市煤气公司方案在地下修建一个容积为104m3的圆柱形煤气储存室, 那么储存室的底面积S〔单位:m2〕与其深度d〔单位:m〕的函数图象大致是〔〕A.B.C.D.3.甲、乙两地相距s〔单位:km〕, 汽车从甲地匀速行驶到乙地, 那么汽车行驶的时间y〔单位:h〕关于行驶速度x〔单位:km/h〕的函数图象是〔〕A.B.C.D.4.教室里的饮水机接通电源就进入自动程序, 开机加热每分钟上升10℃, 加热到100℃, 停止加热, 水温开始下降, 此时水温〔℃〕与开机后用时〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机.饮水机关机后即刻自动开机, 重复上述自动程序.水温y〔℃〕和时间x〔min〕的关系如图.某天张老师在水温为30℃时, 接通了电源, 为了在上午课间时〔8:45〕能喝到不超过50℃的水, 那么接通电源的时间可以是当天上午的〔〕A.7:50B.7:45C.7:30D.7:205.在温度不变的条件下, 通过一次又一次地对汽缸顶部的活塞加压, 测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强, 如下表:那么可以反映y与x之间的关系的式子是〔〕体积x〔mL〕10080604020压强y〔kPa〕6075100150300A.y=3 000x B.y=6 000x C.y=D.y=6.随着私家车的增加, 交通也越来越拥挤, 通常情况下, 某段公路上车辆的行驶速度〔千米/时〕与路上每百米拥有车的数量x〔辆〕的关系如下图, 当x≥8时, y与x成反比例函数关系, 当车速度低于20千米/时, 交通就会拥堵, 为防止出现交通拥堵, 公路上每百米拥有车的数量x应该满足的范围是〔〕A.x<32B.x≤32C.x>32D.x≥327.如图, 在平面直角坐标系中, 函数y=〔k>0, x>0〕的图象与等边三角形OAB的边OA, AB分别交于点M, N, 且OM=2MA, 假设AB=3, 那么点N的横坐标为〔〕A.B.C.4D.68.如图, 反比例函数y1=〔k1>0〕和y2=〔k2<0〕中, 作直线x=10, 分别交x轴, y1=〔k1>0〕和y2=〔k2<0〕于点P, 点A, 点B, 假设=3, 那么=〔〕A.B.3C.﹣3D.9.直线y=x+3与x轴、y轴分别交于A, B点, 与y=〔x<0〕的图象交于C、D两点, E是点C关于点A的中心对称点, EF⊥OA于F, 假设△AOD的面积与△AEF的面积之和为时, 那么k=〔〕A.3B.﹣2C.﹣3D.﹣10.如图, 点A、B在双曲线〔x<0〕上, 连接OA、AB, 以OA、AB为边作▱OABC.假设点C恰落在双曲线〔x>0〕上, 此时▱OABC的面积为〔〕A.B.C.D.411.某物体对地面的压强P〔Pa〕与物体和地面的接触面积S〔m2〕成反比例函数关系〔如图〕.当该物体与地面的接触面积为m2时, 该物体对地面的压强是Pa.12.根据某商场对一款运动鞋五天中的售价与销量关系的调查显示, 售价是销量的反比例函数〔统计数据见下表〕.该运动鞋的进价为180元/双, 要使该款运动鞋每天的销售利润到达2400元, 那么其售价应定为元.售价x〔元/双〕200240250400销售量y〔双〕3025241513.小刚同学家里要用1500W的空调, 家里保险丝通过的最大电流是10A, 额定电压为220V, 那么他家最多还可以有只50W的灯泡与空调同时使用.14.在一个可以改变体积的密闭容器内装有一定质量的某种气体, 当改变容器的体积时, 气体的密度也会随之改变, 密度ρ〔单位:kg/m3〕与体积v〔单位:m3〕满足函数关系式〔k为常数, k≠0〕其图象如下图过点〔6, 〕, 那么k的值为.15.小丁在课余时间找了几副度数不同的老花镜, 让镜片正对太阳光, 上下移动镜片, 直到地上的光斑最小,此时他测量了镜片与光斑的距离, 得到如下数据:老花镜的度数x/度…100125200250…镜片与光斑的距离y/m…1…如果按上述方法测得一副老花镜的镜片与光斑的距离为m, 那么这副老花镜为度.16.为预防传染病, 某校定期对教室进行“药熏消毒〞, 药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与燃烧时间x〔分钟〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃烧完, 此时教室内每立方米空气含药量为6mg.研究说明当每立方米空气中含药量低于mg时, 对人体方能无毒害作用, 那么从消毒开始, 至少需要经过分钟后, 学生才能回到教室.二、拓展提升17.近似眼镜片的度数y〔度〕是镜片焦距x〔cm〕〔x>0〕的反比例函数, 调查数据如表:眼镜片度数y〔度〕4006258001000 (1250)镜片焦距x〔cm〕251610 (8)〔1〕求y与x的函数表达式;〔2〕假设近视眼镜镜片的度数为500度, 求该镜片的焦距.18.实验数据显示, 一般成人喝半斤低度白酒后, 小时内其血液中酒精含量y〔毫克/百毫升〕与时间x〔时〕成正比例;小时后〔包括小时〕y与x成反比例.根据图中提供的信息, 解答以下问题:〔1〕写出一般成人喝半斤低度白酒后, y与x之间的函数关系式及相应的自变量取值范围;〔2〕按国家规定, 车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶〞, 不能驾车上路.参照上述数学模型, 假设某驾驶员晚上21:00在家喝完半斤低度白酒, 第二天早上7:00能否驾车去上班?请说明理由.19.教室里的饮水机接通电源就进入自动程序, 开机加热时每分钟上升10℃, 加热到100℃停止加热, 水温开始下降, 此时水温y〔℃〕与开机后用时x〔min〕成反比例关系, 直至水温降至30℃, 饮水机关机, 饮水机关机后即刻自动开机, 重复上述自动程序.假设在水温为30℃时接通电源, 水温y〔℃〕与时间x〔min〕的关系如下图:〔1〕分别写出水温上升和下降阶段y与x之间的函数关系式;〔2〕怡萱同学想喝高于50℃的水, 请问她最多需要等待多长时间?20.某地建设一项水利工程, 工程需要运送的土石方总量为360万米3.〔1〕写出运输公司完成任务所需的时间y〔单位:天〕与平均每天的工作量x〔单位:万米3〕之间的函数关系式;〔2〕当运输公司平均每天的工作量15万米3, 完成任务所需的时间是多少?〔3〕为了能在150天内完成任务, 平均每天的工作量至少是多少万米3?21.蓄电池的电压为定值.使用此蓄电池作为电源时, 电流Ⅰ〔单位:A〕与电阻R〔单位:Ω〕是反比例函数关系, 它的图象如下图.〔1〕求这个反比例函数的表达式;〔2〕如果以此蓄电池为电源的用电器的电流不能超过8A, 那么该用电器的可变电阻至少是多少?22.某公司用100万元研发一种市场急需电子产品, 已于当年投入生产并销售, 生产这种电子产品的本钱为4元/件, 在销售过程中发现:每年的年销售量y〔万件〕与销售价格x〔元/件〕的关系如下图, 其中AB为反比例函数图象的一局部, 设公司销售这种电子产品的年利润为s〔万元〕.〔1〕请求出y〔万件〕与x〔元/件〕的函数表达式;〔2〕求出第一年这种电子产品的年利润s〔万元〕与x〔元/件〕的函数表达式, 并求出第一年年利润的最大值.23.为预防传染病, 某校定期对教室进行“药熏消毒〞.药物燃烧阶段, 室内每立方米空气中的含药量y〔mg〕与药物在空气中的持续时间x〔m〕成正比例;燃烧后, y与x成反比例〔如下图〕.现测得药物10分钟燃完, 此时教室内每立方米空气含药量为8mg.根据以上信息解答以下问题:〔1〕分别求出药物燃烧时及燃烧后y关于x的函数表达式〔2〕当每立方米空气中的含药量低于mg时, 对人体方能无毒害作用, 那么从消毒开始, 在哪个时段消毒人员不能停留在教室里?〔3〕当室内空气中的含药量每立方米不低于mg的持续时间超过20分钟, 才能有效杀灭某种传染病毒.试判断此次消毒是否有效, 并说明理由.第四单元第1课函数二、根底稳固1.一般地, 如果在一个变化过程中有两个变量x 和y , 并且对于变量x 的每一个值, 变量y 都有________的值与它对应, 那么我们称y 是x 的________, 其中________是自变量. 2.下面选项中给出了某个变化过程中的两个变量x 和 y , 其中y 不是..x 的函数的是()A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是()A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是() 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是() A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是() A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是()9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是() A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是()A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是()A .7B .-3C .-3或7D .±3或7 三、拓展提升13.在国内投寄本埠平信应付邮资如下表:(2)分别求当x 取5, 10, 30, 50时的函数值.14.某生态公园方案在园内的坡地上造一片只有A, B 两种树的混合林, 需要购置这两种树苗2 000棵, 种植 A, B 两种树苗的相关信息如下表:设购置(1)写出y 与x 之间的函数表达式;(2)假设这批树苗种植后成活1 960棵, 那么造这片树林的总费用为多少元?。
【学习课题】:2.1认识无理数 【学习目标】:1、通过拼图活动感受无理数产生的实际背景和引入的必要性 2.探索无理数是无限不循环小数,并从中体会无限逼近的思想 3.会判断一个数是有理数还是无理数 【学习过程】: 学习准备:1. 有理数的概念: 和 ,统称为有理数2. 数的分类:正整数 如整数 零负整数 如 有理数正分数 如 分数负分数 如也可以这样分类:如1,21,2.5有理数如-2,-3.5,65-练习:把下列各有理数填在相应的大括号里12,-3,+1,31,-1.5,0,0.2,413 ,534-正数: ( ) 负数:( ) 整数: ( ) 分数:( ) 正分数:( ) 负分数:( ) 1.整数可以表示成( )限小数如:3可以表示成小数3.02.分数可以表示成( )限小数或( )限( )小数如:21可以表示成小数0.531可以表示成小数.3.0总结:有理数总可以表示成( )限小数或( )限( )小数 练习:把下列各数表示成小数2=( ) 54=( ) 95=( ) 458-=( )解读教材:阅读教材第21页 3. 活动做两个边长为1分米的小正方形,剪一剪,拼一拼,你能得到一个大正方形吗? 画出你的做法:设大正方形的边长为a 分米,a 满足的条件为( ) a 是整数吗?( ),理由:------------------------------------------------ a 是分数吗?( ),理由:------------------------------------------------ a 是有理数吗?( ),理由:----------------------------------------------- 总结:在现实生活中,存在着既不是整数又不是分数的数,也就是存在着不是( )的数 即时练习:将上述活动中的小正方形的边长变为2分米,大正方形的边长是有理数吗?为什么? ( ) 挖掘教材:4.如下图,正方形ABCD 的面积为|( ) 设它的边长为b,则b 满足的条件为( ) b 是有理数吗? ( )即时练习:如下图,正三角形ABC 的边长为2,高为h,则h 满足的条件为( ) h 是有理数吗? ( )21ABCD2 A B C hA E DHO F B G C反思小结:5.现实生活中,除了有理数之外,还存在着不是有理数的数,如: , 【达标检测】:6.长、宽分别为3、2的长方形,它的对角线的长可能是整数吗?( ) 可能是分数吗? ( )7.上图是4个边长为1的正方形拼成的,任意连接这些小正方形的若干个顶点,可得到一些线段。
有理数
集
无理数
集
正数集合
负数集合 0
1 2
-1 -2
A B
君召初中八年级 数学( 上 )册导学案(总第 12 课时)
课题:实数
课型:新授 时间: 备课人:张彦勋 审核人:
学习目标:1.了解实数的意义,能对实数按要求进行分类;
2.了解实数范围内的相反数、倒数、绝对值的意义和有理数范围内
的意义完全一样;
3.了解实数和数轴上的点一一对应,能比较实数的大小
学习重点:1.实数意义及分类
2.能用数轴上的点来表示无理数
学习内容与过程: 自主学习
引入新课
1.什么是有理数?有理数怎样分类?
2.什么是无理数?带根号的数都是无理数吗?
3.把下列各数分别填入相应的集合内:
3
2,41,7,π,2
5
-,2,320,5-,
38-,
9
4
,0,0.3737737773……(相邻两个3之间7的个数逐次增加1) 合作交流
结论:___________和__________统称为实数。
请把上面各数分别填入下面相应的集合
内吗?
展示点拨
如图所示,认真观察,探讨下列问题
(1)如图,OA=OB ,数轴上A 点对应的数表示什么?它介于哪
两个整数之间?
(2)你能在坐标轴上找到5对应的点吗?与同伴进行交流.
知识运用
1.教材P
随堂练习1、2、3
39
2.在数轴上离点3距离是3的点表示的数是_______
=____.
3.如果a是15的整数部分,b是15的小数部分,a b
课堂小结
1.分类
2.运算
3.在数轴上表示无理数
当堂检测
1.大于-17而小于11的所有整数的和_______.
2.设a是最小的自然数,b是最大负整数,c是绝对值最小的实数,则
a+b+c=______.
3.已知坐标平面内一点A(-2,3),将点A先向右平移2个单位,再向下平移3个单位,得到A′,则A′的坐标为_____.
2.如图,数轴上表示1和2的点分别为A和B,点B关于点A的对称点为点C,则点C表示的数是( )
A.2−1 B.1−2 C.2−2 D.2−2
作业
知识技能P40 1、2、3
教与学反思:。