15. 实验二 差示扫描量热法(DSC)
- 格式:doc
- 大小:680.50 KB
- 文档页数:11
差示扫描量热法原理
差示扫描量热法(DSC)是一种广泛应用于材料研究领域的热分析技术,它通
过测量样品与参比样品在施加一定的温度或时间程序下的热响应差异,来研究材料的热性能和相变特性。
本文将围绕差示扫描量热法的原理展开讨论。
首先,差示扫描量热法的原理基于样品与参比样品在相同的热历程下,它们对
热量的吸收或释放所产生的温度差异。
在DSC实验中,样品和参比样品分别放置
在两个独立但相互热联的量热器中,当样品与参比样品受到相同的热处理时,它们之间的温度差异将被记录下来。
通过对这种温度差异的测量和分析,可以得到样品在升温、降温或等温过程中的热容变化、相变温度、熔融、结晶、玻璃化等热性质信息。
其次,差示扫描量热法的原理还涉及到热量补偿。
在DSC实验中,样品和参
比样品需要在相同的热历程下接受相同的热量,以保证测量结果的准确性。
因此,DSC仪器通常会通过控制样品和参比样品的加热功率来实现热量补偿,使得两者
在相同的热历程下具有相同的温度。
另外,差示扫描量热法的原理还包括对热流信号的处理和分析。
在DSC实验中,样品和参比样品的热响应将转化为热流信号,并通过热电偶或热敏电阻等传感器进行检测和记录。
通过对这些热流信号的处理和分析,可以得到样品的热性能参数,如热容、热导率、相变焓等。
总的来说,差示扫描量热法的原理是基于样品与参比样品在相同的热历程下的
热响应差异,通过对这种差异的测量和分析,可以得到样品的热性能和相变特性信息。
差示扫描量热法具有操作简便、数据准确、灵敏度高等优点,因此在材料研究和工业生产中得到了广泛的应用。
希望本文能够对差示扫描量热法的原理有所帮助,谢谢阅读。
差示扫描量热法名词解释差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种热分析技术,用于测量材料在加热或冷却过程中的热性质变化。
以下是一些与DSC相关的术语解释:1. 热容量(Heat Capacity):物体吸收或释放热量时,所需要的能量量和温度变化的比例。
在DSC实验中,热容量可以通过测量试样温度变化和释放/吸收的热量来计算。
2. 比热容(Specific Heat Capacity):物质单位质量的热容量。
与热容量类似,比热容可以用于计算试样在加热/冷却过程中的能量吸收或释放量。
3. 示差扫描量热图(Differential Scanning Calorimetry Curve):DSC实验中所得到的曲线图,与试样温度和释放/吸收的热量关系相关。
示差扫描量热图可以用于确定试样的物理性质和热力学参数。
4. 热流计(Heat Flux Calorimetry):用于测量试样释放或吸收的热量的仪器,在DSC实验中经常使用。
5. 熔点(Melting Point):材料从固态转变成液态的温度点。
在DSC 实验中,熔点可以通过观察热流图中的峰值来确定。
6. 结晶点(Crystallization Point):材料从液态转变成固态的温度点。
同样可以通过观察热流图来确定。
7. 玻璃化转变(Glass Transition):指材料从固态转变成一种非晶态的过程。
处于玻璃态的材料是非晶态和固态的中间阶段,具有类似液态的性质。
在DSC实验中,可以通过测量材料热容量的变化来确定玻璃化转变的温度。
8. 库仑效应(Curie effect):某些物质在温度变化时会发生磁性变化的现象。
在DSC实验中,可以通过观察热流图来确定库仑效应的温度。
以上是一些常见的DSC术语及其解释,能够帮助我们更好地理解差示扫描量热法及其实验结果。
差示扫描量热法实验报告差示扫描量热法实验报告一、引言差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种常用的热分析技术,可以用于研究物质的热性质和热反应。
本实验旨在通过差示扫描量热仪对某种聚合物的热性质进行分析,探究其热分解反应的特征和动力学参数。
二、实验原理DSC实验基于样品与参比物之间的温度差异来测量样品的热量变化。
在实验中,样品和参比物同时加热,通过测量两者之间的温度差和热流变化,可以得到样品的热容变化曲线。
当样品发生热反应时,其热容发生变化,从而产生峰状的热流曲线。
通过分析这些峰的形状、面积和位置,可以获得样品的热性质和热反应特征。
三、实验步骤1. 将待测样品和参比物分别放置在DSC仪器的样品盒和参比盒中。
2. 设置实验参数,如加热速率、扫描范围和环境气氛。
3. 开始实验,启动DSC仪器,开始加热过程。
4. 记录样品和参比物的温度和热流数据。
5. 分析实验数据,绘制热流曲线和热容变化曲线。
6. 根据峰的形状、面积和位置,分析样品的热性质和热反应特征。
四、实验结果与讨论通过实验测量和数据分析,我们得到了样品的热流曲线和热容变化曲线。
根据热流曲线,我们可以观察到样品在一定温度范围内的热反应峰。
通过分析这些峰的形状和面积,可以确定样品的热分解温度和热分解反应的性质。
同时,热容变化曲线可以反映样品的热容变化规律,进一步了解样品的热性质。
根据实验结果,我们可以得出以下结论:1. 样品在温度范围X至Y之间发生了热分解反应,热分解峰的最高温度为T。
2. 样品的热分解反应是一个放热反应,释放的热量为Q。
3. 样品的热分解反应速率较快,表明反应动力学较高。
五、结论本实验通过差示扫描量热法对某种聚合物的热性质进行了分析。
通过分析实验数据,我们得到了样品的热流曲线和热容变化曲线,并根据峰的形状、面积和位置,确定了样品的热分解温度和热分解反应的性质。
实验结果表明,该聚合物在一定温度范围内发生了放热的热分解反应,并且反应速率较快。
差示扫描量热法 dsc 起始温度热事件差示扫描量热法(DSC)是一种广泛应用于材料科学领域的实验技术,用于研究材料在不同温度下的热性质变化。
起始温度是指在DSC实验中,样品发生热事件的温度起点。
热事件则是指在DSC曲线上观察到的吸热或放热现象。
本文将围绕差示扫描量热法的原理、应用、数据分析以及起始温度和热事件等方面展开深入探讨。
首先,差示扫描量热法是通过比较样品和参考物体在相同条件下的热量变化来研究样品的热性质。
在实验过程中,样品和参考物体分别放置在两个独立的量热杯中,然后通过控制加热速率和测量样品和参考物体的温度来记录热量变化。
当样品中发生物理或化学变化时,DSC曲线上就会出现峰值或谷底,代表着热事件的发生。
其次,DSC技术在材料科学领域有着广泛的应用。
通过DSC实验可以研究材料的熔融行为、晶型转变、玻璃化转变等热性质变化。
同时,DSC还可以用于研究反应动力学、相变热、热容等热力学参数,为材料的设计和改进提供重要参考。
在进行DSC实验时,对起始温度的准确测定至关重要。
起始温度可以反映样品发生热事件的温度范围,并且与样品的热稳定性和热活性密切相关。
通常情况下,起始温度通过观察DSC曲线上的峰值或谷底来确定,但有时也需要结合其他实验数据进行综合分析。
另外,热事件的性质和特征对于理解材料的性能和结构具有重要意义。
吸热峰通常代表着材料的熔融或晶型转变,而放热峰则可能与化学反应或玻璃化转变有关。
通过分析热事件的峰形、峰高、积分面积等参数,可以揭示材料内部的微观过程,为材料性能的改进和调控提供指导。
让我们总结一下本文的重点,我们可以发现,差示扫描量热法是一种强大的实验技术,广泛应用于材料研究领域。
通过准确测定起始温度和分析热事件,可以深入了解材料的热性质变化及其影响因素,为材料设计和性能优化提供重要参考。
未来,随着科学技术的不断发展,DSC技术将在材料研究和工业生产中发挥更大的作用,为新材料的开发和创新提供支持和保障。
dsc差示扫描量热法
"DSC" 代表差示扫描量热法(Differential Scanning Calorimetry),是一种热分析技术,用于研究材料的热性质。
差示扫描量热法通过测量样品与参考样品之间的热量差异,提供关于材料的热力学和热动力学性质的信息。
具体来说,DSC 在实验中通常会有一个样品和一个相同条件下的参考样品。
这两者都受到相同的温度程序控制。
当样品经历物理或化学变化时,释放或吸收的热量会导致样品和参考样品之间的温度差异。
这个温度差异通过传感器测量,从而得到与温度的关联的热量信号。
以下是DSC 在研究材料性质时的一些应用:
1.相变研究:DSC 可用于研究材料的相变,如固相到液相的熔
化、液相到气相的汽化,以及反应过程中的热效应。
2.玻璃化转变:DSC 可用于研究玻璃化转变,即非晶态到玻璃态
的过渡,提供关于材料的玻璃化温度和玻璃化热的信息。
3.聚合物研究:DSC 可用于分析聚合物的热性质,如熔化、结晶、
玻璃化等,有助于了解聚合物的热稳定性和加工性能。
4.药物和生物材料研究:DSC 在药物研发和生物材料研究中也
有广泛应用,用于研究药物的热性质、生物分子的相互作用等。
总体而言,DSC 是一种强大的实验工具,可提供关于材料的热性质、相变和反应的定量和定性信息。
差示扫描量热法
差示扫描量热法(DSC)是一种用于确定受控温度范围内被测样品与参考样品之间热流率差异的技术。
该分析过程是在一个封闭的系统中实现的,该封闭系统与周围环境之间通过边界隔离,只有热量和能量可以流动,而质量不能通过边界流动。
差示扫描量热法可以在恒定压力或恒定体积下进行,这使分析人员可以监测由所研究的反应引起的温度变化。
差示扫描量热法。
DSC常用于:1,获取未知材料的性质和成分信息;2,研究样品纯度和确认成分分析。
同时,DSC在食品和制药行业中也很流行,用于表征和微调某些性质;大分子的稳定性,折叠或展开信息也可以通过DSC实验测量。
差示扫描量热法可应用于:
1,相变分析。
通过测量焓随温度的变化来确定熔点、结晶点和相变;
2,玻璃化温度测量。
用高分辨率量热法检测玻璃化转变温度(Tg);3,比热容的测量。
用蓝宝石标准测定固体和液体的Cp(比热容);4,化学反应焓的测定。
测定化学反应的吸热和放热焓ΔH;
5,热、氧化稳定性的测定。
测定各种气体环境和不同压力下的氧化诱导时间。
实验二差示扫描量热法(DSC)在等速升温(降温)的条件下,测量试样与参比物之间的温度差随温度变化的技术称为差热分析,简称DTA(Differential Thermal Analysis)。
试样在升(降)温过程中,发生吸热或放热,在差热曲线上就会出现吸热或放热峰。
试样发生力学状态变化时(如玻璃化转变),虽无吸热或放热,但比热有突变,在差热曲线上是基线的突然变动。
试样对热敏感的变化能反映在差热曲线上。
发生的热效大致可归纳为:(1)发生吸热反应。
结晶熔化、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。
(2)发生放热反应。
气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。
(3)发生放热或吸热反应。
结晶形态转变、化学分解、氧化还原反应、固态反应等。
用DTA方法分析上述这些反应,不反映物质的重量是否变化,也不论是物理变化还是化学变化,它只能反映出在某个温度下物质发生了反应,具体确定反应的实质还得要用其他方法(如光谱、质谱和X光衍射等)。
由于DTA测量的是样品和基准物的温度差,试样在转变时热传导的变化是未知的,温差与热量变化比例也是未知的,其热量变化的定量性能不好。
在DTA基础上增加一个补偿加热器而成的另一种技术是差示扫描量热法。
简称DSC(Differential Scanning Calorimetry)。
因此DSC直接反映试样在转变时的热量变化,便于定量测定。
DTA、DSC广泛应用于:(1)研究聚合物相转变,测定结晶温度Tc 、熔点Tm、结晶度XD。
结晶动力学参数。
(2)测定玻璃化转变温度Tg。
(3)研究聚合、固化、交联、氧化、分解等反应,测定反应热、反应动力学参数。
一、目的要求:1.了解DTA、DSC的原理。
2.掌握用DSC测定聚合物的Tg 、Tc、Tm、XD。
二、基本原理:1.DTA图(11-1)是DTA的示意图。
通常由温度程序控制、气氛控制、变换放大、显示记录等部分所组成。
比较先进的仪器还有数据处理部分。
温度程序控制是使试样在要求的温度范围内进行温度控制,如升温、降温、恒温等,它包括炉子(加热器、制冷器等)、控温热电偶和程序温度控制器。
气氛控制是为试样提供真空、保护气氛和反应气氛,它包括真空泵、充气钢瓶、稳压阀、稳流阀、流量计等。
交换器是由同种材料做成的一对热电偶,将它们反向串接,组成差示热电偶,并分别置于试样和参比物盛器的底部下面,示差热电偶的电压信号,加以放大后送到显示记录。
参比物应选择那些在实验温度范围内不发生热效应的物质,如α-Al 2O 3、石英粉、MgO 粉等,它的热容和热导率与样品应尽可能相近,当把参比物和试样同置于加热炉中的托架上等速升温时,若试样不发生热效应,在理想情况下,试样温度和参比物温度相等,ΔT =0,差示热电偶无信号输出,记录仪上记录温差的笔仅划一条直线,称为基线。
另一支笔记参比物温度变化。
而当试样温度上升到某一温度发生热效应时,试样温度与参比物温度不再相等,ΔT ≠0,差示热电偶有信号输出,这时就偏离基线而划出曲线。
ΔT 随温度变化的曲线即 DTA 曲线。
温差ΔT 作纵坐标,吸热峰向下,放热峰向上。
炉子的温度T w 以一定的速度变化,基准物的温度T r 在t =0时与T w 相等。
但当T w 开始随时间增加时,由于基准物与容器有热容C r ,发生一定的滞后;试样温度T s 也相同,不同的热容,滞后的时间也不同,T w 、T r 、T s 之间出现差距,在试样不发生任何热变化时ΔT 呈定值,如图12-2所示。
其值与热容、热导和升温速度有关。
而热容、热导又随温度变化,这样,在整个升温过程中基线会发生不同程度的漂移。
在DTA 曲线上,由峰的位置可确定发生热效应的温度,由峰的面积可确定热效应的图12-1大小,峰面积A 是和热效应ΔQ 成正比21t t Q K Tdt KA ∆=∆=⎰ ----------------------------- (1) 比例系数K 可由标准物质实验确定。
由于K 随着温度、仪器、操作条件而变,因此DTA 的定量性能不好;同时,为使DTA 有足够的灵敏度,试样与周围环境的热交换要小,即热导系数不能太大,这样当试样发生热效应时才会有足够大的ΔT 。
但因此热电偶对试样热效应的响应也较慢,热滞后增大,峰的分辨率差,这是DTA 设计原理上的一个矛盾。
2.DSC差示扫描量热法(DSC )与差热分析(DTA )在仪器结构上的主要不同是DSC 仪器增加一个差动补偿放大器,样品和参比物的坩埚下面装置了补偿加热丝,见图12-3。
当试样发生热效应时,譬如放热,试样温度高于参比物温度,放置在它们下面的一组差示热电偶产生温差电势U ΔT ,经差热放大器放大后进入功率补偿放大器,功率补偿放大器自动调节补偿加热丝的电流。
使试样下面的电流I S 减小,参比物下面的电流I R 增大,而(I S +I R )保持恒定值。
降低试样的温度,增高参比物的温度,使试样与参比物之间的温差ΔT 趋于零。
上述热量补偿能及时、迅速完成,使试样和参比物的温度始终维持相同。
设两边的补偿加热丝的电阻值相同,即R S =R R =R ,补偿电热丝上的电功率为P S =I 2S R 和P R =I 2R R 。
当样品无热效应时,P S =P R ;当样品有热效应时,P S 和P R 之差ΔP 能反映样放(吸)热的功率:22()()()()S R S R S R S R S R P P P I I R I I I I R I I U I U ∆=-=-=+-=+∆=∆ (2)由于总电流I S +I R =I 为恒定值,所以样品放(吸)热的功率ΔP 只与ΔV 成正比。
记录ΔP (I ΔU )随温度T (或t )的变化就是试样放热速度(或吸热速度)随T (或t )图12-3的变化,这就是DSC 曲线。
在DSC 中,峰的面积是维持试样与参比物温度相等所需要输入的电能的真实量度,它与仪器的热学常数或试样热性能的各种变化无关,可进行定量分析。
DSC 曲线的纵坐标代表试样放热或吸热的速度,即热流速度,单位是mJ/s ,横坐标是T (或t ),同样规定吸热峰向下,放热峰向上。
试样放热或吸热的热量为21t t Q P dt '∆=∆⎰ ------------------------------------ (3) 式(3)右边的积分就是峰的面积,峰面积A 是热量的直接度量,也就是DSC 是直接测量热效应的热量。
但试样和参比物与补偿加热丝之间总存在热阻,补偿的热量有些漏失,因此热效应的热量应是ΔQ =KA 。
K 称为仪器常数,可由标准物质实验确定。
这里的K 不随温度、操作条件而变,这就是DSC 与DTA 定量性能好的原因。
同时试样和参比物与热电偶之间的热阻可作得尽可能的小,这就使DSC 对热效应的响应快、灵敏、峰的分辨率好。
3.DTA 曲线、DSC 曲线图12-4是聚合物DTA 曲线或DSC 曲线的模式图。
当温度达到玻璃化转变温度T g 时,试样的热容增大就需要吸收更多的热量,使基线发生位移。
假如试样是能够结晶的,并且处于过冷的非晶状态,那么在T g 以上可以进行结晶,同时放出大量的结晶热而产生一个放热峰。
进一步升温,结晶熔融吸热,出现吸热峰。
再进一步升温,试样可能发生氧化、交联反应而放热,出现放热峰,最后试样则发生分解,吸热,出现吸热峰。
当然并不是所有的聚合物试样都存在上述全部物理变化和化学变化。
确定T g 的方法是由玻璃化转变前后的直线部分取切线,再在实验曲线上取一点,如图12-5(a ),使其平分两切线间的距离Δ,这一点所对应的温度即为T g 。
Tm 的确定,对低分子纯物质来说,像苯甲酸,如图12-5(b )所示,由峰的前部斜率最大处作切线与基线延长线相交,此点所对应的温度取作为T m 。
对聚合物来说,如图12-5(c )所示,图12-4由峰的两边斜率最大处引切线,相交点所对应的温度取作为T m ,或取峰顶温度作为T m 。
T c 通常也是取峰顶温度。
峰面积的取法如图12-5(d 、e )所示。
可用求积仪或数格法、剪纸称重法量出面积。
如果峰前峰后基线基本呈水平,峰对称,其面积以峰高乘半宽度,即12A h t =⨯∆;,见图12-5(f )4.热效应的计算有了峰(谷)的面积后就能求得过程的热效应。
DSC 中峰(谷)的面积大小是直接和试样放出(吸收)的热量有关:ΔQ =KA ,系数K 可用标准物确定;而仪器的差动热量补偿部件也能计算。
由K 值和测试试样的重量、峰面积可求得试样的熔融热ΔH f (J/mg ),若百分之百结晶的试样的熔融热ΔH f *是已知的,则可按下式计算试样的结晶度:结晶度X D =ΔH f /ΔH f *×100%5.影响实验结果的因素DTA 、DSC 的原理和操作都比较简单,但要取得精确的结果却很不容易,因为影响的因素太多了,这些因素有仪器因素、试样因素。
仪器因素主要包括炉子大小和形状、热电偶的粗细和位置、加热速度、测试时的气氛、盛放样品的坩埚材料和形状等。
升温速度对T g 测定影响较大,因为玻璃化转变是一松弛过程,升温速度太慢,转变不明显,甚至观察不到;升温快,转变明显,但移向高温。
升温速度对影响不大,但有些聚合物在升温过程中会发生重组、晶体完善化,使和结晶度都提高。
升温速度对峰的形状也有影响,升温速度慢,峰尖锐,因而分辨率也高。
而升温速度快,基线漂移大。
一般采用10℃/min 。
在实验中,尽可能做到条件一致,才能得到重复的结果。
气氛可以是静态的,也可以是动态的。
就气体的性质而言,可以是惰性的,也可以是参加反应的,视实验要求而定。
对聚合物的玻璃化转变和相转变测定,气氛影响不大,但一般采用氮气,流量30ml/min 左右。
图12-5试样因素主要包括颗粒大小、热导性、比热、填装密度、数量等。
在固定一台仪器的情况下,仪器因素中起主要作用的是加热速度,样品因素中主要影响其结果的是样品的数量,只有当样品量不超过某种限度时峰面积和样品量才呈直线关系,超过这一限度就会偏离线性。
增加样品量会使峰的尖锐程度降低,在仪器灵敏度许可的情况下,试样应尽可能的少。
在测T g 时,热容变化小,试样的量要适当多一些。
试样的量和参比物的量要匹配,以免两者热容相差太大引起基线漂移。
试样的颗粒度对那些表面反应或受扩散控制的反应影响较大,粒度小,使峰移向低温方向。
试样要装填密实,否则影响传热。
在测定聚合物的玻璃化转变和相转变时,最好采用薄膜或细粉状试样,并使试样铺满盛皿底部,加盖压紧。
对于结晶性高聚物,若将链端当作杂质处理,高分子的分子量对熔点的影响可表示为:0112m m u nR T T H P -=∆ n P 为聚合度,u H ∆与结晶状态的性质无关,测定不同分子量结晶高聚物的m T ,以m T 对1M作图,可求出平衡熔点0m T 。