高中单调性与导数
- 格式:ppt
- 大小:504.50 KB
- 文档页数:23
高中数学导数的单调性教案1. 知识目标:掌握函数的单调性的概念和求解方法,了解导数在求解单调性中的应用;2. 能力目标:能够通过计算导数来判断函数的单调性,能够独立解决函数的单调性问题;3. 情感目标:培养学生对数学分析的兴趣,激发学生解决问题的潜能。
【教学重点】1. 函数的单调性的概念及求解方法;2. 导数在求解函数的单调性中的应用。
【教学难点】1. 导数在判断函数的增减性中的具体应用;2. 培养学生利用导数判断函数单调性的能力。
【教学准备】1. 教师准备:PPT课件、黑板、粉笔、导数表格等;2. 学生准备:课前自主学习相关概念。
【教学过程】一、导入(5分钟)利用案例引入函数单调性的概念,让学生了解函数的单调性对于函数图象的影响。
二、概念讲解(15分钟)1. 讲解函数的单调性是指函数在定义域内的增减性;2. 介绍导数在判断函数增减性中的作用,导数大于0,则函数单调增加,导数小于0,则函数单调减少;3. 示范如何通过求导数来判断函数的单调性。
三、例题演练(20分钟)1. 给学生提供一些简单的例题进行讲解,引导学生使用导数判断函数的单调性;2. 让学生在课堂上尝试解决一些功能简单的函数单调性问题。
四、拓展应用(10分钟)提供一些较为复杂的例题,让学生在导数的基础上解决函数的单调性问题,培养学生的计算能力和灵活性。
五、总结(5分钟)对当堂课进行总结,强调导数在函数单调性中的作用,并鼓励学生多加练习,提高解题能力。
【作业布置】布置相关的作业,要求学生通过导数的方法判断给定函数的单调性,并将解题过程写明。
【板书设计】1. 函数的单调性:增减性2. 导数的应用:判断函数的单调性【课后反思】本节课程设计采用案例引入、概念讲解、例题演练、拓展应用等教学方法,能够提高学生对函数单调性的理解和应用能力。
后续可以通过更多的例题训练,让学生更加熟练地掌握导数在函数单调性中的作用。
高中数学导数知识总结+导数七大题型答题技巧知识总结一. 导数概念的引入1. 导数的物理意义:瞬时速率。
一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义:曲线的切线,当点趋近于P时,直线 PT 与曲线相切。
容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为f (x)的导函数. y=f(x)的导函数有时也记作,即。
二. 导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。
三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数:极值反映的是函数在某一点附近的大小情况。
求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。
四. 推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。
根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。
类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。
利用导数研究函数的单调性1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0 在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0 的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0 在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0 的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0 的根;(4)用f′(x)=0 的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例 1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4 的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,1/ 3∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0 得x>﹣1,即f(x)>2x+4 的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例 2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为 45°,对于任意的t∈[1,2],函数푔(푥)=푥3+푥2[푓′(푥) +푚2]在区间(t,3)上总不是单调函数,求m 的取值范围;푙푛2(Ⅲ)求证:2×푙푛33×푙푛44×⋯×푙푛푛1푛(푛≥2,푛∈푁∗).<푛解:(Ⅰ)푓′(푥) =푎(1―푥)푥(푥>0)(2 分)当a>0 时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0 时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0 时,f(x)不是单调函数(4 分)(Ⅱ)푓′(2) =―푎2=1得a=﹣2,f(x)=﹣2lnx+2x﹣3 푚∴푔(푥)=푥3+(2―2푥,2+2)푥∴g'(x)=3x2+(m+4)x﹣2(6 分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣22/ 3∴{푔′(푡3))<0>0(8 分)由题意知:对于任意的 t ∈[1,2],g ′(t )<0 恒成立,푔′(1)<0所以有:{푔′(2)<0,∴― 푔′(3)>0 37 3 <푚< ― 9(10 分)(Ⅲ)令 a =﹣1 此时 f (x )=﹣lnx +x ﹣3,所以 f (1)=﹣2,由(Ⅰ)知 f (x )=﹣lnx +x ﹣3 在(1,+∞)上单调递增,∴当 x ∈(1,+∞)时 f (x )>f (1),即﹣lnx +x ﹣1>0,∴lnx <x ﹣1 对一切 x ∈(1,+∞)成立,(12 分)∵n ≥2,n ∈N *,则有 0<lnn <n ﹣1,푙푛푛 푛 ― 1∴0<<푛 푛푙푛2∴ 2 ⋅ 푙푛33 ⋅ 푙푛44 ⋅⋅ 푙푛푛 1 2 ⋅ < 푛2 3 ⋅ 3 4 ⋅⋅ 푛 ― 1 푛 = 1 푛(푛 ≥ 2,푛 ∈ 푁 ∗) 【解题方法点拨】若在某区间上有有限个点使 f ′(x )=0,在其余的点恒有 f ′(x )>0,则 f (x )仍为增函数(减函数的情形完 全类似).即在区间内 f ′(x )>0 是 f (x )在此区间上为增函数的充分条件,而不是必要条件.3/ 3。
必修一导数的单调性专题讲解(经典)引言在高中数学中,导数是一个非常重要的概念,掌握导数的基本概念和求法对于我们后续研究数学和工程等学科都有很大的帮助。
其中,本篇文档将着重讲解导数的单调性。
一阶导数的单调性对于一个函数$f(x)$,它的一阶导数为$f'(x)$。
如果$f'(x)>0$,则称函数$f(x)$单调递增;如果$f'(x)<0$,则称函数$f(x)$单调递减。
需要注意的是,函数$f(x)$在某个区间内单调递增或单调递减并不能保证函数在整个定义域内单调递增或单调递减。
此外,当$f'(x)=0$时,函数在该点上的单调性无法确定。
二阶导数的单调性对于一个函数$f(x)$,它的二阶导数为$f''(x)$。
如果$f''(x)>0$,则称函数$f(x)$在该点上取极小值;如果$f''(x)<0$,则称函数$f(x)$在该点上取极大值。
需要注意的是,当$f''(x)=0$时,函数在该点上的极值无法确定。
此外,如果$f''(x)$在某个区间内恒大于(或恒小于)$0$,则$f(x)$在该区间内的单调性与$f'(x)$的单调性相同。
必备技能要想熟练掌握导数的单调性,需要掌握函数的求导方法和二阶导数的求法。
在此基础上,就可以通过对导数符号的分析来确定函数的单调性。
结论导数的单调性是高中数学中比较重要和常出现的考点,掌握好导数的单调性对我们后续研究物理、工程等学科都有着很重要的帮助。
第3章 §1 第1课时 导数与函数的单调性A 级 基础巩固一、选择题1.在下列结论中,正确的有( A ) (1)单调增函数的导数也是单调增函数; (2)单调减函数的导数也是单调减函数; (3)单调函数的导数也是单调函数; (4)导函数是单调的,则原函数也是单调的. A .0个 B .2个 C .3个D .4个[解析] 分别举反例:(1)y =lnx,(2)y =1x (x>0),(3)y =2x,(4)y =x 2,故选A.2.若函数f(x)=kx -lnx 在区间(1,+∞)单调递增,则k 的取值范围是( D ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞)D .[1,+∞)[解析] 由条件知f′(x)=k -1x ≥0在(1,+∞)上恒成立,∴k≥1.把函数的单调性转化为恒成立问题是解决问题的关键.3.(2019·宣城高二检测)函数f(x)=2x+x 3-2在区间(0,1)内的零点个数是( B ) A .0 B .1 C .2D .3[解析] 本小题考查函数的零点与用导数判断函数的单调性,考查分析问题、解决问题的能力. ∵f(x)=2x+x 3-2,0<x<1,∴f ′(x)=2xln2+3x 2>0在(0,1)上恒成立,∴f(x)在(0,1)上单调递增. 又f(0)=20+0-2=-1<0,f(1)=2+1-2=1>0,f(0)·f(1)<0,则f(x)在(0,1)内至少有一个零点, 又函数y =f(x)在(0,1)上单调递增,则函数f(x)在(0,1)内有且仅有一个零点. 4.下列函数中,在(0,+∞)内为增函数的是( B ) A .y =sinx B .y =xe 2C .y =x 3-xD .y =lnx -x[解析] 对于B,y =xe 2,则y′=e 2,∴y =xe 2在R 上为增函数,在(0,+∞)上也为增函数,选B. 5.(2019·临沂高二检测)已知函数y =f(x)的图像是如图四个图像之一,且其导函数y =f′(x)的图像如图所示,则该函数的图像是( B )[解析] 由导函数图像可知函数在[-1,1]上为增函数,又因导函数值在[-1,0]递增,原函数在[-1,1]上切线的斜率递增,导函数的函数值在[0,1]递减,原函数在[0,1]上切线的斜率递减,选B.6.若f(x)=lnxx ,e<a<b,则( A )A .f(a)>f(b)B .f(a)=f(b)C .f(a)<f(b)D .f(a)f(b)>1[解析] 因为f′(x)=1-lnxx2, ∴当x>e 时,f′(x)<0,则f(x)在(e,+∞)上为减函数,因为e<a<b, 所以f(a)>f(b).选A. 二、填空题7.(2019·烟台高二检测)函数y =ln(x 2-x -2)的单调递减区间为(-∞,-1). [解析] 函数y =ln(x 2-x -2)的定义域为 (2,+∞)∪(-∞,-1),令f(x)=x 2-x -2,f ′(x)=2x -1<0,得x<12,∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1).8.已知函数f(x)=x 3-ax 2-3x 在区间[1,+∞)上是增函数,则实数a 的取值范围是(-∞,0]. [解析] ∵f(x)=x 3-ax 2-3x,∴f ′(x)=3x 2-2ax -3, 又因为f(x)=x 3-ax 2-3x 在区间[1,+∞)上是增函数, f ′(x)=3x 2-2ax -3≥0在区间[1,+∞)上恒成立, ∴⎩⎪⎨⎪⎧a 3≤1,f ′(1)=3×12-2a -3≥0,解得a≤0,故答案为(-∞,0]. 三、解答题9.(2018·天津理,20(1))已知函数f(x)=a x,g(x)=log a x,其中a>1.求函数h(x)=f(x)-xln a 的单调区间.[解析] 由已知,h(x)=a x-xln a, 有h′(x)=a xln a -ln a. 令h′(x)=0,解得x =0.由a>1,可知当x 变化时,h′(x),h(x)的变化情况如下表:所以函数10.(2019·长沙高二检测)已知a≥0,函数f(x)=(x 2-2ax)·e x.设f(x)在区间[-1,1]上是单调函数,求a 的取值范围.[解析] ∵f(x)=(x 2-2ax)e x, ∴f′(x)=(2x -2a)e x+(x 2-2ax)e x=e x[x 2+2(1-a)x -2a]令f′(x)=0,即x 2+2(1-a)x -2a =0, 解x 1=a -1-1+a 2,x 2=a -1+1+a 2, 其中x 1<x 2,当x 变化时,f′(x),f(x)的变化情况如下表∵a≥0,∴x 1212∴x 2≥1,即a -1+1+a 2≥1, ∴a≥34.B 级 素养提升一、选择题1.(2018·和平区二模)已知f(x)是定义在R 上的函数,它的图像上任意一点P(x 0,y 0)处的切线方程为y =(x 20-x 0-2)x +(y 0-x 30+x 20+2x 0),那么函数f(x)的单调递减区间为( A )A .(-1,2)B .(-2,1)C .(-∞,-1)D .(2,+∞)[解析] 因为函数f(x),(x ∈R)上任一点(x 0,y 0)的切线方程为y =(x 20-x 0-2)x +(y 0-x 30+x 20+2x 0),即函数在任一点(x 0,y 0)的切线斜率为k =x 20-x 0-2, 即知任一点的导数为f ′(x)=x 2-x -2=(x -2)(x +1),由f ′(x)<0,得-1<x <2,即函数f(x)的单调递减区间是(-1,2). 故选A.2.函数f(x)的定义域为R,f(-2)=2017,对任意x ∈R,都有f ′(x)<2x 成立,则不等式f(x)>x 2+2013的解集为( C )A .(-2,2)B .(-2,+∞)C .(-∞,-2)D .(-∞,+∞)[解析] 令F(x)=f(x)-x 2-2013,则F ′(x)=f ′(x)-2x<0,∴F(x)在R 上为减函数, 又F(-2)=f(-2)-4-2013=2017-2017=0, ∴当x<-2时,F(x)>F(-2)=0,∴不等式f(x)>x 2+2013的解集为(-∞,-2). 二、填空题3.若函数f(x)=x -13sin2x +asinx 在(-∞,+∞)单调递增,则a 的取值范围是[-13,13].[解析] 函数f(x)=x -13sin2x +asinx 在(-∞,+∞)单调递增,等价于f ′(x)=1-23cos2x +acosx=-43cos 2x +acosx +53≥0在(-∞,+∞)恒成立.设cosx =t,则g(t)=-43t 2+at +53≥0在[-1,1]恒成立,所以⎩⎪⎨⎪⎧g (1)=-43+a +53≥0g (-1)=-43-a +53≥0,解得-13≤a≤13.4.已知函数f(x)=x 3+ax 2+(2a -3)x -1.(1)若f(x)的单调减区间为(-1,1),则a 的取值集合为{0}; (2)若f(x)在区间(-1,1)内单调递减,则a 的取值集合为{a|a<0}. [解析] f ′(x)=3x 2+2ax +2a -3 =(x +1)(3x +2a -3).(1)∵f(x)的单调减区间为(-1,1), ∴-1和1是方程f ′(x)=0的两根,∴3-2a3=1,∴a =0,∴a 的取值集合为{0}. (2)∵f(x)在区间(-1,1)内单调递减,∴f ′(x)<0在(-1,1)内恒成立,又二次函数y =f ′(x)开口向上,一根为-1,∴必有3-2a3>1,∴a<0,∴a 的取值集合为{a|a<0}. 三、解答题5.已知函数f(x)=(ax 2+x -1)·e x,其中e 是自然对数的底数,a ∈R. (1)若a =1,求曲线f(x)在点(1,f(1))处的切线方程; (2)若a =-1,求f(x)的单调区间.[解析] (1)因为f(x)=(x 2+x -1)e x,所以f′(x)=(2x +1)e x+(x 2+x -1)e x=(x 2+3x)e x,所以曲线f(x)在点(1,f(1))处的切线斜率为k =f′(1)=4e.又因为f(1)=e,所以所求切线方程为y -e =4e(x -1), 即4ex -y -3e =0.(2)f(x)=(-x 2+x -1)e x,因为f′(x)=-x(x +1)e x, 令f′(x)<0,得x<-1或x>0;f′(x)>0 得-1<x<0.所以f(x)的减区间为(-∞,-1),(0,+∞),增区间为(-1,0).6.(2019·山师附中高二检测)已知函数f(x)=alnx +2a2x +x(a>0).若函数y =f(x)在点(1,f(1))处的切线与直线x -2y =0垂直.(1)求实数a 的值;(2)求函数f(x)的单调区间. [解析] (1)f ′(x)=a x -2a2x2+1,∵f ′(1)=-2,∴2a 2-a -3=0,∵a>0,∴a =32.(2)f ′(x)=32x -92x 2+1=2x 2+3x -92x 2=(2x -3)(x +3)2x2, ∵当x ∈(0,32)时,f ′(x)<0;当x ∈(32,+∞)时,f ′(x)>0,∴f(x)的单调递减区间为(0,32),单调递增区间为(32,+∞).C 级 能力拔高(2019·广德高二检测)已知函数f(x)=x 2+2alnx. (1)求函数f(x)的单调区间;(2)若函数g(x)=2x +f(x)在[1,2]上是减函数,求实数a 的取值范围.[解析] (1)f ′(x)=2x +2a x =2x 2+2ax ,函数f(x)的定义域为(0,+∞).①当a≥0时,f ′(x)>0,f(x)的单调递增区间为(0,+∞); ②当a<0时f ′(x)=2(x +-a )(x --a )x .当x 变化时,f ′(x),f(x)的变化情况如下:(2)由g(x)=2x +x 2+2alnx,得g′(x)=-2x 2+2x +2ax ,由已知函数g(x)为[1,2]上的单调减函数, 则g′(x)≤0在[1,2]上恒成立, 即-2x 2+2x +2ax ≤0在[1,2]上恒成立.即a≤1x-x 2在[1,2]上恒成立.令h(x)=1x -x 2,x ∈[1,2],则h′(x)=-1x 2-2x =-(1x 2+2x)<0,∴h(x)在[1,2]上为减函数.h(x)min =h(2)=-72,∴a≤-72,故a 的取值范围为{a|a≤-72}.。
(完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word)高中数学选修2-2函数的单调性与导数(word版可编辑修改)的全部内容。
1.3。
1函数的单调性与导数[学习目标] 1.结合实例,直观探索并掌握函数的单调性与导数的关系。
2。
能利用导数研究函数的单调性,并能够利用单调性证明一些简单的不等式.3.会求函数的单调区间(其中多项式函数的最高次数一般不超过三次).知识点一函数的单调性与其导数的关系在区间(a,b)内函数的导数与单调性有如下关系:导数函数的单调性f′(x)〉0单调递增f′(x)<0单调递减f′(x)=0常函数思考以前,我们用定义来判断函数的单调性,在假设x1<x2的前提下,比较f(x1)与f(x2)的大小,在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不很容易,如何利用导数来判断函数的单调性?答案根据导数的几何意义,可以用曲线切线的斜率来解释导数与单调性的关系,如果切线的斜率大于零,则其倾斜角是锐角,函数曲线呈上升的状态,即函数单调递增;如果切线的斜率小于零,则其倾斜角是钝角,函数曲线呈下降的状态,即函数单调递减。
知识点二利用导数求函数的单调区间利用导数确定函数的单调区间的步骤:(1)确定函数f(x)的定义域.(2)求出函数的导数f′(x).(3)解不等式f′(x)>0,得函数的单调递增区间;解不等式f′(x)<0,得函数的单调递减区间。
第6讲 导数的应用之单调性、极值和最值1.函数单调性与导函数符号的关系一般地,函数的单调性与其导数正负有以下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在该区间内单调递增;如果()0f x '<,那么函数()y f x =在该区间内单调递减.2.求可导函数单调区间的一般步骤 (1)确定函数()f x 的定义域;(2)求()f x ',令()0f x '=,解此方程,求出它在定义域内的一切实数; (3)把函数()f x 的间断点(即()f x 的无定义点)的横坐标和()0f x '=的各实根按由小到大的顺序排列起来,然后用这些点把函数()f x 的定义域分成若干个小区间;(4)确定()f x '在各小区间内的符号,根据()f x '的符号判断函数()f x 在每个相应小区间内的增减性.注①使()0f x '=的离散点不影响函数的单调性,即当()f x '在某个区间内离散点处为零,在其余点处均为正(或负)时,()f x 在这个区间上仍旧是单调递增(或递减)的.例如,在(,)-∞+∞上,3()f x x =,当0x =时,()0f x '=;当0x ≠时,()0f x '>,而显然3()f x x =在(,)-∞+∞上是单调递增函数.②若函数()y f x =在区间(,)a b 上单调递增,则()0f x '≥(()f x '不恒为0),反之不成立.因为()0f x '≥,即()0f x '>或()0f x '=,当()0f x '>时,函数()y f x =在区间(,)a b 上单调递增.当()0f x '=时,()f x 在这个区间为常值函数;同理,若函数()y f x =在区间(,)a b 上单调递减,则()0f x '≤(()f x '不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论: ()0f x '>⇒()f x 单调递增; ()f x 单调递增()0f x '⇒≥; ()0f x '<⇒()f x 单调递减; ()f x 单调递减()0f x '⇒≤.3.函数极值的概念设函数()y f x =在点0x 处连续且0()0y f x '==,若在点0x 附近的左侧()0f x '>,右侧()0f x '<,则0x 为函数的极大值点;若在0x 附近的左侧()0f x '<,右侧()0f x '>,则0x 为函数的极小值点.函数的极值是相对函数在某一点附近的小区间而言,在函数的整个定义区间内可能有多个极大值或极小值,且极大值不一定比极小值大.极大值与极小值统称为极值,极大值点与极小值点统称为极值点. 4.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x ';(3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点. 5.函数的最大值、最小值若函数()y f x =在闭区间[],a b 上的图像是一条连续不间断的曲线,则该函数在[],a b 上一定能够取得最大值与最小值,函数的最值必在极值点或区间端点处取得.6.求函数的最大值、最小值的一般步骤设()y f x =是定义在区间[],a b 上的函数,()y f x =在(,)a b 可导,求函数()y f x =在[],a b 上的最大值与最小值,可分两步进行:(1)求函数()y f x =在(,)a b 内的极值;(2)将函数()y f x =的各极值与端点处的函数值(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值.注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点; ③函数的最值必在极值点或区间端点处取得.1.已知0x 是函数()e ln x f x x =-的极值点,若()00,a x ∈, ()0,b x ∈+∞,则 A. ()0f a '>, ()0f b '< B. ()0f a '<, ()0f b '< C. ()0f a '>, ()0f b '> D. ()0f a '<, ()0f b '> 【答案】D【解析】因为()1(0)x f x e x x '=->,令()1=0x f x e x '=-,即1=x e x ,在平面直角坐标系画出1,x y e y x==的图象,如图:根据图象可知, ()()()()000,,0,,,0x x f x x x f x '∞'∈∈+,所以 ()0f a '<, ()0f b '>,故选D.2.已知20a b =≠,且关于x 的函数()321132f x x a x a bx =++⋅在R 上有极值,则a 与b 的夹角范围为( )A. 0,6π⎛⎫⎪⎝⎭B. ,6ππ⎛⎤ ⎥⎝⎦C. ,3ππ⎛⎤ ⎥⎝⎦D. 2,33ππ⎛⎤ ⎥⎝⎦【答案】C【解析】()321132f x x a x a bx =++⋅在R 有极值, ()2'0f x x a x a b ∴=++⋅=有不等式的根, 0∴∆>,即2240,4cos 0a a b a a b θ-⋅>∴->,120,cos 2a b θ=≠∴<, 0,3πθπθπ≤≤∴<≤,即向量,a b 夹角范围是,3ππ⎛⎤⎥⎝⎦,故选C. 【方法点睛】本题主要考查向量的模及平面向量数量积公式、利用导数研究函数的极值,属于难题.平面向量数量积公式有两种形式,一是cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角, ·cos ·a ba bθ=(此时·a b 往往用坐标形式求解);(2)求投影, a 在b 上的投影是a b b⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb + 的模(平方后需求a b ⋅).3.在ABC ∆中, ,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则sin 23B π⎛⎫- ⎪⎝⎭的最小值是( ) A. 0 B. 32- C. 32D. -1 【答案】D【解析】()()3222113f x x bx a c ac x =+++-+,∴f′(x )=x 2+2bx+(a 2+c 2-ac ),又∵函数()()3222113f x x bx a c ac x =+++-+有极值点,∴x 2+2bx+(a 2+c 2-ac )=0有两个不同的根,∴△=(2b )2-4(a 2+c 2-ac )>0,即ac >a 2+c 2-b 2,即ac >2accosB ;即cosB <12,故∠B 的范围是(π3π,),所以23B π- 5,33ππ⎛⎫∈ ⎪⎝⎭,当3112B 326B πππ-==,即 时sin 23B π⎛⎫- ⎪⎝⎭的最小值是-1 故选D4.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx , 11f e e⎛⎫= ⎪⎝⎭,则f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,又有极小值D. 既无极大值,又无极小值 【答案】D【解析】因为xf ′(x )-f (x )=x ln x ,所以()()2ln xf x f x x x x -=',所以()'ln ()f x xx x=,所以f (x )=12x ln 2x +cx .因为f (1e )=12e ln 21e +c ×1e =1e ,所以c =12,所以f ′(x )=12ln 2x +ln x +12=12(ln x +1)2≥0,所以f (x )在(0,+∞)上单调递增,所以f (x )在(0,+∞)上既无极大值,也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如()()f x f x '-构造()()x f x g x e =, ()()f x f x '+构造()()x g x e f x =,()()xf x f x '-构造()()f xg x x=, ()()xf x f x '+构造()()g x xf x =等 5.设a R ∈,若函数,x y e ax x R =+∈有大于零的极值点,则( )A. 1a e<- B. 1a e >- C. 1a >- D. 1a <-【答案】D【解析】()x f x e a '=+(x>0),显然当0a ≥时, ()0f x '>,f(x)在R 上单调递增,无极值点,不符。
1.3.1函数的单调性与导数(第二课时)教学设计【教学目标】1.知识与能力:会利用导数解决函数的单调性及单调区间。
会求单调区间,会讨论含参函数单调性2.过程与方法:通过利用导数研究单调性问题的探索过程,体会从特殊到一般的、数形结合的研究方法。
3.情感态度与价值观:通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,同时通过学生动手、观察、思考、总结,培养学生的探索精神,引导学生养成自主学习的学习习惯。
通过导数研究单调性的步骤的形成和使用,使得学生认识到利用导数解决一些函数(尤其是三次、三次以上的多项式函数)的问题,因而认识到导数的实用价值。
【教学重点和难点】对于本节课学生的认知困难主要体现在:用准确的数学语言描述函数单调性与导数的关系,这种由特殊到一般、数到形、直观到抽象的转变,对学生是比较困难的。
根据以上的分析和新课程标准的要求,我确定了本节课的重点和难点。
教学重点:1.利用导数研究函数的单调性,求函数的单调区间.(重点)2.利用数形结合思想理解导函数与函数单调性之间的关系,及单调性的逆用.(难点)3.含参数的函数讨论单调性(难点)【教学设计思路】现代教学观念要求学生从“学会”向“会学”转变,本节可从单调性与导数的关系的发现到应用都有意识营造一个较为自由的空间,让学生能主动的去观察、猜测、发现、验证,积极的动手、动口、动脑,使学生在学知识同时形成思想、方法。
整个教学过程突出了三个注重:1、注重学生参与知识的形成过程,体验应用数学知识解决简单数学问题的乐趣。
2、注重师生、生生间的互相协作、共同提高。
3、注重知能统一,让学生获得知识同时,掌握方法,灵活应用。
根据新课程标准的要求,本节课的知识目标定位在以下三个方面:一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图像,会根据单调性求字母范围。
教学过程:(一)复习回顾,温故知新让学生填写导数公式,运算法则,复合函数求导法则(利用选号程序,挑选两名幸运的同学回答,可提升学生注意力)设计意图:通过复习回顾,加深对公式的记忆和理解,尤其是运算法则,复合函数求导公式的理解,有利于本节熟练应用。
第三讲 利用导数求函数的单调性1.函数单调性与导数的关系在某个区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在这个区间内单调递增; 如果f ′(x )<0,那么函数y =f (x )在这个区间内单调递减; 如果恒有f ′(x )=0,那么函数y =f (x )在这个区间内是常数函数.注意:在某个区间内,()0f x '>(()0f x '<)是函数()f x 在此区间内单调递增(减)的充分条件,而不是必要条件.函数()f x 在(,)a b 内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(,)a b 内恒成立,且()f x '在(,)a b 的任意子区间内都不恒等于0. 2. 函数图象的变化趋势与导数值大小的关系如果一个函数在某一范围内导数的绝对值较大,那么这个函数在这个范围内变化的快,其图象比较陡峭.即|f ′(x )|越大,则函数f (x )的切线的斜率越大,函数f (x )的变化率就越大考点一 利用导数求单调区间【例1】求下列函数的单调区间。
(1)3()23f x x x =-; (2)2()ln f x x x =-. (3)f (x )=2x -x 2.【答案】见解析【解析】(1)由题意得f(x)的定义域为R ,2()63f x x '=-. 令2()630f x x '=->,解得2x <或2x >. 当2(,)2x ∈-∞-时,函数为增函数;当2)2x ∈+∞时,函数也为增函数. 令2()630f x x '=-<,解得22x <<.当(x ∈时,函数为减函数.故函数3()23f x x x =-的单调递增区间为(,2-∞-和,)2+∞,单调递减区间为(22-.(2)函数2()ln f x x x =-的定义域为(0,)+∞.11)()2f x x x x-+'=-=.令()0f x '>,解得2x >;令()0f x '<,解得02x <<.故函数2()ln f x x x =-的单调递增区间为)2+∞,单调递减区间为(0,2. (3)要使函数f (x )=2x -x 2有意义,必须2x -x 2≥0,即0≤x ≤2.∴函数的定义域为[0,2].f ′(x )=(2x -x 2)′=12(2x -x 2)-12·(2x -x 2)′=1-x 2x -x 2 .令f ′(x )>0,则1-x2x -x 2>0.即⎩⎨⎧1-x >0,2x -x 2>0,∴0<x <1.∴函数的单调递增区间为(0,1).令f ′(x )<0,则1-x2x -x 2<0,即⎩⎨⎧1-x <0,2x -x 2>0,∴1<x <2.∴函数的单调递减区间为(1,2).1.函数()e x f x x -=的单调递减区间是 。