人教版初中数学七年级下册第六章《实数》复习课教案
- 格式:doc
- 大小:981.00 KB
- 文档页数:4
第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
(老师读,学生读,加深理解。
)3、书写教学“杏花春雨江南”6个字。
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“实数”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,学生将了解无理数和实数,知道实数是由有理数和无理数组成的,感悟数的扩充;初步认识实数与数轴上的点具有一一对应的关系,能用数轴上的点表示一些具体的实数,能比较实数的大小;能借助数轴理解相反数和绝对值的意义,会求实数的相反数、绝对值;知道平方根、算术平方根、立方根的概念,会用根号表示平方根、算术平方根、立方根;知道乘方与开方互为逆运算,会用乘方运算求百以内完全平方数的平方根和千以内完全立方数的立方根(及对应的负整数),会用计算器计算平方根和立方根;能用有理数估计一个无理数的大致范围;初步认识近似数,在解决实际问题中,能用计算器进行近似计算,会按要求进行简单的近似计算,会对结果取近似值;会用二次根式(根号下仅限于数)的加、减、乘、除运算法则进行简单的四则运算.在中学阶段,实数的知识贯穿于中学数学学习的始终,多数数学问题是在实数范围内研究的.实数不仅是初中阶段学习二次根式、一元二次方程以及解三角形等知识的基础,也是学习高中数学内容的基础.2.本单元教学内容分析人教版教材七年级下册第六章“实数”,本章包括三个小节:6.1平方根;6.2 立方根;6.3实数.本单元内容属于“数与代数”领域,很多内容是有理数相关内容的延续和推广.类比有理数,引入实数的绝对值和相反数的概念,实数的运算法则和运算性质,实数与数轴上的点的一一对应关系,平方与开平方、立方与开立方互为逆运算的关系等都是在有理数的基础上展开的.为了使学生更好地体会到数的扩充过程中表现出的概念、运算等的一致性和发展变化.本章前两节“平方根”“立方根”在内容和展开方式上是基本平行的,因此充分利用类比的方法,通过类比“平方根”展开“立方根”的内容,这样有助于加强知识间的相互联系,通过类比已学的知识学习新知识,使学生的学习形成正迁移.通过学生合作探究,揭示出像√2这种无限不循环小数的存在,从而引入无理数的概念,使学生把数的概念从有理数扩展到实数.这不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,这样才能更好地促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量.三、单元学情分析本单元内容是人教版教材数学七年级下册第六章实数,是在有理数的基础上学习实数的初步知识.学生在前面已经系统地学习了有理数,对有理数的概念和运算等有了较深刻的认识,初步积累了一定的“数学化”的活动经验.运用类比的数学思想,使学生更好地体会数的扩充过程中表现出来的概念、运算等的一致性和发展变化,会降低学生学习的难度.根据学生的最近发展区创设典型的问题情境,会使学生更加主动地去探索用根号形式表示的无理数的相关知识,培养学生良好的数学探究意识.而让学生了解算术平方根、平方根的概念和求法以及实数的概念、运算和实数在数轴上的表示是学习本章内容的主要目标,平方根和实数的概念对学生来说是一个难点.学生虽然积累了一定的有理数的数学活动经验,但对于实数理论知识的理解还不够深刻,所以学生在正数开平方时往往会忽略一个结果,容易将算术平方根和平方根混淆.对于负数没有平方根,学生接受起来也有一定的难度.实数的概念是一个构造性的定义,比较抽象,学生真正理解这个概念也有一定的困难.四、单元学习目标1.体验从具体情境中抽象出数学符号的过程,了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根、立方根.发展学生的抽象能力.2.了解开方与乘方互为逆运算,会用平方运算求百以内完全平方数的平方根,会用立方运算求千以内完全立方数(及对应的负整数)的立方根,会用计算器求平方根和立方根.综合利用各种途径培养学生的运算能力.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值,并初步认识“数形结合”思想方法的作用.4.能用有理数估计一个无理数的大致范围.培养学生估算的能力.五、单元学习内容及学习方法概览续表六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获的思想.重视过程与方法,发展数学的应用意识和创新意识.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版七年级数学下册第六章《实数》章末复习教学设计设计背景《实数》是人教版七年级数学下册的第六章内容,主要讲解实数的相关知识,包括正数、负数、非负数、非正数、绝对值等。
这是学生初次接触到负数概念的章节,对于他们来说可能会感到困惑。
因此,为了帮助学生更好地掌握这一知识点,我设计了本节课的复习教学活动。
设计目标•理解正数、负数、非负数、非正数的概念与特征。
•掌握实数的绝对值的计算方法与性质。
•运用实数的知识解决实际问题。
设计内容复习概念首先,我将通过复习概念来帮助学生巩固对正数、负数、非负数、非正数的理解。
我会利用数字卡片,让学生将不同类型的数进行分类,同时要求他们解释为什么将某个数归为某一类。
这样可以帮助学生思考并深入理解每种类型数的概念及其特征。
计算绝对值接着,我将重点讲解绝对值的概念和计算方法。
我会给学生提供一些绝对值的计算例子,并引导他们思考如何进行计算。
然后,我会让学生进行实际操作,计算一系列绝对值,并帮助他们发现绝对值计算的规律和性质。
绝对值运算在学生理解绝对值的基础上,我会进一步引导他们运用绝对值解决一些实际问题。
我会给学生一些具体的情景,例如温度上升与下降的问题,要求他们通过使用绝对值来解决。
通过这些实际问题的练习,学生可以更好地理解使用绝对值进行运算的意义和方法。
综合应用最后,我会设计一些综合应用题,要求学生通过运用已学的知识来解决问题。
这些综合应用题会结合实际生活和数学内容,让学生认识到数学的实用性和重要性。
同时,这些问题还可以培养学生的综合思考能力和解决问题的能力。
教学方法•活动导向教学:通过引导学生自主探索、合作学习、问题解决等方式,激发学生的兴趣和主动性,提高学习效果。
•多媒体教学:利用多媒体工具展示相关概念和例题,形象直观地呈现给学生,加深学生对知识点的理解和记忆。
•课堂讨论:鼓励学生积极参与课堂讨论,互相交流思想和观点,促进知识的共建和共享。
课堂活动安排时间活动内容5分钟导入活动,复习概念10分钟讲解绝对值的概念和计算方法15分钟练习计算绝对值15分钟运用绝对值解决实际问题15分钟综合应用题解答和讨论5分钟课堂小结总结通过本节课的复习教学设计,学生可以巩固并深入理解正数、负数、非负数、非正数的概念和特征,掌握绝对值的计算方法与性质,培养实际问题解决能力,并加深对实数的理解与应用。
最新人教版初中数学七年级下册第六章《实数》复习教案第六章《实数》复习课教学设计一、教学目标1、理解平方根、算数平方根、立方根的概念;理解乘方与开方互为逆运算。
2、理解无理数及实数的有关概念;知道实数与数轴上的点一一对应;理解实数的分类。
3、学生能运用开方运算求复杂算式的平方根或立方根。
4、学生能利用已知平方根立方根求值。
5、学生能利用数形结合解决问题。
二、教学重、难点1、平方根和算术平方根、立方根的概念、性质,无理数与实数的意义理解与应用;2、对数即是形,形也是数的认识与理解。
3、灵活运用已学知识解决问题。
三、教学准备多媒体课件、视频、学案四、教学过程二、课中环节一:组内互助,答疑解惑1、小组内合作交流:解决自主学习过程中遇到的疑难问题。
2、小组代表提出问题。
3、小组之间交流合作:小组无法解决的问题,组与组之间进行解决,教师实时点拨。
4、课前学习达标检测(1):若121x的值为()(2):下列说法中,正确的有()①任何实数的平方根都有两个,且他们互为相反数;②无理数就是带根号的数;③数轴上的所有点都表示实数;④负数的立方根仍为负数。
环节二:巩固提高,归纳提升1、概括提升学案中不易解决的几种问题的类型,形成本节课学习目标并展示学习目标。
2、展示疑难问题一,利用开方运算求复杂算式的平方根和立方根①的算术平方根是_____②的立方根_____③|-0.64|的平方根是_______3、展示疑难问题二,利用已知平方根立方根求值。
①已知3x-4是25的算术平方根,求x的值_____=16-,求x的1、学生组内交流,集思广益,互帮互助,解决自主学习过程中遇到的疑难问题。
2、学生归纳提出疑难问题。
3、组间学生交流答疑解惑4、各层级学生独立完成,各尽其能学生了解本节课的学习目标学生解决问题,完成后提交展示,学生交流解题思路。
小组合作交流,学生点评,分析讲解方法和思路。
所有同学完成后提交展示弄清解析过程,存在困难。
人教版七年级数学下册第6章实数复习课课程教学设计《实数》复习课教案一、教学目标1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.会进行数的加、减、乘、除、乘方及开方运算;3.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;4.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.二、教学重难点1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.三、教学准备课件四、教学过程亲爱的同学们,如果我们平时的数学教学就是栽活一棵棵小树苗的话,那么灌溉就是复习课,今天我们就一同走进《实数的复习》(板书)。
一、知识疏理,构建框架(课前要求学生对本章知识进行总结)(一)首先我们来回顾一下知识点一:平方根、立方根。
小组合作完成。
生:我们认为这一章主要学习了一种新的运算——开方,开方与乘方是互为逆运算的关系.开方包括开平方与开立方.通过开平方可求一个非负实数的平方根;通过开立方可求一个实数的立方根.依据这一思路,我们画出的知识结构图是:()→←立方根开立方算术平方根平方根开平方开方乘方互为逆运算________ 师:好!他们组是以运算为线索总结的,侧重总结了开方运算,还有补充吗?生:我们认为平方根、算术平方根、立方根的定义、性质也都非常重要.因此我们是这样总结的:→←.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方互为逆运算a 师:当求一个非负数的平方根时,可能会出现无理数,使得数的范围从有理数扩大到实数,所以实数的意义、分类以及相关的内容也需总结.同学们对于知识一掌握的到底怎么样,让我们来验证一下:牛刀小试。
人教版初中数学七年级下册第六章实数复习课教案
课题 实数复习 课型 复习 备课人
教学目标 1.体会特殊到一般、化零为整的认识过程,运用类比思想,强化符号意识,进一步培养
估算和运算能力。
2.理解算术平方根、平方根、立方根概念;掌握算术平方根和平方根的区别于联系;了
解平方根、立方根的计算器求法;巩固实数的运算。
3.从局部到整体,一点一练,分层过关。
教学过程设计
教学环节
教学学活动设计 一、知识网络
专题一:平方根与立方根
【1】算术平方根: 1.如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”。
特别规定:0的算术平方根仍然为0。
2.算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
总体复习这一章的概况
先复习平方根和立方根这一专题,熟悉概念,性质,以及这两
个概念,性质之间的区别与联系
3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。
【2】平方根: 1.概念:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即)0(2≥=a a x ,当时,我们称x 是a 的平方根,记做)0(≥±=a a x :。
2.性质:(1)正数有两个平方根,他们互为相反数 (2)0的平方根是0; (3)负数没有平方根 3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
【3】立方根 1.概念:如果x 的立方等于a ,那么,就称x 是a 的立方根,或者三次方根。
记做:3a (注意:这里的3是根指数,不能省略) 2.立方根的性质: (1)正数的立方根是正数, 负数的立方根是负数; 0的立方根是0. (2) 2.平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。
3.平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。
并不是每个数都有平方根,只有非负数才能有平方根。
【例1】 (1)2)3(-的算术平方根是 。
(2) 的平方是64,所以64的平方根是 ;64的立方根是 。
(2) 的平方根是它本身, 的立方根是它本身. 【例2】 (1)下列各式中,正确的是( ) (2)下列说法正确的是 ( )
通过做题巩固,且这些题目是平
常中易错的题目
平方根性质
A .1的平方根是1
B .24±= C.81的平方根是3± D.0没有平方根 (3)下列计算正确的是( ) 【例3】 (1)已知x-2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根。
(2)已知 和|y+2|互为相反数,则(x+y )2020的值是 。
(3)一个正数的平方根分别是2a-3和5-a ,则a 的值是多少?这个正数是多少? 专题二 实数的有关概念、性质及运算 【1】实数的概念 注意:在初中阶段,无理数的表现形式: (1)特殊意义的数,如:圆周率π以及含有π的一些数,如:2-π,3 等; (2)开方开不尽的数,如:39,5,2等; (3)特殊结构的数:如:2.010 010 001 000 01…(两个1之间依次多1个0)等。
应当要注意的是:带根号的数不一定是无理数,如:9等;无理数也不一定带根号,如:π 【例4】下列实数中,无理数的个数是( )
A. 2个
B. 3个
C.4个
D.5个
【2】实数的估算
【例5】
【3】实数性质与数轴结合
立方根计算
规律应用
非负性应用 算数平方根,绝对
值,偶次幂都有非负性
实数的概念分类,特别是无理数的形式,容易混淆
实数的性质运算
【例6】实数在数轴上的对应点如图所示,化简:【例7】
【例8】求下列各式中的x的值:
(1)64(x-3)2-9=0 (2) -8(x+2)3=512
总结反思。