随机事件与概率教案1(九年级数学)
- 格式:docx
- 大小:201.17 KB
- 文档页数:7
人教版九年级第25章第1节随机事件(1)教案第1课时教学目标:知识与技能目标:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
过程与方法目标:经历实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
情感与态度目标:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。
教学重点和难点1.重点:随机事件的特点.2.难点:对生活中的随机事件作出准确判断。
一.创设情境,引入课题1.问题情境下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
【设计意图:首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性。
】2.引发思考我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?【设计意图:概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。
】二.探索发现,形成方法活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?根据学生回答的具体情况,教师适当地加点拔和引导。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。
学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。
教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。
但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。
因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。
三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。
2.掌握概率的基本计算方法,能够计算简单事件的概率。
3.能够运用概率的知识解决实际问题。
四. 教学重难点1.随机事件的定义和分类。
2.概率的计算方法。
3.概率在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。
2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。
3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.分组讨论的准备。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。
2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。
3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。
4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。
5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。
《随机事件》说课稿各位领导、评委老师,大家好!今天我说课的课题:九年级上册第二十五章概率初步第一课时《随机事件》,下面我将从以下几个方面进行说明。
一、教材分析(一)教材地位与作用前面所学的数学问题,其结果往往是确定的,而从本节课开始就要接触结果不确定的情况——随机事件.它既是概率论的基础,又是生活中存在的大量现象的一个反映.因此,学好它,既能解决生活中的一些问题,也为今后的学习打下良好的基础.(二)教学目标(1)知识与技能:了解必然发生的事件、不可能发生的事件、随机事件的特点。
(2)过程与方法:经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
(3)情感、态度与价值观:学生通过亲身体验、亲自演示,感受数学就在身边,使学生乐于亲近数学,感受数学,喜欢数学,体会数学的应用价值。
(三)重点、难点分析重点:随机事件的特点。
难点:判断现实生活中哪些事件是随机事件。
(四)学情分析由于学生以前未接触过结果不确定的数学问题,所以对随机事件概念的出现一时难以适应,教师只有通过大量、生动、鲜活的例子,让学生充分感知的基础上,才能准确理解和把握随机事件的有关概念。
二、教法分析为了说明什么是随机事件和它有什么特点,我通过大量的实例,让学生经历体验、操作、观察、归纳、讨论总结概括出定义,为了检验学生是否理解它的特点,我通过一定的例题加以巩固,特别让学生对“生死签”问题进行思考、再讨论,既能发现学生对随机事件的特点掌握怎样?又能充分体现学生的学习主体性。
充分挖掘出学生的学习潜力,激发学生的学习兴趣,让学生充分感受数学的价值。
三、学法指导建构主义认为:“数学学习并非是一个被动接受的过程,而应是主动建构的过程”。
教师通过一系列活动和具体例子,让学生通过观察,动手操作,积极思考,充分讨论和交流。
逐步加深对随机事件及其特点的理解和把握。
充分调动、激发学生学习思维的积极性,充分体现学生是学习的主体和教师是学生学习的组织者、参与者和促进者。
25.2随机事件的概率(1)教学目标:1、经历实验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力。
2、通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率。
3、通过动手实验和课堂交流,进一步培养收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神。
教学重点、难点:教学重点:通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率。
教学难点:实验1与实验2的操作过程。
课型:新授课教法:引导发现法教学准备:课前指导。
1.请你回忆。
(频数、频率、统计图表的设计。
)2.实验方法和步骤的指导。
(每人准备两枚硬币,一个计算器。
)3.学生分工合作的指导。
(设计好统计图表。
)4.学生实验态度的教育。
教学过程:(一)提出问题1.在硬币还未抛出前,猜想当硬币抛出后是正面朝上,还是反面朝上?为什么?假如你已经抛掷了1000次,你能否预测到第l001次抛掷的结果?2.假如你已经抛掷了400次,你能否猜测出“出现正面”的频数是多少?频率是多少?800次呢?随着我们抛掷一枚硬币的次数逐渐增多,你猜想有什么规律?3.当我们抛掷两枚硬币时,猜一猜当抛掷次数很多以后,“出现正面”和“出现一正一反”这两个不确定事件的频率是多少?是否比较稳定?4.假如你在抛硬币的过程中,硬币不见了,你该怎么办?找一枚图钉代替呢?还是再找另外一枚硬币代替?(二)学生猜想,并归纳猜想结论。
学生先自己思考猜想,然后讨论交流继续猜想。
教师汇总并板书学生猜想的各种结果。
(三)实验验证。
1.实验1。
同桌一组,一个抛掷,一个记录数据。
要求将实验结果填人下列统计表,并绘制折线图。
2.实验2。
四人一组,一人抛掷,一人记录出现两个正面的数据,一人记录出现一正一反的数据,一人将实验结果填人课本的表格中,最后绘制折线图。
3.教师再利用计算机课件演示抛掷一枚、两枚硬币的全过程,以增加实验时的抛掷次数。
人教版数学九年级上册《概率》教案1一. 教材分析《概率》是人教版数学九年级上册的一章内容,主要介绍了概率的基本概念、事件的相互独立性、概率的计算方法等。
本章内容是学生对概率的初步认识,为后续更深入的学习打下基础。
二. 学情分析学生在学习本章内容前,已经掌握了相关数学知识,如函数、统计等,但对概率的概念和计算方法可能较为陌生。
因此,在教学过程中,需要引导学生理解概率的概念,并通过实例让学生掌握概率的计算方法。
三. 教学目标1.了解概率的基本概念,理解事件的相互独立性。
2.学会使用概率公式计算简单事件的概率。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.概率的概念和事件的相互独立性。
2.概率公式的运用和计算。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究概率的计算方法。
2.通过实例分析,让学生理解概率的概念和事件的相互独立性。
3.运用小组讨论的方式,培养学生的团队合作能力。
六. 教学准备1.教学PPT或黑板。
2.与概率相关的实例和习题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考概率的概念。
提问:抛硬币实验中,正面朝上的概率是多少?为什么?2.呈现(10分钟)介绍概率的基本概念,如必然事件、不可能事件、随机事件等。
通过PPT或黑板,展示概率的定义和符号表示。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,如掷骰子、抽签等,计算其概率。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对各组的计算结果,进行讲解和分析,巩固概率的计算方法。
提问:如何判断两个事件是否相互独立?5.拓展(10分钟)介绍事件的相互独立性,并通过实例让学生理解。
提问:如何计算两个相互独立事件同时发生的概率?6.小结(5分钟)对本节课的内容进行总结,强调概率的概念和事件的相互独立性。
7.家庭作业(5分钟)布置相关习题,让学生巩固所学知识。
8.板书(5分钟)总结本节课的主要内容和重点知识点。
25.1 随机事件与概率25.1.2 概率一、教学目标【知识与技能】1.了解什么是概率,认识概率是反映随机事件发生可能性大小的量.2.了解频率可以看作为事件发生概率的估计值,了解必然事件和不可能事件的概率.3.理解概率反映可能性大小的一般规律.【过程与方法】通过试验得出和理解概率的意义,正确鉴别有限等可能性事件,了解简单事件发生概率的计算方法.【情感态度与价值观】通过分析探究简单随机事件的概率,培养学生良好的动脑习惯,提高运用数学知识解决实际问题的意识,激发学习兴趣,体验数学的应用价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】1.正确理解有限等可能性.2.用概率定义求简单随机事件的概率.【教学难点】正确理解有限等可能性,准确计算随机事件的概率.五、课前准备课件、图片等.六、教学过程(二)导入新课篮球比赛中,裁判员一般是通过掷硬币决定哪个队先发球,这样的游戏公平吗?为什么?(出示课件2)学生思考并交流.出示课件3,4:5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的纸签,上面分别标有出场的序号1,2,3,4,5.小军首先抽签,他在看不到纸签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:教师问:抽到的序号有几种可能的结果?学生答:每次抽签的结果不一定相同,序号1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先不能预料一次抽签会出现哪一种结果.教师问:抽到的序号小于6吗?学生答:抽到的序号一定小于6;教师问:抽到的序号会是0吗?学生答:抽到的序号不会是0.想一想:能算出抽到每个数字的可能数值吗?(板书课题)(二)探索新知探究一概率的定义出示课件6:活动1 抽纸团从分别有数字1、2、3、4、5的五个纸团中随机抽取一个,这个纸团里的数字有5种可能,即1、2、3、4、5.师生共同分析:因为纸团看上去完全一样,又是随机抽取,所以每个数字被表示每一个数字被抽到的可能性大小. 抽取的可能性大小相等,所以我们可以用15出示课件7:活动2 掷骰子掷一枚骰子,向上一面的点数有6种可能,即1、2、3、4、5、6.师生共同分析:因为骰子形状规则、质地均匀,又是随机掷出,所以每种点表示每一种点数出现的可能性大小.数出现的可能性大小相等.我们用16教师归纳:(出示课件8)一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).例如:“抽到1”事件的概率:P(抽到1)=1.5探究二简单概率的计算出示课件9:试验1:抛掷一个质地均匀的骰子.教师问:它落地时向上的点数有几种可能的结果?学生答:6种.教师问:各点数出现的可能性会相等吗?学生答:相等.教师问:各点数出现的可能性大小是多少?学生答:1.6出示课件10:试验2:掷一枚硬币,落地后:教师问:会出现几种可能的结果?学生答:两种.教师问:正面朝上与反面朝上的可能性会相等吗?学生答:相等.教师问:正面朝上的可能性有多大呢?学生答:1.2出示课件11:上述试验都具有什么样的共同特点?师生共同解答:具有两个共同特征:⑴每一次试验中,可能出现的结果只有有限个;⑵每一次试验中,各种结果出现的可能性相等.教师强调:在这些试验中出现的事件为等可能事件.出示课件12:教师归纳:具有上述特点的试验,我们可以用事件所包含的各种可能的结果数在全部可能的结果数中所占的比,来表示事件发生的概率.出示课件13:一个袋中有5个球,分别标有1、2、3、4、5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球.教师问:会出现哪些可能的结果?学生答:1、2、3、4、5.教师问:每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少?学生答:相同;1.5出示课件14,15:教师归纳:一般地,如果一个试验有n个可能的结果,并且它们发生的可能性都相等.事件A包含其中的m个结果,那么事件A发生的概率为:().mp A=n事件发生的可能性越大,它的概率越接近于1;反之,事件发生的可能性越小,它的概率越接近于0.即:0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.出示课件16:例1 任意掷一枚质地均匀骰子.(1)掷出的点数大于4的概率是多少?(2)掷出的点数是偶数的概率是多少?师生共同分析:任意掷一枚质地均匀的骰子,所有可能的结果有6种:掷出的点数分别是1、2、3、4、5、6,因为骰子是质地均匀的,所以每种结果出现的可能性相等.师生共同解答:(出示课件17)解:(1)掷出的点数大于4的结果只有2种:掷出的点数分别是5、6.所以P(掷出的点数大于4)=21;=63(2)掷出的点数是偶数的结果有3种:掷出的点数分别是2、4、6.所以P(掷出的点数是偶数)=21=.63教师强调:概率的求法关键是找准两点:①全部情况的总数;②符合条件的情况数目.二者的比值就是其发生的概率.巩固练习:(出示课件18)掷一个骰子,观察向上的一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.学生自主解决,一生板演:解:(1)点数为2有1种可能,因此P(点数为2)=16;(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=13.出示课件19:例2 袋中装有3个球,2红1白,除颜色外,其余如材料、大小、质量等完全相同,随意从中抽取1个球,抽到红球的概率是多少?学生独立思考后师生共同解答.解:抽出的球共有三种等可能的结果:红1、红2、白,三个结果中有两个结果使得事件A(抽得红球)发生,故抽得红球这个事件的概率为:P(抽到红球)= 23.巩固练习:(出示课件20)袋子里有1个红球,3个白球和5个黄球,每一个球除颜色外都相同,从中任意摸出一个球,则P(摸到红球)= ;P(摸到白球)= ;P(摸到黄球)= .学生独立思考后口答:19;13;59.出示课件21:例3 如图所示是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向其右边的扇形)求下列事件的概率.(1)指向红色;(2)指向红色或黄色;(3)不指向红色.学生观察交流后师生共同解答.(出示课件22)解:一共有7种等可能的结果.;(1)指向红色有3种等可能的结果,P(指向红色)=37(2)指向红色或黄色一共有5种等可能的结果,P(指向红或黄)=5;7(3)不指向红色有4种等可能的结果,P(不指向红色)=4.7巩固练习:(出示课件23)如图是一个转盘.转盘分成8个相同的部分,颜色分为红、绿、黄三种.指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个图形的交线时,当作指向其右边的图形).求下列事件的概率:(1)指针指向红色;(2)指针指向黄色或绿色.学生观察思考后独立解答:⑴14;⑵34.出示课件24,25:例4 如图是计算机中“扫雷”游戏的画面.在一个有9×9的方格的正方形雷区中,随机埋藏着10颗地雷,每个方格内最多只能藏1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出现如图所示的情况.我们把与标号3的方格相邻的方格记为A区域(画线部分),A区域外的部分记为B 区域.数字3表示在A区域有3颗地雷.下一步应该点击A区域还是B区域?教师问:可能出现哪些点数?师生共同分析:第二步怎样走取决于踩在哪部分遇到地雷可能性的大小,因此,问题的关键是分别计算在两个区域的任何一个方格内踩中地雷的概率并比较大小就可以了.解:A区域的方格总共有8个,标号3表示在这8个方格中有3个方格各藏有1颗地雷.因此,点击A区域的任一方格,遇到地雷的概率是38;3B 区域方格数为9×9-9=72.其中有地雷的方格数为10-3=7.因此,点击B 区域的任一方格,遇到地雷的概率是772; 由于38>772,即点击A 区域遇到地雷的可能性大于点击B 区域遇到地雷的可能性,因而第二步应该点击B 区域.巩固练习:(出示课件26)小红和小明在操场上做游戏,他们先在地上画了半径分别为2m 和3m 的同心圆(如下图),然后蒙上眼睛,并在一定距离外向圈内掷小石子,掷中阴影小红胜,否则小明胜,未掷入圈内(半径为3m 的圆内)不算.你认为游戏公平吗?为什么?学生独立思考交流后自主解答,一生板演.解:不公平,因为P (小红胜)=9π4π59π9-=, P (小明胜)=.49所以小红胜的可能性更大.(三)课堂练习(出示课件27-34)1.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°、90°、210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.16B.14C.13D.7122.掷一枚质地均匀的骰子,向上一面的点数为5的概率是______.3.从一副扑克牌(除去大小王)中任抽一张.P(抽到红心)=______;P(抽到黑桃)=______;P(抽到红心3)=______;P(抽到5)=______.4.将A、B、C、D、E这五个字母分别写在5张同样的纸条上,并将这些纸条放在一个盒子中.搅匀后从中任意摸出一张,会出现哪些可能的结果?它们是等可能的吗?5.一个桶里有60个弹珠——一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?6.某种彩票投注的规则如下:你可以从00~99中任意选取一个整数作为投注号码,中奖号码是00~99之间的一个整数,若你选中号码与中奖号码相同,即可获奖.请问中奖号码中两个数字相同的机会是多少?7.有7张纸签,分别标有数字1、1、2、2、3、4、5,从中随机地抽出一张,求:(1)抽出标有数字3的纸签的概率;(2)抽出标有数字1的纸签的概率;(3)抽出标有数字为奇数的纸签的概率.8.如图所示,转盘被等分为16个扇形.请在转盘的适当地方涂上颜色,使得自由转动这个转盘,当它停止转动时,指针落在红色区域的概率为38.你还能再举出一个不确定事件,使得它发生的概率也是38吗?参考答案:1.B2.1 6解析:掷一枚质地均匀的骰子,向上一面的点数为5的概率是:16.3.1 4;14;⑶152;⑷113.4.解:出现A、B、C、D、E五种结果.它们是等可能的.5.解:拿出白色弹珠的概率是1-35%-25%=40%;红色弹珠有60×35%=21;蓝色弹珠有60×25%=15;白色弹珠有60×40%=24.6.解:P(中奖号码数字相同)=110.7.解:⑴P (数字3)=17; ⑵P (数字1)=27; ⑶P (数字为奇数)=47.8.解:选择任意六块涂色;8张卡片分别写上1,2,3,…,8,任意抽一张,抽到的数比4小的概率为38.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流 .(五)课前预习预习下节课(25.2第1课时)的相关内容.七、课后作业配套练习册内容八、板书设计:一般地,如果一个试验有n 个等可能的结果,事件A 包含其中的m 个结果,那么事件A 发生的概率为:().m P A n(0≤P (A )≤1) 九、教学反思:1.用学生喜欢的抽签,抽纸团和掷骰子试验,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索、合作交流此类型概率的求法,利用学生掌握本节课的知识,学生在解决问题的过程中,发展了思维能力,增强思维的缜密性,并且培养了学生解决问题的信心.2.在概率的古典定义基础上,教科书给出了概率的取值范围为0-1的性质,事件发生的可能性越大,它的概率越接近1,其中必然事件的概率为1,不可能事件的概率为0,两个确定事件可以看作特殊的随机事件.。
随机事件与概率(第1课时)教学目标1.掌握必然事件、不可能事件、随机事件的概念.2.掌握判断事件类型的方法与依据.3.知道事件发生的可能性是有大小的.教学重点掌握判断事件类型的方法与依据.教学难点掌握必然事件、不可能事件、随机事件的概念.教学准备不透明的袋子、4个黑球、2个白球.教学过程新课导入同学们都听说过“天有不测风云”这句话吧!它的原意是指刮风、下雨、阴天、晴天这些天气状况,人们事先很难准确预料.后来泛指世界上很多事情具有偶然性,人们无法事先预料这些事情是否会发生.在现实世界中,我们经常会遇到无法预料事情发生结果的情况.例如,虽然天气预报说明天有雨,但是我们无法确定明天是否一定会下雨.今天蓝天白云明天风雨交加该事情的发生给我们不确定的印象.下面我们再来看三个问题.新知探究一、探究学习【问题1】五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?【师生活动】小组交流并派代表汇报交流结果.【答案】(1)数字1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定.【问题2】小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,在骰子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?【师生活动】学生独立思考,然后回答问题.【答案】(1)从1到6的每一个点数都有可能出现,所有可能的点数共有6种,但是事先无法预料掷一次骰子会出现哪一种结果;(2)出现的点数肯定大于0;(3)出现的点数绝对不会是7;(4)出现的点数可能是4,也可能不是4,事先无法确定.【追问】试着归纳出这些事件的特点.【新知】在一定条件下,有些事件必然会发生.例如,问题1中“抽到的数字小于6”,问题2中“出现的点数大于0”,这样的事件称为必然事件.相反地,有些事件必然不会发生.例如,问题1中“抽到的数字是0”,问题2中“出现的点数是7”,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.在一定条件下,有些事件有可能发生,也有可能不发生,事先无法确定.例如,问题1中“抽到的数字是1”,问题2中“出现的点数是4”,这两个事件是否发生事先不能确定.在一定条件下,可能发生也可能不发生的事件,称为随机事件.【设计意图】通过问题1与问题2,引出不可能事件、随机事件、必然事件的概念.【师生活动】观察下面的动图,巩固对不可能事件、随机事件、必然事件概念的理解.【设计意图】通过动图,生动地展现了不可能事件、随机事件、必然事件的概念.【问题3】袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?【师生活动】师生共同完成下面的任务:每名同学随机从袋子中摸出1个球,记下球的颜色,然后把球重新放回袋子并摇匀.汇总全班同学摸球的结果并把结果填在下表中.【答案】(1)在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事件.一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先不能确定哪个事件发生.(2)在上面的摸球活动中,由于两种球的数量不等,所以“摸出黑球”与“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性.【新知】一般地,随机事件发生的可能性是有大小的.【设计意图】通过问题3,归纳得出随机事件发生的可能性是有大小的.【思考】能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?【答案】可以增加2个白球,也可以减少2个黑球,只要使袋子中两种颜色的球的个数相同即可.【设计意图】比较这两种方法,容易发现某种颜色的球被摸到的可能性的大小与其相对多少有关,而与其绝对多少无关,这为下节课用个数比值而不是绝对个数刻画可能性的大小进行了铺垫.二、典例精讲【例1】指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件.(1)掷一枚硬币,正面朝上;(2)买一张彩票,中奖;(3)掷一次骰子,向上一面的点数小于7;(4)任意买一张电影票,座位号是双号;(5)向空中抛一枚硬币,硬币不掉落在地面上.【师生活动】学生独立完成,然后全班交流.【答案】(1)随机事件(2)随机事件(3)必然事件(4)随机事件(5)不可能事件【归纳】判断事件类型的方法与依据判断方法:判断事件类型,先要判断该事件的发生是不是确定的.若是确定的,则再判断其是必然发生的,还是必然不会发生的;若是不确定的,则该事件是随机事件.判断依据:客观事实,生产、生活中的常识经验,大自然的客观规律及自己的学习经验等.【设计意图】通过例1,让学生掌握判断事件类型的方法与依据.【例2】投掷一枚质地均匀的骰子,有下列事件:①掷得的点数是6;②掷得的点数是奇数;③掷得的点数不大于4;④掷得的点数不小于2.这些事件发生的可能性由大到小排列为____________.【师生活动】学生独立思考,然后回答问题.【答案】④③②①【解析】根据题意可得,投掷一枚质地均匀的骰子,共有6种情况.①“掷得的点数是6”包含1种情况;②“掷得的点数是奇数”包含3种情况;③“掷得的点数不大于4”包含4种情况;④“掷得的点数不小于2”包含5种情况,故这些事件发生的可能性由大到小的顺序,即每个事件包含情况的数目由多到少排列为④③②①.【归纳】比较随机事件发生的可能性的大小的方法比较随机事件发生的可能性的大小时,可在条件相同和总数一定的情况下,通过可能出现的结果数进行比较,结果数越多,这个事件发生的可能性越大.【设计意图】通过例2,让学生掌握比较随机事件发生的可能性的大小的方法.课堂小结板书设计一、必然事件与不可能事件二、随机事件课后任务完成教材第128页练习题,第129页练习第1~3题.。
2 是 是25.1 随机事件与概率25.1.1 随机事件1.了解必然发生的事件、不可能发生的事件、随机事件的特点.2.能根据随机事件的特点,辨别哪些事件是随机事件.3.有对随机事件发生的可能性大小作定性分析的能力 ,了解影响随机事件 发生的可能性大小的因素.重点:对生活中的随机事件作出准确判断,对随机事件发生的可能性大小作 定性分析.难点:对生活中的随机事件作出准确判断,理解大量重复试验的必要性.一、自学指导.(10 分钟)自学:阅读教材 P 127~129.归纳:在一定条件下必然发生的事件,叫做__必然事件__;在一定条件下不 可能发生的事件,叫做__不可能事件__;在一定条件下可能发生也可能不发生的 事件,叫做__随机事件__.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5 分钟)1.下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边落下;(2)某人的体温是 100℃;(3)a +b 2=-1(其中 a ,b 都是实数); (4)自然条件下,水往低处流;(5)三个人性别各不相同;(6)一元二次方程 x 2+2x +3=0 无实数解.解:(1)(4)(6)必然发生的;(2)(3)(5)不可能发生的. 2.在一个不透明的箱子里放有除颜色外,其余都相同的 4 个小球,其中红 球 3 个、白球 1 个.搅匀后,从中随机摸出 1 个小球,请你写出这个摸球活动中 的一个随机事件:__摸出红球__.3.一副去掉大小王的扑克牌(共 52 张),洗匀后,摸到红桃的可能性__>__ 摸到 J ,Q ,K 的可能性.(填“>”“<”或“=”)4.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( D )A .抽出一张红桃B .抽出一张红桃 KC .抽出一张梅花 JD .抽出一张不是 Q 的牌5.某学校的七年级(1)班,有男生 23 人,女生 23 人.其中男生有 18 人住宿, 女生有 20 人住宿.现随机抽一名学生,则:a.抽到一名住宿女生;b.抽到一名住 宿男生;c.抽到一名男生.其中可能性由大到小排列正确的是( A )A .cabB .acbC .bcaD .cba点拨精讲:一般的,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数.请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?点拨精讲:必然事件和不可能事件统称为确定事件.事先不能确定发生与否的事件为随机事件.2.袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B.(1)事件A和事件B是随机事件吗?哪个事件发生的可能性大?(2)20个小组进行“10次摸球”的试验中,事件A发生的可能性大约有几组?“20次摸球”的试验中呢?你认为哪种试验更能获得较正确结论呢?(3)如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?(4)通过上述试验,你认为,要判断同一试验中哪个事件发生的可能性较大、必须怎么做?点拨精讲:(4)进行大量的、重复的试验.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.下列事件中是必然事件的是(A)A.早晨的太阳一定从东方升起B.中秋节晚上一定能看到月亮C.打开电视机正在播少儿节目D.小红今年14岁了,她一定是初中生2.一个鸡蛋在没有任何防护的情况下,从六层楼的阳台上掉下来砸在水泥地面上没摔破(B)A.可能性很小B.绝对不可能C.有可能D.不太可能3.下列说法正确的是(C)A.可能性很小的事件在一次试验中一定不会发生B.可能性很小的事件在一次试验中一定发生C.可能性很小的事件在一次试验中有可能发生D.不可能事件在一次试验中也可能发生; ;不4.20 张卡片分别写着 1,2,3,…,20,从中任意抽出一张,号码是 2 的 倍数与号码是 3 的倍数的可能性哪个大?解:号码是 2 的倍数的可能性大.5.指出下列事件中 ,哪些是必然事件 ,哪些是不可能事件 ,哪些是随机事 件.(1)两直线平行,内错角相等;(2)刘翔再次打破 110 米跨栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是 3 点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有 3 个球的布袋里摸出 4 个球;(8)物体在重力的作用下自由下落;(9)抛掷一千枚硬币,全部正面朝上.解:必然事件:(1)(5) 随机事件:(2)(3)(4)(6)(8)(9)可能事件:(7). 6.已知地球表面陆地面积与海洋面积的比值为 3∶7.如果宇宙中飞来一块陨 石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?解:“落在海洋里”可能性更大.学生总结本堂课的收获与困惑.(2 分钟)1.必然事件、随机事件、不可能事件的特点.2.对随机事件发生的可能性大小进行定性分析.3.理解大量重复试验的必要性.学习至此,请使用本课时对应训练部分.(10 分钟)25.1.2 概率(1)1.了解从数量上刻画一个事件发生的可能性的大小.m 2.理解 P(A)= n (在一次试验中有 n 种可能的结果 ,其中 A 包含 m 种)的意义.重点:对概率意义的正确理解.m 难点:对 P(A)= n (在一次试验中有 n 种可能的结果,其中 A 包含 m 种)的正确理解.一、自学指导.(10 分钟)自学:阅读教材第 130 至 132 页.归纳:1.当 A 是必然事件时,P(A)=__1__;当 A 是不可能事件时,P(A)=__0__; 任一事件 A 的概率 P(A)的范围是__0≤P(A)≤1__.2.事件发生的可能性越大,则它的概率越接近__1__;反之,事件发生的可能性越小,则它的概率越接近__0__.m 3.一般地,在一次试验中,如果事件A发生的可能性大小为__n__,那么m这个常数n就叫做事件A的概率,记作__P(A)__.m4.在上面的定义中,m,n各代表什么含义?n的范围如何?为什么?点拨精讲:(1)刻画事件A发生的可能性大小的数值称为事件A的概率.(2)__必然__事件的概率为1,__不可能__事件的概率为0,如果A为__随机__事件,那么0<P(A)<1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1 1.在抛掷一枚普通正六面体骰子的过程中,出现点数为2的概率是__6__.2.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,1当你抬头看信号灯恰是黄灯亮的概率为__12__.3.袋中有5个黑球,3个白球和2个红球,它们除颜色外,其余都相同.摸出后再放回,在连续摸9次且9次摸出的都是黑球的情况下,第10次摸出红球1的概率为__5__.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(6分钟)1.掷一个骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2小于5.111解:(1)6;(2)2;(3)3.2.一个桶里有60个弹珠,其中一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?解:红:21;蓝:15;白:24.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(12分钟)1.袋子中装有24个和黑球2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出一个球,摸到黑球的概率大,还是摸到白球的概率大一些呢?说明理由,并说明你能得到什么结论?121解:摸到黑球的概率大.摸到黑球的可能性为13,摸到白球的可能性为13,12113>13,故摸到黑球的概率大.(结论略)点拨精讲:要判断哪一个概率大,只要看哪一个可能性大.学生总结本堂课的收获与困惑.(2分钟)一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都m相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=__n__且__0__≤P(A)≤__1__.学习至此,请使用本课时对应训练部分.(10分钟)25.1.2概率(2)1.进一步在具体情境中了解概率的意义;能够运用列举法计算简单事件发生的概率,并阐明理由.m2.运用P(A)=n解决一些实际问题.m重点:运用P(A)=n解决实际问题.难点:运用列举法计算简单事件发生的概率.一、自学指导.(10分钟).自学:阅读教材P133二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?抽到1的概率为多少?1解:5种;5.2.掷一个骰子,向上一面的点数有多少种可能?向上一面的点数是1的概率是多少?1解:6种;6.3.如图所示,有一个转盘,转盘分成4个相同的扇形,颜色分为红、绿、黄三种颜色,指针的位置固定,转动转盘后任其自由停止.指针恰好指向其中的某个扇形(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率.(1)指针指向绿色;(2)指针指向红色或黄色;(3)指针不指向红色.131解:(1)4;(2)4;(3)2.点拨精讲:转一次转盘,它的可能结果有4种——有限个,并且各种结果发m生的可能性相等.因此,它可以运用“P(A)=n”,即“列举法”求概率.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.如图是计算机中“扫雷”游戏的画面,在一个有9×9个小方格的正方形雷区中,随机埋藏着3颗地雷,每个小方格内最多只能埋藏1颗地雷.小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号3的方格相邻的方格记为A区域(划线部分),A区域外的部分记为B区域,数字3表示在A区域中有3颗地雷,每个小方格中最多只能藏一颗.那么,第二步应该踩在A区域还是B区域?思考:如果小王在游戏开始时踩中的第一个方格上出现了标号1,则下一步踩在哪个区域比较安全?2.(1)掷一枚质地均匀的硬币的试验有几种可能的结果?它们的可能性相等吗?由此怎样确定“正面朝上”的概率?(2)掷两枚硬币,求下列事件的概率:A.两枚硬币全部正面朝上;B.两枚硬币全部反面朝上;C.一枚硬币正面朝上,一枚硬币反面朝上.思考:“同时掷两枚硬币”与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?点拨精讲:“同时掷两枚硬币”与“先后两次掷一枚硬币”,两种试验的所有可能结果一样.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.中国象棋红方棋子按兵种不同分布如下:1个帅,5个兵,“士、象、马、车、炮”各2个,将所有棋子反面朝上放在棋盘中,任取一个不是兵和帅的概率是(D)1535A.16B.16C.8D.82.冰柜中装有4瓶饮料、5瓶特种可乐、12瓶普通可乐、9瓶桔子水、6瓶啤酒,其中可乐是含有咖啡因的饮料,那么从冰柜中随机取一瓶饮料,该饮料含有咖啡因的概率是(D)531517A.36B.8C.36D.363.从8,12,18,32中随机抽取一个,与2是同类二次根式的概率为3__4__.4.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率:(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字大于3且小于6.111解:(1)6;(2)2;(3)3.学生总结本堂课的收获与困惑.(2分钟)当一次试验要涉及两个因素并且可能出现的结果数目较多时,为不重不漏的列出所有可能的结果,通常采用列举法.学习至此,请使用本课时对应训练部分.(10分钟)。