差示扫描量热法(DSC)测试方法
- 格式:ppt
- 大小:2.46 MB
- 文档页数:25
dsc测试又称差示扫描量热分析,差示扫描量热仪的基本应用包括:材料的熔点测定、热历史研究、结晶度测定、油和蜡的热分析、固化转变、原材料分析、玻璃化转变温度的测量、结晶温度测量、粘流转变温度测量、氧化诱导时间测量、比热测量、等温结晶及等温动力学研究、纯度测量等,广泛应用于材料、生物、食品、医药、临床、冶金、地质、矿产、航空航天、石化、军事考古等领域。
根据测量方式的不同,dsc测试方法一般可以分为两种:功率补偿型和热流型,两者最大的区别在于结构设计的原理不同。
它的主要方式1、功率补偿型DSC测试方法功率补偿型DSC主要特点是有两个独立的炉体(量热计),分别对参比物和样品进行加热,各自有独立的传感装置,这种类型的DSC对两个炉体的对称性要求比较高。
采用的是动态零位平衡原理,即要求样品与参比物温度,不论样品吸热还是放热时都要维持动态零位平衡状态,也就是始终要维持样品与参比物温度差趋向零。
总而言之,功率补偿型DSC测定的是维持样品和参比物处于相同温度所需要的能量差,并直接将其作为信号输出,反映了所测试样品的热焓的变化,如公式(1)所示。
上式中:dQs/dt:单位时间给样品的热量,dQr/dt:单位时间给参比物的热量;dH/dt:热焓的变化率或称热流率。
2、热流型DSC测试方法热流型DSC的设计只有一个炉体,待测试样品和参比物放在加热器件的不同位置,其设计的基本思想是在给予测试样品和参比物相同的输入功率的条件下,测定待测试样品和参比物质两端的温差(∆T),它是试样热量变化的反映。
然后,根据热流方程,将温差(∆T)换算成热流差(Φ)作为信号进行输出,标准DSC的单项热流方程公式如下:上式中:Rth为传感器的热阻,单位为K/mW;∆T为试样和参比的温度差,单位为K;Φ为热流,单位为mW。
DSC可用于除气体外,固态、液态或浆状样品的测定。
装样的原则是尽可能使样品既薄又广地分布在试样皿内,并且样品要尽量小,以便减少试样与试样皿之间的热阻。
差示扫描量热法测定聚合物Tg、Tm、结晶度一、实验目的2、了解DSC法测定T g、T m、结晶度的基本原理。
3、熟悉DSC Q20型差示扫描量热仪的操作。
4、掌握DSC法测定聚合物T g、T m、结晶度的实验技术。
二、实验原理示差扫描量热法(DSC)指在相同的程控温度变化下,用补偿器测量样品与参比物之间的温差保持为零所需热量对温度T的依赖关系。
DSC谱图的的纵坐标为单位质量的功率(mW/g)。
示差热分析利用了装置在试样和参比物下面的两组补偿加热丝,当试样在加热过程中由于热反应而出现温度差△T时,通过差热放大和差动热量补偿使流入补偿丝的电流发生变化。
当试样吸热时,补偿使试样一边的电流(Is)立即增大;反之,在试样放热时则是参比物一边的电流增大,直至两边热量平衡,温度△T差消失为止。
试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,补偿的功率则反应了对应转变发生的程度,能定量表达。
升温曲线(heating):当温度达到玻璃化转变温度时,样品的热容增大,需要吸收更多的热量,基线发生位移,玻璃化转变一般都表现为基线的转折(向吸热方向);如果样品能够结晶,并且处于过冷的非晶状态,那么在T g以上可以进行结晶,结晶是放热过程,会出现一个放热锋(T c);进一步升温,晶体熔融(吸热过程),出现吸热峰,对应熔点(T m);再进一步升温,样品可能发生氧化、交联反应而出现热效应,最后样品也会发生分解,DSC一般不进行熔融以后的测试。
结晶度:样品测得的熔融热;样品100%结晶的熔融热(PET为140J/g or 26.9KJ/mol,PP为207J/g or 8.7KJ/mol)三、实验试剂和仪器1、主要实验试剂聚对苯二甲酸乙二醇酯(PET)粒料等规聚丙烯(PP)粒料2、主要实验仪器DSC Q20型差示扫描量热仪1、试样制备取PET或PP样品5-10mg称重后放入铝坩埚中,用铝坩埚盖盖好,压紧,并用钢针在坩埚上扎一个洞,防止样品溅出而污染样品室。
如何利用dsc测定聚合物的比热容
利用DSC(差示扫描量热仪)测定聚合物的比热容,可以采用以下步骤:
1.准备样品:将聚合物样品制备成适合DSC测试的形态,通常是将样品制成薄膜或粉末。
2.设置DSC仪器:将DSC仪器预热至所需的测试温度,并设置好测试程序,包括升温速率、测试温度范围等。
3.放置样品:将制备好的聚合物样品放置在DSC仪器的样品台上,确保样品与参比物(通常是空白铝皿或蓝宝石)之间的热接触良好。
4.进行测试:启动DSC仪器,开始进行测试。
在测试过程中,仪器会记录样品随温度变化的热流量变化,生成DSC曲线。
5.分析数据:根据DSC曲线,可以确定聚合物的比热容。
通常,在DSC曲线上选择一个温度区间,计算该区间内样品与参比物的热流量差,然后除以该区间的温度差,即可得到聚合物的比热容。
需要注意的是,在进行DSC测试时,应确保样品的纯度和质量,以避免测试结果受到杂质或样品制备不当的影响。
此外,还应根据聚合物的特性选择合适的测试条件和参数,以获得准确的比热容值。
以上步骤仅供参考,在实际操作中,可能需要根据具体的仪器和样品特性进行适当的调整。
建议在进行DSC测试前,先查阅相关的仪器操作手册和文献,以确保测试的准确性和可靠性。
简述dsc的测定原理、方法和应用
差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种常用的热分析技术,用于测定物质在温度变化下的热特性。
下面是关于DSC的测定原理、方法和应用的简要概述:测定原理:DSC通过比较被测样品与参比样品之间的热量差异来分析样品的热性质。
样品和参比样品均受相同的温度变化,并通过测量它们之间的温差来计算样品吸放热的变化。
这种测量可以提供有关固、液、气相变、热容量和反应等性质的信息。
测定方法:DSC的测定方法包括样品和参比样品的制备和装填、温度控制和扫描速率、数据采集和分析等步骤。
样品和参比样品一起加热或冷却,期间测量温度差异所产生的热量变化。
通过控制加热速率和记录热量响应,可以获得样品的热性质。
应用:DSC在材料科学、化学、医药、食品和生物等领域具有广泛的应用。
一些主要的应用包括:
•确定材料的熔点、热分解、相变和结晶性质。
•研究聚合物的热性质、玻璃转变温度和热稳定性。
•表征药物的热性质、配方稳定性和反应动力学。
•分析食品的固-液相变、结晶过程和品质特性。
•研究生物分子的热稳定性、折叠和反应动力学。
此外,DSC还可用于评估材料的纯度、反应动力学参数、材料
的储存和运输条件等方面的研究。
化学技术中材料热稳定性的测定方法热稳定性是指材料在高温环境下能否维持其物理和化学性质的稳定性。
在化学工业以及其他领域中,对材料的热稳定性进行准确测定是十分重要的。
本文将介绍一些常见的材料热稳定性测定方法。
一、差示扫描量热法(DSC)差示扫描量热法(Differential Scanning Calorimetry,DSC)是一种广泛应用于材料热稳定性测定的方法。
它通过测量样品和参比物在加热或冷却过程中吸热或放热的差值,来分析材料的热稳定性。
DSC实验可提供样品的热分解温度、相变温度、熔融温度等信息,进而评估材料的热稳定性。
二、热重分析法(TGA)热重分析法(Thermal Gravimetric Analysis,TGA)是另一种常见的热稳定性测定方法。
它通过测量样品在升温过程中的质量变化来评估材料的热稳定性。
材料在高温下的热分解、氧化、脱水等过程会导致质量的变化,通过TGA可以获得这些热分解过程发生的温度范围和质量损失情况。
三、热膨胀测量法(TMA)热膨胀测量法(Thermal Mechanical Analysis,TMA)是一种用于测定材料热稳定性的方法。
它通过测量材料在温度变化下的线膨胀或体膨胀来评估热稳定性。
TMA实验可提供材料的线膨胀系数、玻璃化转变温度等信息,以及材料在高温下的尺寸稳定性。
四、热导率测定法(TC)热导率测定法(Thermal Conductivity,TC)是一种重要的热稳定性测定方法。
它通过测量材料在不同温度下的热导率来评估材料的热稳定性。
热导率是材料导热能力的重要参数,高热导率通常意味着材料的热稳定性较好。
五、氧化安定性测定氧化安定性是一种重要的热稳定性指标,特别适用于高温工况下的材料。
常见的氧化安定性测定方法包括氧化失重、寿命测试等。
例如,在高温下,金属材料会迅速氧化,形成氧化膜,通过氧化失重实验可以评估其材料的氧化安定性。
综上所述,化学技术中材料热稳定性的测定方法有差示扫描量热法(DSC)、热重分析法(TGA)、热膨胀测量法(TMA)、热导率测定法(TC)以及氧化安定性测定等。
dsc差示扫描量热仪测试方法一、dsc差示扫描量热仪简介。
1.1 这dsc差示扫描量热仪啊,可是个很厉害的小玩意儿。
它就像一个热量的小侦探,专门用来检测物质在加热或者冷却过程中的热量变化。
这仪器在材料科学、化学等好多领域那都是相当重要的存在。
1.2 简单来说呢,它能告诉我们物质什么时候发生相变,就像水变成冰或者冰变成水这种事儿,还能知道这个过程到底是吸热还是放热。
这就好比一个会看热量魔法的小眼睛,把物质内部那些隐藏的热信息给挖出来。
二、测试前的准备。
2.1 样品的准备可是关键的一步,这就像做饭之前要把食材准备好一样。
首先得保证样品是均匀的,要是样品这儿一块那儿一块不一样,那测试结果就会像“丈二和尚摸不着头脑”一样混乱。
对于固体样品,要把它研磨得细细的,就像磨面粉一样,让它的颗粒大小都差不多。
2.2 选择合适的样品皿也不能马虎。
不同的样品可能需要不同材质的样品皿,这就跟不同的菜得用不同的盘子装一样。
如果选错了,可能会影响测试结果,那就成了“竹篮打水一场空”,白忙活一场。
2.3 仪器的校准也非常重要。
这就好比给一把秤校准一样,要是不准,量出来的东西肯定不对。
要按照仪器的说明书,用标准物质来校准dsc差示扫描量热仪,让它的测量准确无误。
三、测试过程。
3.1 把准备好的样品放到仪器里,这时候就像把宝贝放进了一个神秘的小盒子里。
然后设置好测试的温度范围,这个温度范围要根据样品的性质和你想要研究的内容来确定。
如果设得不合适,就像钓鱼的时候选错了地方,根本钓不到你想要的“鱼”,也就是得不到有用的测试结果。
3.2 在测试过程中,仪器会自动记录下热量随温度的变化曲线。
这个曲线可不得了,就像是样品的“热量日记”,记录着它在温度变化过程中的所有热量秘密。
我们可以从这个曲线里看到吸热峰和放热峰,这些峰就像一座座小山一样,告诉我们物质在什么时候发生了特殊的热事件。
四、测试后的分析。
4.1 拿到测试结果曲线后,就开始分析啦。
差示扫描量热法(DSC)是一种热分析技术,用于测量材料的热性能,如比热容。
在DSC测试中,样品在程序控制温度下加热或冷却,同时测量样品和参考物质之间的能量差异。
通过分析这些数据,可以计算出样品的比热容。
比热容是单位质量的物质在单位温度变化时所吸收或释放的热量。
它是热力学中一个重要的参数,用于描述材料的热性能。
DSC测试比热容的标准试验方法包括以下步骤:
1. 准备样品:将待测试样置于DSC样品舟中,确保样品与参考物质的质量相等。
2. 设定试验参数:选择合适的升温速率和温度范围,设置DSC仪器参数。
3. 进行试验:将样品和参考物质放入DSC仪器中,按照设定的温度程序进行测试。
4. 数据分析:记录DSC曲线,即样品和参考物质之间的能量差异随温度变化的曲线。
通过计算DSC曲线的面积,可以得到样品在温度变化过程中所吸收或释放的热量。
进而可以计算出样品的比热容。
5. 结果表示:将计算得到的比热容结果表示为单位质量的热量或单位体积的热量。
需要注意的是,DSC测试比热容的结果受到许多因素的影响,如样品的结晶度、微观结构、颗粒大小等。
因此,在进行DSC 测试时,需要选择合适的样品处理方法和试验参数,以确保测试结果的准确性。
一、概述1.1差示扫描量热法( DSC ) 简介差示扫描量热法是六十年代以后研制出的一种热分析方法,它是在程序控制温度下,测量输入到试样和参比物的功率差(如以热的形式)与温度的关系的一种技术。
根据测量方法的不同,又分为两种类型:功率补偿型DSC 和热流型DSC 。
其主要特点是使用的温度范围比较宽(-175~725℃)、分辨能力高和灵敏度高。
由于它们能定量地测定各种热力学参数(如热焓、熵和比热等)和动力学参数,所以在应用科学和理论研究中获得广泛的应用【1】。
1.2差示扫描量热法( DSC ) 工作原理DSC 装置是在试样和参比物容器下装有两组补偿加热丝,当试样在加热过程中由于热效应与参比物之间出现温差ΔT 时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化, 当试样吸热时,补偿放大器使试样一边的电流立即增大;反之, 当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT 消失为止。
换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t 的变化(dTdH - t) 关系。
如果升温速率恒定,记录的也就是热功率之差随温度T 的变化(dT dH -T) 关系,其峰面积S 正比于热焓的变化: 即ΔH = K S ,式中:K 为与温度无关的仪器常数。
如果事先用已知相变热的试样标定仪器常数,再根据待测样品的峰面积, 就可得到ΔH 的绝对值。
仪器常数的标定, 可利用测定锡、铅、铟等纯金属的熔化,从其熔化热的文献值即可得到仪器常数。
因此,用差示扫描量热法可以直接测量热量, 另一个突出的优点是在试样发生热效应时,试样的实际温度已不是程序升温时所控制的温度(如在升温时试样由于放热而一度加速升温)。
而前者由于试样的热量变化随时可得到补偿,试样与参比物的温度始终相等,避免了参比物与试样之间的热传递, 故仪器的反应灵敏,分辨率高,重现性好【2】。
实验三差示扫描量热法(DSC)测定聚合物的热力学转变2011011743 分1 黄浩实验日期:2014-2-26一、实验目的1. 掌握差示扫描量热法(DSC)的基本原理和差示扫描量热仪的使用方法;2. 测定聚合物的玻璃化温度Tg、熔点Tm和结晶温度Tc;二、实验原理差热分析是测量在同一加热炉中由于温度变化在测量样品和参比材料(α-Al2O3)之间的温差,简称DTA。
差示扫描量热法(DSC)是测量在同一加热炉中为保持样品和参比材料之间相同温度所需的d(∆H)/dT,简称DSC。
所以DTA的测量是不定量的,而DSC可用于转变焓的定量测定。
聚合物中一些重要物理变化可以用DSC或DTA来测定,如玻璃化温度Tg,结晶温度Tc,结晶熔化温度Tm及解聚温度T D等,用DSC还可测得这些变化的焓值。
一些含有热效应的化学变化也可用DTA或DSC来测定。
DSC是在程序控制温度下,测量输给试样和参比物的功率差与温度关系的一种技术。
经典DTA常用一金属块作为试样保持器以确保试样和参比物处于相同的加热条件下。
而DSC的主要特点是试样和参比物分别各有独立的加热元件和测温元件,并由两个系统进行监控。
其中一个用于控制升温速率,另一个用于补偿试样和惰性参比物之间的温差。
图1显示了DTA和DSC加热部分的不同,图2 为常见DSC的原理示意图。
(1) DTA (2)DSC 图2 功率补偿式DSC原理图图1 DTA和DSC加热元件示意图1-温差热电偶;2-补偿电热丝;3-坩埚;4-电炉;5-控温热电偶试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化:当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。
换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t 的变化d H/d t-t关系。