ProE_模流分析教程2
- 格式:doc
- 大小:114.00 KB
- 文档页数:12
新建mfg文件,调入模具参照模型,隐藏参照模型的基准层。
*1. 模型厚度分析1)菜单栏分析/厚度检查—弹出“模型分析对话框”/分别选择参照模型零件"_rep.prt"和基准面/确定—确认2)在“模型分析对话框”厚度选项中输入“最大”“最小”/计算/结果“是”,则说明不符合,超过了该值3)单击“模型分析”对话框中的“层切面”/选择检查起点和检查终点,检查方向的参照平面/输入层切面偏距,最大和最小/显示切层,其中红色为过厚,蓝色为过薄。
*2. 模型拔模检测1)分析/模具分析/类型列表中选择“拔模检测”/单击选取零件的箭头,选取参照模型为拔模检测零件/输入检测角度/计算(紫色达到要求拔模斜度,黄色则没有达到)/ 2)反向方向的检测3)单击“显示”以设置“比例类型”“色彩数目”*3. 模流分析1)装配参照模型/模型树中右击_rep.prt打开,进入零件模块2)应用程序/plastic advisor/选取一个基准点为浇口,可以“取消”不选,让系统给出3)选择任务栏“***.ref”按钮,进入参照模型“****.ref”模流分析界面4)选择点浇口/分析/弹出Analysis Wizard - Analysis Selection对话框,选择浇口分析“Gate location”复选框5)弹出材料选择“Anallysis Wizard -Select Material”对话框/选择指定材料/下一步6)接受默认材料性能和注射压力参数/完成结果:蓝色为最佳注射区域,红色为最差注射区域。
#7)以上第3)步后,分析/选择塑料流动分析plastic Filling复选框/完成结果:绿色区域最佳;黄色区域欠佳;红色较差;灰色不能填充。
#8)在模流分析软件结果类型列表中,选择填充时间分布“Fill Time”选项,结果:红色区域填充时间最短,蓝色区域填充时间最长。
#9)在模流分析软件结果类型列表中,选择压力分布“Injection Pressure”选项,显示出注射压力分布情况结果:红色注射压力最大,蓝色最小。
模流分析及查看分析结果
一、进入界面
先打开要进行分析的注塑件或者组件,进入模具顾问程序“plastic advisor”,选择需要分析的注塑件如果打开的就是单个零件,可以直接点确定进入分析界面
二、设置开模方向
右下角坐标系中Z轴为系统分析默认开模方向,该方向与注塑件实际开模方向需一致,不一致的话需要更改方向,上一步骤中的Z轴与很显然不是开模方向,顾需要旋转更改;
选择“Rotate”
然后点击零件,回出现一个框框:
输入旋转角度完成调整
三、分析模型,找出浇口最佳位置
单击分析向导
选择浇口位置
选择材料
然后选择下一步后完成,系统开始分析
点击关闭“close”,分析结果中蓝色部分是最佳浇口位置,红色为最差;
单击按钮
然后点击注塑件中蓝色位置,弹出对话框,选择是
弹出文件保存位置,系统回到注塑窗口
四、分析注塑结果
单击注塑向导
选择模流分析
注入材料
然后接受默认的材料,选择下一步,完成,系统开始分析;
分析结果如上,如果为绿灯就是没问题,黄则可能有问题,红色则表示一定有问题
五、查看分析结果
从选择框里选择需要查看的项目
plastic flew 塑流图
fill time 填充时间
injection pressure 注射压力
flow front temp波前温度
pressure drop 压降图
quality prediction 产品质量图
glass model 熔接纹
查看可以使用自动,也可以选择手动拖动,
其中熔接纹的查看方法与其他的不一样,选择后需要点击右侧的命令:。
任务一:设计项目方案分析任务二:设计开关外壳的成型零件要求:将本产品合理分型,并设计出成型零件。
设计参照如下设计流程1----加载参照模型加载参照模型,一定要使开模方向指向坐标系的Z轴方向。
步骤01 建立工作目录打开pro/E软件,接着在菜单栏中依次选择【文件】/【设置工作目录】选项,弹出【选取工作目录】对话框,然后选择指定一个自已建的目标文件夹,单击确定按钮完成工作目录的设置,并将任务立的“kgwk.prt”模型复制到工作目录中。
步骤02 新建文件在菜单栏中依次选择【文件】/【新建】选项或在【文件】工具条中单击【新建】按钮,弹出【新建】对话框。
接着选中【制造】单选按钮,在“子类型”选项区中选择“模具型腔”单选按钮,在【名称】文本框中输入“gjt”,接着选择mmns-mfg-mold(公制)模板,然后单击按钮进入模具设计界面,如图所示。
图步骤03 打开参照零件在【模具/铸件制造】工具条中单击【选取零件】按钮,弹出【打开】对话框,选取工作目录中的“kgwk.prt”文件,单击,打开【布局】对话框,然后单击“参照模型起点与定向”下方的箭头,打开【菜单管理器】,选择“动态”,打开【参照模型方向】对话框,根据图-所示进行操作。
图参照零件布局如图所示。
图步骤04 保存文件执行菜单栏中的“文件>保存”命令,保存文件。
设计流程2---应用收缩在【模具/铸件制造】工具栏中单击【按尺寸收缩】按钮,弹出【按尺寸收缩】对话框,在绘图区域中选取参照模型和坐标系PRT_CSYS_DEF,再在弹出的“按比例收缩”对话框中输入收缩比率为“0.01”,单击确定按钮完成设置。
如图-所示。
图- 设置收缩设计流程3---创建模具工件用手动方法创建模具工件。
步骤01 打开拉伸操作窗口操作方法如图所示。
图步骤02创建拉伸特征设置如图所示草绘平面。
图设置如图所示草绘参照。
图草绘如图所示矩形。
图选择拉伸方式为“向两侧拉伸”,拉伸长度为44。
模流分析教程模流分析是一种基于模型的流程分析方法,旨在通过对流程中各个环节进行建模和分析,以优化流程效率和质量。
它主要包含对流程环节、资源和控制策略进行建模和仿真,并在此基础上进行流程改进和优化。
首先,模流分析的第一步是对流程进行建模。
建模是指将实际的流程抽象成为一个数学模型,以便能够对其进行分析和优化。
建模的过程需要根据实际流程中的环节、资源和控制策略来确定模型的结构和参数。
常用的建模方法包括Petri网、流程图和事件模拟。
接下来,模流分析的第二步是对流程进行仿真。
仿真是指在模型的基础上,通过运行模型来模拟实际流程的运行情况。
仿真的目的是通过模型和仿真结果来评估流程在不同情况下的性能表现,如吞吐量、平均等待时间和资源利用率等。
常用的仿真软件有ProModel、Arena和AnyLogic等。
在进行仿真的过程中,模流分析可以通过调整模型的参数和控制策略,来寻找最优的流程设计。
例如,可以通过改变资源分配策略、缩短任务处理时间或优化工序顺序,来提高流程的效率和质量。
最后,模流分析的第三步是对流程进行改进和优化。
通过对仿真结果的分析和评估,可以发现流程中的瓶颈和问题所在。
在此基础上,可以进行一系列的优化措施,例如减少不必要的等待时间、调整资源配置和优化任务分配等。
优化的目标是使流程能够更加高效地完成任务,降低成本,提高质量和响应速度。
总的来说,模流分析是一种有效的流程分析方法,它通过建模和仿真的方式,可以对流程进行全面的评估和优化。
通过模流分析,可以发现流程中的问题和瓶颈,并提出相应的优化方案,从而提高流程的效率和质量。
这对于提升组织和企业的运作效率,具有重要的意义。
模流分析(moldflow)从入门精通教程
什么是moldflow:
在以往的模具设计行业中,都是一些在一线制造模具,修理模具的一些老师傅,他们都是凭借自己多年的经验,设计出来的模具并不能达到理想的要求,塑件的表面粗糙,凹陷等现象时有发生,导致企业生产效率较低,整个模具市场制造成本较高。
现在我们运用Moldflow软件对塑件进行分析,从材料、最佳浇注位置、-模几腔、流道、冷却系统的对比分析,结合零件本身的性质,从而选择出最佳方案,为接下来的模具.设计提供理论基础。
本次案例设计运用Moldflow软件对调色盘注塑的填充、冷却等行为进行了动态模拟,为该制品的模具设计和注塑工艺参数的确定提供理论依据,从而改善制品的成型质量。
运用Moldflow软件对各主要参数进行对比,选择最佳方案,从而达到边设计边改进的效果。
总结:此零件的材料为ABS,由充填时间、冻结层因子、气穴分析等分析,得知调色盘适合使用点浇口,为不影响塑件的表面质量,方便塑件顶出,所以选择点浇口且在零件内表面。
面上的全局边长为2mm时,最佳浇口位置为点1323.综合零件产量,以及零件对表面的光滑度要求所以选择一模四腔。
选择管道直径为10mm, 水管与零件距离为50mm,管道数为8,管道中心之间距为30,零件之外距离为100mm。
creo mold analysis操作流程
CREO Mold Analysis的操作流程大致如下:
1.打开CREO软件,并导入或创建需要分析的模具模型。
2.定义分析类型和边界条件。
根据需要选择不同的分析类型,如流动分析、冷却分析、翘曲分析等,并设置相应的边界条件,如温度、压力、流速等。
3.定义材料属性和参数。
选择适合的分析材料,并设置其属性和参数,如密度、热传导率、比热容等。
4.创建网格。
对模型进行网格划分,以便进行数值分析和计算。
根据模型复杂度和精度要求,可以选择不同的网格类型和划分方式。
5.运行分析。
根据所选择的类型进行相应的分析运算,如流动分析中的充填、冷却分析中的温度分布等。
在运算过程中,可以在界面上实时查看分析结果和数据。
6.结果评估和优化。
根据分析结果,评估模具设计的合理性,发现可能的问题和优化空间。
根据评估结果,可以对模型进行相应的调整和优化,如修改浇注系统、冷却系统等,并重新进行分析。
7.导出报告和数据。
将分析结果导出成报告和数据文件,以便进行进一步的分析和处理。
同时也可以将这些结果用于其他工程设计和生产制造中。
以上是一个基本的CREO Mold Analysis操作流程,具体操作步骤可能会因软件版本和具体需求而有所不同。
建议参考CREO软件的官方文档和教程,以获取更详细和准确的操作指南。
第二章射出成形机就热塑性塑料(thermoplastics)而言,射出成形机将塑料颗粒材料经由熔融、射出、保压、冷却等循环,转变成最终的塑件。
热塑性塑料射出成形机通常采用锁模吨数(clamping tonnage)或射出量(shot size)作为简易的机器规格辨识,可以使用的其它参数还包括射出速率、射出压力、螺杆设计、模具厚度和导杆间距等等。
根据功能区分,射出成形机的大致上有三个种类:(1)一般用途射出机;(2)精密、紧配射出机;和(3)高速、薄肉厚射出机。
射出成形机的主要辅助设备包括树脂干燥机、材料处理及输送设备、粉碎机、模温控制机与冷凝器、塑件退模之机械手臂、以及塑件处理设备。
2-1 射出机组件典型的射出成形机如图2-1所示,主要包括了射出系统(injection system)、模具系统(mold system)、油压系统(hydraulic system)、控制系统(comtrol system)、和锁模系统(clamping system)等五个单元。
图2-1 应用于热塑性塑料的单螺杆射出成形机2-1-1 射出系统射出系统包括了料斗(hooper)、回转螺杆与料筒(barrel)组合,和喷嘴(nozzle),如图2-2。
射出系统的功能是存放及输送塑料,使塑料经历进料、压缩、排气、熔化、射出及保压阶段。
图2-2 热塑性塑料的单螺杆射出成形机之塑化螺杆、料筒、电热片、固定模板及移动模板。
(1) 料斗热塑性塑料通常以小颗粒供应成形厂。
射出机的料斗可以存放塑料胶颗粒,藉由重力作用使塑料颗粒经过料斗颈部,进入料筒与螺杆组合内。
(2) 料筒射出机的料筒可以容纳回转式螺杆,并且使用电热片(electric heater bands))加热塑料。
(3) 回转式螺杆回转式螺杆可以压缩塑料、熔化塑料及输送塑料,螺杆上包括了进料区(feeding zone)、压缩区(compression zone, 或转移区transition zone)、和计量区(metering zone)三个区段,如图2-3所示。
图2-3 回转式螺杆之进料区、压缩区、和计量区。
螺杆的外径为固定值,螺杆的沟槽深度(the depth of flight)从进料区到计量区起点逐渐递减,沟槽深度的变化使塑料相对于料筒内径产生压缩,造成剪切热,提供熔化塑料的主要热量。
料筒外的加热片则帮助塑料维持于熔融状态,一般的射出机有三组或更多组加热片,以便设定为不同的温度区段。
(4) 喷嘴喷嘴连接料筒和竖浇道衬套(sprue bushing)。
当料筒移到最前端的成形位置,其喷嘴外径必须包覆在竖浇道定位环内,构成密封。
喷嘴的温度应该设定在材料供货商建议之塑料熔化温度,或是略低于温度。
如此,清理料筒时,只要将料筒后退远离竖浇道,清除的塑料可以从喷嘴自由落下,参阅图2-4。
图2-4 (a)在成形位置的喷嘴与料筒;(b)在清料位置的喷嘴与料筒。
2-1-2 模具系统模具系统包括了导杆(tie bars)、固定模板(stationary platen)、移动模板(movable platen)、和容纳模穴、竖浇道、流道系统、顶出销和冷却管路的模板(molding plates),如图2-5所示。
基本上,模具是一座热交换器,使热塑性塑料的熔胶在模穴内凝固成需要的形状及尺寸。
图2-5 典型的三板模之模具系统模具系统将熔融塑料在模穴内定形,并于冷却后将塑件顶出。
射出成形的模具系统是安装模板与成形模板的组合,通常以工具钢加工制成。
固定安装板连接到成形机料筒一侧,并经由导杆与移动模板相接。
母模板通常锁在固定模板上,并且连接到喷嘴;公模板锁在移动安装板上,沿着导杆之导引而移动。
有些应用会相反地将母模板锁在移动模板上,将公模板和液压顶出机构安装固定模板上。
(1) 两板模大多数模具是由两片模板组成,如图2-6,此类模具常使用在塑件浇口正好设在塑件边缘或者接近塑件边缘的设计,其流道(runner)也设计在母模板上。
(2) 三板模三板模通常应用于浇口远离塑件边缘的设计,其流道是设计在分隔公模与母模的脱料板(stripper plate))上,如图2-6所示。
图2-6 (左)两板模与(右)三板模(3) 冷却管路(回路)冷却管路(cooling channels)是模具本体的通道,冷媒(一般是水、蒸汽或油)经由冷却管路循环以调节模壁温度。
冷却管路也可以搭配其它的温度控制装置一起使用,例如障板管(bafflers)、扰流板(bubblers)或热管(thermal pins or heat pipes)等。
2-1-3 油压系统射出机的油压系统提供开启与关闭模具的动力,蓄积并维持锁模力吨数,旋转与推进螺杆,致动顶出销,以及移动公模侧。
油压系统的组件包括帮浦、阀、油压马达、油压管件、油压接头及油压槽等。
2-1-4 控制系统控制系统提供成形机一致性的重复操作,并且监控温度、压力、射出速度、螺杆速度与位置、及油压位置等制程参数。
制程控制直接影响到塑件品质和制程的经济效益。
控制系统包括简单的开/关继电器控制到复杂的微处理器闭回路控制器。
2-1-5 锁模系统锁模系统用来开启/关闭模具,支撑与移动模具组件,产生足够的力量以防止模具被射出压力推开。
锁模机构可以是肘节机构锁定、油压机构锁定、或是上述的两个基本型态的组合。
2-2 射出成形系统典型的射出成形系统(molded system)包括熔胶输送系统和成形塑件,如图2-7所示。
熔胶输送系统提供让熔胶从射出机喷嘴流到模穴的通道,它通常包括:竖浇道(sprue)、冷料井(cold slug well)、主流道、分枝流道、和浇口(gates)。
图2-7 射出成形系统包括熔胶输送系统及成形塑件。
输送系统的设计对于充填模式与塑件品质都有很重要的影响。
因此应该设计流道系统,以维持所需充填模式,将熔胶输送到模穴。
在完成射出成形之后,冷流道输送系统将会被切除成为回收废料,所以应该设计输送系统,以产生最少的废料。
热流道(Hot runner或无流道runnerless)成形制程维持流道于高温,使其内之熔胶维持在熔融状态。
因为热流道并不与塑件一起脱模,不致于造成废料,并且节省塑件二次切除加工的制程。
2-3 射出机操作顺序塑料射出成形加工是一种适合高速量产精密组件的加工法,它将粒状塑料于料筒内融化、混合、移动(3 M’s: Melt, Mix, and Move),再于模穴内流动、充填、凝固(3F’s: Flow, Form, and Freeze)。
其动作可以区分为塑料之塑化、充填、保压、冷却、顶出等阶段的循环制程,包括的基本操作动作如下列:(1)关闭模具,以便螺杆开始向前推进,如图2-8(a)。
(2)与柱塞式射出机相同地,推进回转式螺杆以充填模穴,如图2-8(b)。
(3)螺杆继续推进,以进行模穴保压,如图2-8(c)。
(4)当模穴冷却,浇口凝固,螺杆开始后退,并塑化材料准备下一次射出,如图2-8(d)。
(5)开启模具,顶出塑件,如图2-8(e)。
(6)开闭模具,以开始下一个循环,如图2-8(f)。
塑料在料筒被螺杆挤压产生大量摩擦热而形成熔融状态,熔胶堆积于料筒前端,并且使用加热器维持熔胶温度。
在充填阶段开始,射出机打开喷嘴,螺杆前进将熔胶经喷嘴注入关闭的模穴,以完成充填。
当熔胶进入模穴,受压气体从顶出销、分模线和气孔逸出。
良好的充填决定于塑料组件设计、浇口位置和良好的排气。
假如塑料的流动性不佳,或者射出压力不足就可能造成短射现象;相反地,假如塑料的流动性太好,容易在塑件的分模面造成毛边。
熔胶完全填满模穴后,继续施压以注入更多熔胶,补偿因冷却而造成之塑料体积收缩,并确保模穴完全填满。
充填与保压阶段结束,熔胶在模具里完全凝固后,再打开模穴取出塑件。
冷却时间在整个成形周期占非常高的比例,大约80%,成形品的冷却时间依照塑料性质、成形品的形状、大小、尺寸、精度而有不同。
当移动模板后退,使顶出销顶到后板(rear plate) 而停止运动,将成形品、浇道系统及废料顶出。
(a) (b)(c) (d)(e)(f)图2-8 射出机之操作程序。
(a)关闭模具;(b)充填模穴;(c)保压;(d)螺杆后退;(e)顶出塑件;(f)开始下一个循环。
为了进一步说明制程循环中的射出机动作,图2-9画出不同阶段的油压缸压力、模穴压力、公母模分隔距离与螺杆位置的示意图,其中编号表示:图2-9 典型的射出成形机之动作循环和各动作所占的时间比例1-- 充填(射出阶段)2-- 保压与冷却3-- 开启模具4-- 顶出塑件5-- 关闭锁具射出成形的周期时间根据制程的塑件重量、肉厚、塑料性质、机器设定参数而改变。
典型的周期时间可能从数秒钟到数十秒。
2-4 螺杆操作根据需求,回转式螺杆可以设定转速以塑化塑料颗粒,并且将熔胶以设定之螺杆速度、射出量与射出压力压挤进入模穴。
回转式螺杆射出机之射出成形的主要控制参数如下列:(1) 背压背压(back pressure)是螺杆往后推以准备下一次射出塑料时,作用于螺杆前端之塑料的压力值。
当射出机准备要射出时,螺杆将前端的塑料推入模穴,射出的塑料在模具内冷却后,射出机再进入螺杆倒退阶段,重新开始一个循环。
通常,射出机可以调节背压的最大值,当螺杆移到此预设背压位置,就结束螺杆倒退阶段。
此预设的螺杆停止位置是根据充填流道和模穴所需的塑料量,以手动方式设定。
(2) 射出速度(或射出时间)射出速度(injection speed或螺杆速度ram speed)是指射出操作中,螺杆的前进速度。
对于大部份的工程塑料,应该在塑件设计的技术条件和制程允许的经济条件下,设定为最快的射出速度。
然而,在射出的起始阶段,仍应采用较低的射速以避免喷射流(jetting)或扰流。
接近射出完成时,也应该降低射速以避免造成塑件溢料,同时可以帮助形成均质的缝合线。
射出时间是将熔胶充填进模穴所需的时间,受到射出速度控制。
虽然最佳的充填速度取决于塑件的几何形状、浇口尺寸和熔胶温度,但大多数情况会将熔胶尽速射入模穴。
因为模具温度通常低于树脂的凝固点(freezing point),所以太长的射出时间会提高导致塑料太早凝固的可能性。
薄肉厚塑件使用高射出速度以防止充保模穴前发生凝固。
有时候,粗厚塑件或小浇口会降低充填速度,此时必须保持熔胶连续地流过浇口以防止浇口凝固,进而充饱模穴。
新进的研究方向尝试控制射出量,控制螺杆动作和止回阀(check valve)关闭的时间,以达到控制组件尺寸的目的。
(3) 螺杆旋转速度螺杆旋转速度是塑化螺杆的转速。
转速越快,塑料螺杆沟槽压缩得越激烈,产生更大量的剪切热。
(4) 缓冲量缓冲量(cushion)是螺杆的最大允许前进位置与最末端的前进位置之间的差值。