数学人教版九年级上册《 随机事件与概率(1)》教案
- 格式:doc
- 大小:56.50 KB
- 文档页数:3
人教版九年级第25章第1节随机事件(1)教案第1课时教学目标:知识与技能目标:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。
过程与方法目标:经历实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。
情感与态度目标:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。
教学重点和难点1.重点:随机事件的特点.2.难点:对生活中的随机事件作出准确判断。
一.创设情境,引入课题1.问题情境下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。
【设计意图:首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性。
】2.引发思考我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?【设计意图:概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。
】二.探索发现,形成方法活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。
签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。
小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。
请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?根据学生回答的具体情况,教师适当地加点拔和引导。
人教版数学九年级上册《概率》教案1一. 教材分析《概率》是人教版数学九年级上册的一章内容,主要介绍了概率的基本概念、事件的相互独立性、概率的计算方法等。
本章内容是学生对概率的初步认识,为后续更深入的学习打下基础。
二. 学情分析学生在学习本章内容前,已经掌握了相关数学知识,如函数、统计等,但对概率的概念和计算方法可能较为陌生。
因此,在教学过程中,需要引导学生理解概率的概念,并通过实例让学生掌握概率的计算方法。
三. 教学目标1.了解概率的基本概念,理解事件的相互独立性。
2.学会使用概率公式计算简单事件的概率。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.概率的概念和事件的相互独立性。
2.概率公式的运用和计算。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究概率的计算方法。
2.通过实例分析,让学生理解概率的概念和事件的相互独立性。
3.运用小组讨论的方式,培养学生的团队合作能力。
六. 教学准备1.教学PPT或黑板。
2.与概率相关的实例和习题。
七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考概率的概念。
提问:抛硬币实验中,正面朝上的概率是多少?为什么?2.呈现(10分钟)介绍概率的基本概念,如必然事件、不可能事件、随机事件等。
通过PPT或黑板,展示概率的定义和符号表示。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,如掷骰子、抽签等,计算其概率。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对各组的计算结果,进行讲解和分析,巩固概率的计算方法。
提问:如何判断两个事件是否相互独立?5.拓展(10分钟)介绍事件的相互独立性,并通过实例让学生理解。
提问:如何计算两个相互独立事件同时发生的概率?6.小结(5分钟)对本节课的内容进行总结,强调概率的概念和事件的相互独立性。
7.家庭作业(5分钟)布置相关习题,让学生巩固所学知识。
8.板书(5分钟)总结本节课的主要内容和重点知识点。
随机事件与概率教学目标理解概率的基本性质感受随机事件的发生所呈现的规律性教学重点①事件的分类;②概率的统计定义;③概率的性质.教学难点随机事件的发生所呈现的规律性(一)情景引入:课前在全班同学中进行问卷调查,问卷内容是:学校要举办“三分球投篮”大赛,那么你会推荐班上哪位同学参加呢?调查结果:高一(3)班郑同学得票最高。
问题1:全班三分之二的同学选择李同学参加比赛,但是大家能确定这位同学在比赛中第一个球能投进吗?学生齐答:不能确定。
师:为什么不能确定?学生齐答:因为它可能发生也可能不发生。
师:正确。
我们把在一定条件下,可能发生也可能不发生的事件称为随机事件那么同学们还能举出生活中随机事件的例子吗?学生1:明天会下雨。
师:好,这是随机事件。
那么从事件是否发生这一角度思考,除了随机事件,还有其他吗?(学生思考片刻)学生2:除了随机事件以外,还有一定发生和一定不发生的事件。
比如:太阳每天从东方升起,这是一定发生的。
掷一枚色子出现7点,这是不可能发生的。
师:那么,我们把这两种事件分别称作必然事件和不可能事件。
接下来请同学们阅读课本108页。
(明确三种事件的概念)问题2:既然三分球的命中都有随机性,为什么大家会选择李同学参加比赛,而不是其他同学呢?学生齐答:郑同学赢的可能性比其他同学大。
师:大家根据什么得出这样的结论?学生齐答:平时比赛时这位同学的投篮命中率比较高师:也就是说大家使用投篮命中率来估计的。
那么命中率是怎么计算的?学生3:是把投篮命中的次数除以投篮总次数。
师:这实际上就是频率,这种方法实际上就是用频率估计概率。
在此基础上,导出课题.二、探索新知一般而言,给出了一个数学对象的定义,就可以从定义出发研究这个数学对象的性质,例如,在给出指数函数的定义后,我们从定义出发研究了指数函数的定义域、值域、单调性、特殊点的函数值等性质,这些性质在解决问题时可以发挥很大的作用,类似地,在给出了概率的定义后,我们来研究概率的基本性质.我们从定义出发研究概率的性质,(1)概率的取值范围;(2)特殊事件的概率;(3)事件有某些特殊关系时,它们的概率之间的关系;等等。
随机事件与概率教学设计25.1.1随机事件一、教材分析(一)教材地位与作用前面所学的数学问题,其结果往往是确定的,而从本节课开始就要接触结果不确定的情况——随机事件.它既是概率论的基础,又是生活中存在的大量现象的一个反映.因此,学好它,既能解决生活中的一些问题,也为今后的学习打下良好的基础.(二)教学目标(1)知识与技能:了解必然发生的事件、不可能发生的事件、随机事件的特点.(2)过程与方法:经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力.(3)情感、态度与价值观:学生通过亲身体验、亲自演示,感受数学就在身边,使学生乐于亲近数学,感受数学,喜欢数学,体会数学的应用价值.(三)重点、难点分析重点:随机事件的特点.难点:判断现实生活中哪些事件是随机事件.(四)学情分析从小学至今学生所学到的数学问题其结果多数都是确定的,而从本节课开始就要接触一些结果不确定的情况,那就是随机事件.它不但是概率论的基础, 而且还直接地反映了数学来源于生活,又服务于生活的新课程理念.学好它,不但能解决生活中的一些实际问题,也为今后学习较复杂的概率问题奠定了坚实的基础,同时它还是学生今后学习、工作与生活必备的数学素养,因此本节课在这一章的教学中有着非常重要作用. 由于学生以前未接触过结果不确定的数学问题,所以对随机事件概念的出现一时难以适应,教师只有通过大量生动、鲜活的例子,让学生充分感知的基础上,才能准确理解和把握随机事件的有关概念.二、教法分析为了说明什么是随机事件和它有什么特点,我通过大量的实例,让学生经历体验、操作、观察、归纳、讨论总结概括出定义,为了检验学生是否理解它的特点,我通过一定的例题加以巩固,特别让学生对“生死签”问题进行思考、再讨论,既能发现学生对随机事件的特点掌握怎样?又能充分体现学生的学习主体性.充分挖掘出学生的学习潜力,激发学生的学习兴趣,让学生充分感受数学的价值.三、学法指导建构主义认为:“数学学习并非是一个被动接受的过程,而应是主动建构的过程”.教师通过一系列活动和具体例子,让学生通过观察,动手操作,积极思考,充分讨论和交流.逐步加深对随机事件及其特点的理解和把握.充分调动、激发学生学习思维的积极性,充分体现学生是学习的主体和教师是学生学习的组织者、参与者和促进者.说明: 本节是“概率初步”一章的第一节课,教学中,首先列举了学生在实际生活中所熟悉的、生动的、鲜活的实例,让学生初步感受必然事件,不可能事件,随机事件的意义.然后,通过演示试验,小组讨论,逐步形成对随机事件的特点及定义的理性认识,这样从易到难,从简单到复杂,逐渐深入地引入随机事件的概念的安排,显得自然而又流畅。
随机事件与概率(第1课时)教学目标1.掌握必然事件、不可能事件、随机事件的概念.2.掌握判断事件类型的方法与依据.3.知道事件发生的可能性是有大小的.教学重点掌握判断事件类型的方法与依据.教学难点掌握必然事件、不可能事件、随机事件的概念.教学准备不透明的袋子、4个黑球、2个白球.教学过程新课导入同学们都听说过“天有不测风云”这句话吧!它的原意是指刮风、下雨、阴天、晴天这些天气状况,人们事先很难准确预料.后来泛指世界上很多事情具有偶然性,人们无法事先预料这些事情是否会发生.在现实世界中,我们经常会遇到无法预料事情发生结果的情况.例如,虽然天气预报说明天有雨,但是我们无法确定明天是否一定会下雨.今天蓝天白云明天风雨交加该事情的发生给我们不确定的印象.下面我们再来看三个问题.新知探究一、探究学习【问题1】五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序.为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5.把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团.请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?【师生活动】小组交流并派代表汇报交流结果.【答案】(1)数字1,2,3,4,5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定.【问题2】小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,在骰子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?【师生活动】学生独立思考,然后回答问题.【答案】(1)从1到6的每一个点数都有可能出现,所有可能的点数共有6种,但是事先无法预料掷一次骰子会出现哪一种结果;(2)出现的点数肯定大于0;(3)出现的点数绝对不会是7;(4)出现的点数可能是4,也可能不是4,事先无法确定.【追问】试着归纳出这些事件的特点.【新知】在一定条件下,有些事件必然会发生.例如,问题1中“抽到的数字小于6”,问题2中“出现的点数大于0”,这样的事件称为必然事件.相反地,有些事件必然不会发生.例如,问题1中“抽到的数字是0”,问题2中“出现的点数是7”,这样的事件称为不可能事件.必然事件与不可能事件统称确定性事件.在一定条件下,有些事件有可能发生,也有可能不发生,事先无法确定.例如,问题1中“抽到的数字是1”,问题2中“出现的点数是4”,这两个事件是否发生事先不能确定.在一定条件下,可能发生也可能不发生的事件,称为随机事件.【设计意图】通过问题1与问题2,引出不可能事件、随机事件、必然事件的概念.【师生活动】观察下面的动图,巩固对不可能事件、随机事件、必然事件概念的理解.【设计意图】通过动图,生动地展现了不可能事件、随机事件、必然事件的概念.【问题3】袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1个球.(1)这个球是白球还是黑球?(2)如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?【师生活动】师生共同完成下面的任务:每名同学随机从袋子中摸出1个球,记下球的颜色,然后把球重新放回袋子并摇匀.汇总全班同学摸球的结果并把结果填在下表中.【答案】(1)在上面的摸球活动中,“摸出黑球”和“摸出白球”是两个随机事件.一次摸球可能发生“摸出黑球”,也可能发生“摸出白球”,事先不能确定哪个事件发生.(2)在上面的摸球活动中,由于两种球的数量不等,所以“摸出黑球”与“摸出白球”的可能性的大小不一样,“摸出黑球”的可能性大于“摸出白球”的可能性.【新知】一般地,随机事件发生的可能性是有大小的.【设计意图】通过问题3,归纳得出随机事件发生的可能性是有大小的.【思考】能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?【答案】可以增加2个白球,也可以减少2个黑球,只要使袋子中两种颜色的球的个数相同即可.【设计意图】比较这两种方法,容易发现某种颜色的球被摸到的可能性的大小与其相对多少有关,而与其绝对多少无关,这为下节课用个数比值而不是绝对个数刻画可能性的大小进行了铺垫.二、典例精讲【例1】指出下列事件中,哪些是必然事件,哪些是随机事件,哪些是不可能事件.(1)掷一枚硬币,正面朝上;(2)买一张彩票,中奖;(3)掷一次骰子,向上一面的点数小于7;(4)任意买一张电影票,座位号是双号;(5)向空中抛一枚硬币,硬币不掉落在地面上.【师生活动】学生独立完成,然后全班交流.【答案】(1)随机事件(2)随机事件(3)必然事件(4)随机事件(5)不可能事件【归纳】判断事件类型的方法与依据判断方法:判断事件类型,先要判断该事件的发生是不是确定的.若是确定的,则再判断其是必然发生的,还是必然不会发生的;若是不确定的,则该事件是随机事件.判断依据:客观事实,生产、生活中的常识经验,大自然的客观规律及自己的学习经验等.【设计意图】通过例1,让学生掌握判断事件类型的方法与依据.【例2】投掷一枚质地均匀的骰子,有下列事件:①掷得的点数是6;②掷得的点数是奇数;③掷得的点数不大于4;④掷得的点数不小于2.这些事件发生的可能性由大到小排列为____________.【师生活动】学生独立思考,然后回答问题.【答案】④③②①【解析】根据题意可得,投掷一枚质地均匀的骰子,共有6种情况.①“掷得的点数是6”包含1种情况;②“掷得的点数是奇数”包含3种情况;③“掷得的点数不大于4”包含4种情况;④“掷得的点数不小于2”包含5种情况,故这些事件发生的可能性由大到小的顺序,即每个事件包含情况的数目由多到少排列为④③②①.【归纳】比较随机事件发生的可能性的大小的方法比较随机事件发生的可能性的大小时,可在条件相同和总数一定的情况下,通过可能出现的结果数进行比较,结果数越多,这个事件发生的可能性越大.【设计意图】通过例2,让学生掌握比较随机事件发生的可能性的大小的方法.课堂小结板书设计一、必然事件与不可能事件二、随机事件课后任务完成教材第128页练习题,第129页练习第1~3题.。
人教版义务教育课程教科书九年级上册
25.1.1 随机事件与概率(1)教学设计
一、教材分析
1、教材地位和作用
从《数学新课程标准》看,本章属于“统计与概率”领域,一方面,概率与统计相对独立,另一方面概率又以统计为依托.本节课所学内容——随机事件是概率论的基础,又是生活中存在的大量现象的一个反映。
因此,学好它,既能解决生活中的一些问题,也为今后的学习打下良好的基础。
本节课掌握得如何,直接关系“概率”整个知识体系的坚实性;同时本节课充分体现新课标精神,是培养学生实践能力、自主探索、合作交流的很好的教学载体。
2、目标和目标解析:
(一)目标
(1)了解必然发生的事件、不可能发生的事件、随机事件的概念。
(2)会区分必然事件、不可能事件和随机事件;
(3) 经历体验、操作、观察、归纳、总结的过程,发展从纷繁复杂的表象中,提炼出本质特征并加以抽象概括的能力。
(二)目标解析
达成目标的标志是:让学生通过生活情景问题对各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断
3、教学重、难点
教学重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。
随机事件的特点
教学难点:难点:必然事件、不可能事件、随机事件的区别, 对生活中的随机事件作出准确判断
突破难点的方法:根据课堂学习的内容特点,本节课主要采用以下教学方法:
通过活动和实例,让学生讨论总结概括出定义,为了检验学生是否理解它的特点,通过一定的例题加以巩固,逐步加深对随机事件及其特点的理解和把握。
二、教学准备:多媒体课件、导学案。
三、教学过程。
第二十五章概率初步25、1随机事件与概率25、1。
1 随机事件第1课时随机事件的概念堂总结反思【教学反思】①[授课流程反思]A。
创设情景□B。
探究新知□ C、课堂训练□ D、课堂总结□在探究新知的过程中,通过多种游戏,引领学生在活动中形成新认识、学习新概念、获得新知识,充分调动了学生的学习积极性,体现了学生的主体地位、②[讲授效果反思]A、重点□B。
难点□ C、易错点□ D、□E。
□教师强调:必定事件和不估计事件称为确定事件,是实现能够确定是否发生的事件、③ [师生互动反思]从课堂发言和练习来看,学生能够在快乐、轻松的学习氛围中学习,鼓舞学生的逆向思维和创新思维、④ [练习反思]好题题号检测第2、5题、错题题号反思教学过程和教师表现,进一步提升操作流程和自身素质、第二十五章概率初步25、1随机事件与概率25。
1。
1随机事件第2课时随机事件的估计性典案一教学设计课题随机事件的估计性(第2课时)授课人教学目标知识技能通过“摸球”如此一个有趣的试验,形成对随机事件发生的估计性大小作定性分析的能力,了解影响随机事件发生的估计性大小的因素;数学考虑引导学生感受随机事件的发生的估计性是有大小的,不同的随机事件发生的估计性的大小估计不同;问题解决历经“推测—动手操作-收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的估计性大小的特点以及影响随机事件发生的估计性大小的客观条件;情感态度在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯,得出随机事件发生的估计性大小的准确结论需经过大量重复的试验,让学生从中体验到科学的探究态度;教学对随机事件发生的估计性大小的定性分析;师生活动:教师提出问题,待学生回答后,教师把结果统计在表中。
活动4:对表中的数据进行分析,得出结论、提问:通过上述试验,您认为,要判断同一试验中哪个事件发生估计性的较大,必须如何做?师生活动:教师先引导学生回答,回答时教师注意纠正学生的不准确用语。
陕西省石泉县九年级数学上册25.1 随机事件与概率教案1 (新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省石泉县九年级数学上册25.1 随机事件与概率教案1 (新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省石泉县九年级数学上册25.1 随机事件与概率教案1 (新版)新人教版的全部内容。
25.1 随机事件与概率课标依据理解随机事件、不可能事件和必然事件的概念,能对随机事件发生的可能性进行定性分析。
一、教材分析本节课是人教版九年级数学(上)第25章《概率初步》的第一节随机事件中的第一课时。
从小学至今学生所学到的数学问题其结果往往都是确定的,而从本节课开始就要接触一些结果不确定的情况——随机事件.它不但是概率论的基础,还直接地反映了数学来源于生活,而又反过来服务于生活的新课程理念.因此,学好它,不但能解决生活中的一些实际问题,也为今后学习较复杂的概率问题奠定了坚实的基础,起着承上启下的作用,同时它还是学生今后学习、工作与生活必备的数学素养.二、学情分析由于学生以前未接触过结果不确定的数学问题,而随机事件的发生存在又有统计的规律性同时还隐含有偶然性寓于必然性之中的辩证唯物主义思想,虽然来源于生活,却也要深刻挖掘生活中的事例,所以对随机事件概念的出现还一时难以适应,这是学习本节的不利因素,但是由于九年级的学生已经有了较强的理解能力,思维活跃,乐于探究,我抓住这一有利契机,通过大量生动、鲜活的例子,让学生在充分感知的基础上,达到准确理解和把握随机事件的有关概念及特点。
三、教学目标知识与技能通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点并根据这些特点对有关事件作出准确判断。
人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时教学设计一. 教材分析本节课为人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第1课时,主要内容包括随机事件的定义、必然事件、不可能事件以及概率的定义。
本节课的内容是学生对概率知识的一次初步认识,为后续学习更高级的概率知识打下基础。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于事件的分类和概率的概念有一定的理解。
但同时,学生对于概率这一概念的理解还需要通过具体的例子来进行引导。
三. 教学目标1.了解随机事件的定义、必然事件、不可能事件。
2.理解概率的定义,并能运用概率知识解决简单问题。
3.培养学生的逻辑思维能力和抽象思维能力。
四. 教学重难点1.重点:随机事件的定义、必然事件、不可能事件,概率的定义。
2.难点:概率的计算和应用。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法,通过具体的例子引导学生理解概率的概念,培养学生的动手操作能力和团队协作能力。
六. 教学准备1.教学PPT。
2.教学案例和问题。
3.小组合作学习的任务单。
七. 教学过程1.导入(5分钟)通过一个简单的抛硬币实验,引导学生思考:抛硬币时,正面朝上和反面朝上的可能性是否相等?从而引出随机事件的定义。
2.呈现(15分钟)呈现必然事件、不可能事件的例子,让学生通过观察和分析,理解必然事件和不可能事件的含义。
3.操练(10分钟)让学生通过PPT上的练习题,巩固对随机事件、必然事件、不可能事件的理解。
4.巩固(10分钟)学生分小组,根据任务单,探讨并计算一些简单的概率问题,如抛硬币、掷骰子等。
教师巡回指导,帮助学生解决遇到的问题。
5.拓展(10分钟)让学生思考并讨论:如何计算一个事件的概率?引导学生理解概率的计算方法。
6.小结(5分钟)教师引导学生总结本节课所学的知识,让学生明确随机事件、必然事件、不可能事件的定义,以及概率的计算方法。
随机事件与概率教案一、教学目标1.了解什么是随机事件2.理解随机事件的基本概念3.掌握计算随机事件的概率的方法4.能够应用所学知识解决实际问题二、教学重点1.随机事件的概念和特征2.随机事件的计算方法三、教学难点1.随机事件的计算方法四、教学过程1.引入新知识通过举例引入随机事件的概念,如抛一枚硬币、掷一颗骰子等。
引导学生思考这些事件是否具有随机性,以及与随机性有关的因素。
2.讲解随机事件的概念和特征解释随机事件的概念和特征,并结合上述举例,引导学生理解随机事件的概念和特征。
强调随机性的不确定性和不可预测性。
3.讲解随机事件的计算方法a.确定样本空间:样本空间是随机事件的所有可能结果的集合。
举例说明如何确定样本空间,比如抛一枚硬币的样本空间是{正面,反面}。
b.确定事件的概率:事件的概率是指该事件发生的可能性大小。
讲解计算事件的概率的方法,如频率法和几何法。
强调事件的概率是介于0和1之间的实数。
4.练习与讨论让学生通过练习计算事件的概率,巩固所学知识。
鼓励学生进行小组讨论,互相帮助解决问题。
5.应用实例引导学生通过实际问题,将所学知识应用到实际生活中,如计算扔一颗骰子出现奇数的概率,或者计算猜硬币正反面的概率等。
6.总结与拓展对本节课所学内容进行总结,强调重要概念和计算方法。
鼓励学生拓展思维,思考更多的实际问题,并运用所学知识解决。
五、教学反思本节课通过举例引入随机事件的概念,引导学生理解随机事件的特征,讲解了计算随机事件的概率的方法,并通过练习和应用实例巩固了所学知识。
在今后的教学中,可以通过更多的实例和练习来帮助学生更好地理解和应用所学知识。
第一课时随机事件的概率一、教学目标:1、知识与技能:(1)通过实例了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A出现的频率的意义;(3)正确理解概率的概念,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.2、过程与方法:(1)发现法教学,通过在抛硬币试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过对现实生活中的“掷币”、“掷骰子”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法,理解逻辑推理的数学方法.3、情感态度与价值观:(1)通过学生自己动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系;(2)培养学生的辩证唯物主义观点,增强学生的科学意识.二、重点与难点:(1)教学重点:事件的分类;概率的定义以及和频率的区别与联系;(2)教学难点:概率的概念的理解,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系.三、学法与教学用具:1、引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性;2、教学用具:硬币数枚,投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:日常生活中,有些问题是很难给予准确无误的回答的。
例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等。
请观看下面事件,它们发生的情况如何?(1)“抛一石块,下落”.(2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”;a ”;(4)“若a为实数,则0(5)“掷一枚硬币,出现正面”;(6)“导体通电后,发热”;(7)“从分别标有号数1,2,3,4,5的5X标签中任取一X,得到4号签”;(8)“某机在1分钟内收到2次呼叫”;(9)“没有水份,种子能发芽”;(10)“在常温下,焊锡熔化”.根据引例导出概念:2、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;请同学们根据概念判断引列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?答:根据定义,事件(1)、(4)、(6)是必然事件;事件(2)、(9)、(10)是不可能事件;事件(3)、(5)、(7)、(8)是随机事件.组织学生利用带来的硬币做试验导入频数与频率的概念:活动:1:全班每人各取一枚硬币,做10次掷硬币的试验,每人记录下试验的结果,填入下表中:思考:与其它同学的试验结果比较,你的结果和他们一致吗?为什么会出现这样的情况?2:每组把本组同学的试验结果统计一下,填入下表中思考:与其它小组的试验结果比较,各组结果一致吗?为什么会出现这样的情况?3:请一位同学把本班同学的试验结果统计一下,填入下表中:4:请把全班每个同学的试验中正面朝上的次数收集起来,并用条形图表示 5:请同学们找出掷硬币时“正面朝上”这个事件发生的规律性。
25.1 随机事件与概率(1)教案1. 教学目标在本课中,学生将会: - 了解随机事件的概念以及相关术语; - 学习如何计算随机事件的概率; - 掌握概率的性质和计算方法; - 运用概率的知识解决实际问题。
2. 教学重点•随机事件的概念和基本术语;•概率的计算方法。
3. 教学难点•概率的性质和计算方法。
4. 教学准备•教师:课件、教案、习题、实物或图片;•学生:笔记本、铅笔。
5. 教学过程5.1 导入新知识•引入课题:“同学们,我们今天要学习的是随机事件和概率。
你们知道什么是随机事件吗?请举一个例子。
”•学生回答。
•教师补充:“随机事件是指在一定条件下可能发生的事件,其结果不能预测。
比如掷一枚硬币,硬币正面朝上和反面朝上都有可能出现,这就是一个随机事件。
”5.2 学习随机事件的概念和术语•教师讲解:“在概率中,随机事件可以用事件的集合来表示。
比如掷一枚硬币,事件A可以表示为得到正面朝上,事件B可以表示为得到反面朝上。
事件的集合用大写字母表示,事件中的元素用小写字母表示。
”•教师示范:“设S为掷一枚硬币的样本空间,S={正面朝上,反面朝上},事件A={正面朝上},事件B={反面朝上}。
”•学生进行思考:如果掷两枚硬币,样本空间和事件集合应该如何表示?•学生回答。
•教师纠正和解释。
5.3 计算随机事件的概率•教师讲解概率的计算方法:“在概率中,事件发生的概率可以通过事件发生的可能性和样本空间进行计算。
概率的计算公式为:P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A中元素的个数,n(S)表示样本空间中元素的个数。
”•教师示范:“比如掷一枚硬币,事件A={正面朝上},样本空间S={正面朝上,反面朝上},所以事件A发生的概率为P(A) = 1 / 2 = 0.5。
”•学生进行思考:如果掷两枚硬币,事件A发生的概率应该如何计算?•学生回答。
•教师纠正和解释。
5.4 学习概率的性质和计算方法•教师讲解概率的性质和计算方法:“概率具有以下性质:–P(A) >= 0,即概率必须大于等于0;–P(S) = 1,即样本空间中的所有元素的概率之和等于1;–如果事件A和事件B互斥(即事件A和事件B不可能同时发生),则P(A∪B) = P(A) + P(B)。