广东省广州市高三数学二轮复习 三角函数专题三 理
- 格式:doc
- 大小:411.00 KB
- 文档页数:7
高考专题训练二十二三角函数、平面向量、立体几何、概率与统计型解答题班级_______ 姓名_______ 时间:45分钟 分值:50分 总得分________1.(12分)(2011·广东卷)已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R. (1)求f ⎝ ⎛⎭⎪⎫5π4的值;(2)设α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值.分析:本题考查运用三角公式化简求值.(1)f (x )的解析式已给出,求f ⎝ ⎛⎭⎪⎫5π4即可;(2)先化简f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,再结合α,β∈⎣⎢⎡⎦⎥⎤0,π2求cos α与sin β,代入即得cos(α+β)的值. 解:(1)∵f (x )=2sin ⎝ ⎛⎭⎪⎫13x -π6, ∴f ⎝ ⎛⎭⎪⎫5π4=2sin ⎝ ⎛⎭⎪⎫5π12-π6=2sin π4= 2. (2)∵α,β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝ ⎛⎭⎪⎫3α+π2=1013,f (3β+2π)=65,∴2sin α=1013,2sin ⎝ ⎛⎭⎪⎫β+π2=65,即sin α=513,cos β=35,∴cos α=1213,sin β=45,∴cos(α+β)=cos αcos β-sin αsin β=1213×35-513×45=1665.2.(12分)(2011·重庆卷)如图,在四面体ABCD 中,平面ABC ⊥平面ACD ,AB ⊥BC ,AD =CD ,∠CAD=30°.(1)若AD =2,AB =2BC ,求四面体ABCD 的体积;(2)若二面角C -AB -D 为60°,求异面直线AD 与BC 所成角的余弦值.分析:本小题主要考查面面垂直的性质、四面体的体积计算公式、二面角的意义与异面直线所成的角的意义及求法.在具体处理过程中,可围绕线面垂直的性质定理去考虑,从而添加相关的辅助线,由此求得相关几何体的体积;在求异面直线所成的角的过程中,注意根据异面直线所成角的意义,考虑平移其中一条或两条直线,从而将问题转化为求两条相交直线的夹角问题.也可考虑通过建立坐标系的方式解决相关问题.解:(1)如图所示,设F 为AC 中点,连接FD ,由于AD =CD ,所以DF ⊥AC .又由平面ABC ⊥平面ACD ,知DF ⊥平面ABC ,即DF 是四面体ABCD 的面ABC 上的高,且DF =AD sin30°=1,AF =AD cos30°= 3.在Rt △ABC 中,因AC =2AF =23,AB =2BC ,由勾股定理易知BC =2155,AB =4155.故四面体ABCD 的体积V =13·S △ABC ·DF =13×12×4155×2155=45.(2)解法一:如图所示,设G ,H 分别与边CD ,BD 的中点,则FG ∥AD ,GH ∥BC ,从而∠FGH 是异面直线AD 与BC 所成的角或其补角.设E 为边AB 的中点,则EF ∥BC ,由AB ⊥BC ,知EF ⊥AB .又由(1)知DF ⊥平面ABC ,故由三垂线定理知DE ⊥AB .所以∠DEF 为二面角C -AB -D 的平面角.由题设知 ∠DEF =60°.设AD =a ,则DF =AD ·sin ∠CAD =a2.在Rt △DEF 中,EF =DF ·cot ∠DEF =a 2·33=36a ,从而GH =12BC =EF =36a .因Rt △ADE ≌△BDE ,故BD =AD =a , 从而,在Rt △BDF 中,FH =12BD =a 2.又FG =12AD =a 2,从而在△FGH 中,因FG =FH ,由余弦定理得cos ∠FGH =FG 2+GH 2-FH 22FG ·GH =GH 2FG =36.因此,异面直线AD 与BC 所成角的余弦值为36.解法二:如图所示,过F 作FM ⊥AC ,交AB 于M ,已知AD =CD ,平面ABC ⊥平面ACD ,易知FC ,FD ,FM 两两垂直.以F 为原点,射线FM ,FC ,FD 分别为x 轴,y 轴,z 轴的正半轴,建立空间直角坐标系F -xyz .不妨设AD =2,由CD =AD ,∠CAD =30°,易知点A ,C ,D 的坐标分别为A (0,-3,0),C (0,3,0),D (0,0,1),则AD →=(0,3,1).显然向量k =(0,0,1)是平面ABC 的一个法向量.已知二面角C -AB -D 为60°,故可取平面ABD 的一个单位法向量n =(l ,m ,n ),使得〈n ,k 〉=60°,从而n =12.由n ⊥AD →,有3m +n =0,从而m =-36.由l 2+m 2+n 2=1,得l =±63.设点B 的坐标为B (x ,y,0),由AB →⊥BC →,n ⊥AB →,取l =63,有⎩⎨⎧x 2+y 2=3,63x -36(y +3)=0,解之得,⎩⎨⎧x =469,y =739或⎩⎪⎨⎪⎧x =0,y =-3(舍去). 易知l =-63与坐标系的建立方式不合,舍去.因此点B 的坐标为⎝ ⎛⎭⎪⎫469,739,0.所以CB →=⎝ ⎛⎭⎪⎫469,-239,0.从而cos 〈AD →,CB →〉=AD →·CB →|AD →||CB →|=3×⎝ ⎛⎭⎪⎫-2393+1×⎝ ⎛⎭⎪⎫4692+⎝ ⎛⎭⎪⎫-2392=-36.故异面直线AD 与BC 所成的角的余弦值为36.3.(13分)(2011·浙江卷)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由.分析:此题主要考查了线线位置关系和二面角的求解,对(1)问线线垂直的证明易入手,利用线面垂直即可进行证明;对(2)问可采用空间直角坐标向量法进行处理;解题时对(2)问要注意恰当建立坐标系,恰当设参数,从而有效快速求解.解:方法一:(1)如图,以O 为原点,以射线OP 为z 轴的正半轴,建立空间直角坐标系O -xyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4). BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ), AC →=(-4,5,0),BC →=(-8,0,0). 设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎨⎧x 1=0,z 1=2+3λ4-4λ1,可取n 1=⎝⎛⎭⎪⎫0,1,2+3λ4-4λ. 由⎩⎪⎨⎪⎧ AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3).由n 1·n 2=0,得4-3·2+3λ4-4λ0,解得λ=25,故AM =3.综上所述,存在点M 符合题意,AM =3.方法二:(1)由AB =AC ,D 是BC 的中点,得AD ⊥BC . 又PO ⊥平面ABC ,得PO ⊥BC .因为PO ∩AD =O ,所以BC ⊥平面PAD , 故BC ⊥PA .(2)如图,在平面PAB 内作BM ⊥PA于M ,连接CM .由(1)中知PA ⊥BC ,得AP ⊥平面BMC .又AP ⊂平面APC ,所以平面BMC ⊥平面APC .在Rt △ADB 中,AB 2=AD 2+BD 2=41,得AB =41.在Rt △POD 中,PD 2=PO 2+OD 2, 在Rt △PDB 中,PB 2=PD 2+BD 2, 所以PB 2=PO 2+OD 2+DB 2=36,得PB =6. 在Rt △POA 中,PA 2=AO 2+OP 2=25,得PA =5. 又cos ∠BPA =PA 2+PB 2-AB 22PA ·PB =13,从而PM =PB cos ∠BPA =2,所以AM =PA -PM =3. 综上所述,存在点M 符合题意,AM =3.4.(13分)(2011·天津)学校游园活动有这样一个游戏项目:甲箱子里装有3个白球,2个黑球,乙箱子里装有1个白球,2个黑球, 这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱).(1)求在1次游戏中; (ⅰ)摸出3个白球的概率; (ⅱ)获奖的概率;(2)求在2次游戏中获奖次数X 的分布列及数学期望E (X ). 解:(1)(ⅰ)设“在1次游戏中摸出i 个白球”为事件A i =(i =0,1,2,3),则P (A 3)=C 23C 25·C 12C 23=15.(ⅱ)设“在1次游戏中获奖”为事件B ,则B =A 2∪A 3.又P (A 2)=C 23C 25·C 22C 23+C 13C 12C 25·C 12C 23=12. 且A 2,A 3互斥,所以P (B )=P (A 2)+P (A 3)=12+15=710.(2)由题意可知X 的所有可能取值为0,1,2.P (X =0)=⎝ ⎛⎭⎪⎫1-7102=9100.P (X =1)=C 12710⎝ ⎛⎭⎪⎫1-710=2150. P (X =2)=⎝ ⎛⎭⎪⎫7102=49100. 所以X 的分布列是X 的数学期望E (X )=0×9100+1×2150+2×49100=75.。
高三数学第二轮专题复习系列(2)-- 函数一、本章知识结构:二、高考要求(1)了解映射的概念,理解函数的概念.(2)了解函数的单调性和奇偶性的概念,掌握判断一些简单函数的单调性和奇偶性的方法,并能利用函数的性质简化函数图像的绘制过程.(3)了解反函数的概念及互为反函数的函数图像间关系,会求一些简单函数的反函数. (4)理解分数指数的概念,掌握有理指数幂的运算性质.掌握指数函数的概念、图像和性质. (5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质. (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题. 三、热点分析函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题。
在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新。
以基本函数为背景的应用题和综合题是高考命题的新趋势。
考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象。
②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点。
③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想。
四、复习建议1. 认真落实本章的每个知识点,注意揭示概念的数学本质①函数的表示方法除解析法外还有列表法、图象法,函数的实质是客观世界中量的变化的依存关系;②中学数学中的“正、反比例函数,一次、二次函数,指数、对数函数,三角函数”称为基本初等函数,其余的函数的解析式都是由这些基本初等函数的解析式形成的. 要把基本初等函数的图象和性质联系起来,并且理解记忆;③掌握函数单调性和奇偶性的一般判定方法,并能联系其相应的函数的图象特征,加强对函数单调性和奇偶性应用的训练;④注意函数图象的变换:平移变换、伸缩变换、对称变换等;函数的三要素函数的表示法 函数的性质 反函数 函数的应用 初等函数基本初等函数: 指数函数 对数函数对数指数映射函数射⑤掌握复合函数的定义域、值域、单调性、奇偶性;⑥理解掌握反函数的概念,会求反函数,弄清互为反函数的两个函数的定义域、值域、单调性的关联及其图像间的对称关系。
高三数学二轮复习教学案(解三角形)班级_____________ 学号_____________ 姓名_____________1.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a=4bsinA ,则cosB=_________.2.在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若bc b a 322=-,B C sin 32sin =,则A=______________.3.已知△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,若a=c=26+, 且∠A=75°,则b=__________4.据新华社报道,强台风“康森”在海南三亚登陆,台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少椰子树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20 m ,则折断点与树干底部的距离是______m .5.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且acosB —bcosA=53c , 则tan(A -B)的最大值是__________________.6.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2 min ,从D 沿着DC 走到C 用了3min .若此人步行的速度为每分钟50 m ,则该扇形的半径为_____________m .7.在锐角三角形ABC 中,A 、B 、C 的对边分别为a 、b 、c ,若C b a a b cos 6=+, 求BC A C tan tan tan tan +的值.8.已知在斜三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,且AA C A ac c a b cos sin )cos(222+=--(1)求角A(2)若2cos sin >C B,求角C 的取值范围.9.如图,A 、B 、C 、D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°、30°,在水面C 处测得B 点和D 点的仰角均为60°,AC=0.1 km ,试探究图中B 、D 间距离与另外哪两点间距离相等,并求出B 、D 的距离.高三数学二轮复习教学案(平面向量)班级_____________ 学号_____________ 姓名_____________1.在四边形ABCD 中,“DC AB 2=”是“四边形ABCD 为梯形’’的______________条件.2.设点M 是线段BC 的中点,点A 在直线BC 外,2BC =16,||||AC AB AC AB -=+ ,则|AM |=_____________3.已知平面向量),0(,βααβα≠≠满足1||=β,且α与αβ-的夹角为120°,则||α的取值范围是_________________4.设向量)cos 3,2(),3,sin 4(αα==b a ,且b a //,则锐角α为____________5.在△ABC 中,已知2π=C ,AC=1,BC=2,则|)1(2|)(CB CA f λλλ-+=的最小值是___________6.如图,在△ABC 中,已知AB=2,BC=3,∠ABC=60°,AH ⊥BC 于H ,M 为AH 的中点,若BC AB AM μλ+=,则μλ+=____________7.已知A )0,22(,B )22,0(,M )sin ,(cos αα,点N 满足)1(=++=μλμλON OB OA ,则||MN 的最小值是_______________8.已知)2sin ,2(cos ),23sin ,23(cos θθθθ-==b a ,且]3,0[πθ∈ (1||b a b a +(2)是否存在实数k ,使||3||b k a b a k -=+?若存在,求出实数k 的值,若不存在,请说明理由。
第4讲 三角函数的图象与性质[学生用书P77]1.用五点法作正弦函数和余弦函数的简图在正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).在余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).五点法作图有三步:列表、描点、连线(注意光滑). 2.正弦、余弦、正切函数的图象与性质 函数 y =sin x y =cos x y =tan x图象定义域 R R {x |x ∈R ,且x ≠kπ+π2,k ∈Z }值域 [-1,1] [-1,1] R 奇偶 性奇函数偶函数奇函数单调性在[-π2+2kπ,π2+2kπ](k∈Z)上是递增函数,在[π2+2kπ,3π2+2kπ](k∈Z)上是递减函数在[2kπ-π,2kπ](k∈Z)上是递增函数,在[2kπ,2kπ+π](k∈Z)上是递减函数在(-π2+kπ,π2+kπ)(k∈Z)上是递增函数周期性周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是2kπ(k∈Z且k≠0),最小正周期是2π周期是kπ(k∈Z且k≠0),最小正周期是π对称性对称轴是x=π2+kπ(k∈Z),对称中心是(kπ,0)(k∈Z)对称轴是x=kπ(k∈Z),对称中心是(kπ+π2,0)(k∈Z)对称中心是(kπ2,0)(k∈Z)常用结论(1)函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期T=2π|ω|,函数y=tan(ωx+φ)的最小正周期T=π|ω|.(2)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半周期,相邻的对称中心与对称轴之间的距离是14周期.正切曲线相邻两对称中心之间的距离是半周期.(3)三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx的形式,偶函数一般可化为y=A cos ωx+b的形式.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)y=cos x在第一、二象限内是减函数.()(2)若y=k sin x+1,x∈R,则y的最大值是k+1.()(3)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )(4)函数y =sin x 图象的对称轴方程为x =2k π+π2(k ∈Z ). ( ) (5)函数y =tan x 在整个定义域上是增函数.( ) 答案:(1)× (2)× (3)√ (4)× (5)× 二、易错纠偏常见误区|K(1)忽视y =A sin x (或y =A cos x )中A 对函数单调性的影响; (2)忽视正、余弦函数的有界性; (3)不注意正切函数的定义域.1.函数y =1-2cos x 的单调递减区间是________. 答案:[2k π-π,2k π],k ∈Z2.函数y =-cos 2x +3cos x -1的最大值为________. 答案:13.函数y =cos x tan x 的值域是________. 答案:(-1,1)第1课时 三角函数的单调性与最值[学生用书P78]三角函数的定义域(自主练透) 1.函数f (x )=-2tan ⎝⎛⎭⎪⎫2x +π6的定义域是( )A.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π6B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠-π12C.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π+π6(k ∈Z )D.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠k π2+π6(k ∈Z )解析:选D.由2x +π6≠k π+π2,得x ≠k π2+π6(k ∈Z ). 2.函数y =lg sin x +cos x -12的定义域为________.解析:要使函数有意义,则有⎩⎨⎧sin x >0,cos x -12≥0, 即⎩⎨⎧sin x >0,cos x ≥12, 解得⎩⎨⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ),所以2k π<x ≤π3+2k π,k ∈Z .所以函数y 的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z .答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π<x ≤π3+2k π,k ∈Z3.(一题多解)函数y =sin x -cos x 的定义域为________. 解析:方法一:要使函数有意义,必须使sin x -cos x ≥0.利用图象,在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示.在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的周期是2π,所以原函数的定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }.方法二:利用三角函数线,画出满足条件的终边范围(如图阴影部分所示).所以定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }. 方法三:sin x -cos x =2sin(x -π4)≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -π4≤π+2k π(k ∈Z ),解得2k π+π4≤x ≤2k π+5π4(k ∈Z ).所以函数y 的定义域为{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }. 答案:{x |2k π+π4≤x ≤2k π+5π4,k ∈Z }求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.函数的单调性(多维探究) 角度一 求三角函数的单调区间(1)函数f (x )=sin ⎝⎛⎭⎪⎫-2x +π3的单调递减区间为________.(2)函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间是________.(3)函数y =12sin x +32cos x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的单调递增区间是________.【解析】 (1)f (x )=sin ⎝ ⎛⎭⎪⎫-2x +π3=sin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫2x -π3=-sin ⎝⎛⎭⎪⎫2x -π3,由2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 故所求函数的单调递减区间为 ⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z .(2)由k π-π2<2x +π3<k π+π2(k ∈Z ), 得k π2-5π12<x <k π2+π12(k ∈Z ),所以函数f (x )=tan ⎝ ⎛⎭⎪⎫2x +π3的单调递增区间为⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ).(3)因为y =12sin x +32cos x =sin ⎝ ⎛⎭⎪⎫x +π3,由2k π-π2≤x +π3≤2k π+π2(k ∈Z ), 解得2k π-5π6≤x ≤2k π+π6(k ∈Z ).所以函数y =sin ⎝ ⎛⎭⎪⎫x +π3在R 上的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-5π6,2k π+π6(k ∈Z ),又x ∈⎣⎢⎡⎦⎥⎤0,π2,所以函数的单调递增区间为⎣⎢⎡⎦⎥⎤0,π6.【答案】 (1)⎣⎢⎡⎦⎥⎤k π-π12,k π+5π12,k ∈Z(2)⎝ ⎛⎭⎪⎫k π2-5π12,k π2+π12(k ∈Z ) (3)⎣⎢⎡⎦⎥⎤0,π6 【迁移探究】 本例(3)中,将x ∈⎣⎢⎡⎦⎥⎤0,π2改为x ∈[-π,π],则函数的单调递减区间是________.解析:因为y =sin ⎝⎛⎭⎪⎫x +π3,由2k π+π2≤x +π3≤2k π+3π2(k ∈Z ), 得2k π+π6≤x ≤2k π+7π6(k ∈Z ),所以函数y =sin ⎝ ⎛⎭⎪⎫x +π3在R 上的单调递减区间为⎣⎢⎡⎦⎥⎤2k π+π6,2k π+7π6(k ∈Z ).又x ∈[-π,π],所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤-π,-5π6,⎣⎢⎡⎦⎥⎤π6,π.答案:⎣⎢⎡⎦⎥⎤-π,-5π6,⎣⎢⎡⎦⎥⎤π6,π求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.角度二 根据单调性求参数(1)(一题多解)若f (x )=cos x -sin x 在[0,a ]是减函数,则a 的最大值是( )A.π4 B .π2 C.3π4D .π(2)(一题多解)若f (x )=2sin ωx (ω>0)在区间[-π2,2π3]上是增函数,则ω的取值范围是________.【解析】 (1)方法一:f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4.当x ∈[0,a ]时,x+π4∈⎣⎢⎡⎦⎥⎤π4,a +π4,所以结合题意可知,a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.方法二:f ′(x )=-sin x -cos x =-2sin ⎝ ⎛⎭⎪⎫x +π4.于是,由题设得f ′(x )≤0,即sin ⎝ ⎛⎭⎪⎫x +π4≥0在区间[0,a ]上恒成立.当x ∈[0,a ]时,x +π4∈⎣⎢⎡⎦⎥⎤π4,a +π4,所以a +π4≤π,即a ≤3π4,故所求a 的最大值是3π4.故选C.(2)方法一:因为x ∈[-π2,2π3](ω>0), 所以ωx ∈[-ωπ2,2πω3],因为f (x )=2sin ωx 在[-π2,2π3]上是增函数, 所以⎩⎨⎧-πω2≥-π2,2πω3≤π2,ω>0,故0<ω≤34. 方法二:画出函数f (x )=2sin ωx (ω>0)的图象如图所示.要使f (x )在[-π2,2π3]上是增函数,需⎩⎪⎨⎪⎧-π2ω≤-π2,2π3≤π2ω(ω>0),即0<ω≤34.方法三:由-π2+2k π≤ωx ≤π2+2k π(k ∈Z )得 -π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z ),故f (x )的单调递增区间是[-π2ω+2k πω,π2ω+2k πω](k ∈Z ),由题意知[-π2,2π3]⊆[-π2ω+2k πω,π2ω+2k πω](k ∈Z ,ω>0),从而有⎩⎪⎨⎪⎧-π2ω≤-π2,π2ω≥2π3,即0<ω≤34.【答案】 (1)C (2)(0,34]已知三角函数的单调区间求参数的取值范围的3种方法(1)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;(2)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解;(3)周期法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.1.(2019·高考全国卷Ⅱ)下列函数中,以π2为周期且在区间⎝ ⎛⎭⎪⎫π4,π2单调递增的是( )A .f (x )=|cos 2x |B .f (x )=|sin 2x |C .f (x )=cos|x |D .f (x )=sin|x |解析:选A.A 中,函数f (x )=|cos 2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递增,故A 正确;B 中,函数f (x )=|sin 2x |的周期为π2,当x ∈⎝ ⎛⎭⎪⎫π4,π2时,2x ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )单调递减,故B 不正确;C 中,函数f (x )=cos|x |=cosx 的周期为2π,故C 不正确;D 中,f (x )=sin|x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,由正弦函数图象知,在x ≥0和x <0时,f (x )均以2π为周期,但在整个定义域上f (x )不是周期函数,故D 不正确.故选A.2.(2020·广东省七校联考)函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤2k π-2π3,2k π+4π3,k ∈Z B.⎝⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z C.⎣⎢⎡⎦⎥⎤4k π-2π3,4k π+4π3,k ∈Z D.⎝⎛⎭⎪⎫4k π-2π3,4k π+4π3,k ∈Z 解析:选B.由-π2+k π<x 2-π6<π2+k π,k ∈Z ,得2k π-2π3<x <2k π+4π3,k ∈Z ,所以函数f (x )=tan ⎝ ⎛⎭⎪⎫x 2-π6的单调递增区间是⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z ,故选B.3.若函数g (x )=sin ⎝ ⎛⎭⎪⎫2x +π6在区间⎣⎢⎡⎦⎥⎤0,a 3和⎣⎢⎡⎦⎥⎤4a ,7π6上均单调递增,则实数a 的取值范围是________.解析:由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),可得k π-π3≤x ≤k π+π6(k ∈Z ), 所以g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).又因为函数g (x )在区间⎣⎢⎡⎦⎥⎤0,a 3和⎣⎢⎡⎦⎥⎤4a ,7π6上均单调递增,所以⎩⎪⎪⎨⎪⎪⎧a 3≤π6,4a ≥2π3,0<a 3,4a <7π6,解得π6≤a <7π24.答案:⎣⎢⎡⎭⎪⎫π6,7π24三角函数的值域(师生共研)(1)函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为________.(2)函数f (x )=sin 2x +3cos x -34⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤0,π2的最大值是________.(3)函数y =sin x -cos x +sin x cos x 的值域为________.【解析】 (1)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π6∈⎣⎢⎡⎦⎥⎤-π6,5π6,所以sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-12,1,故3sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤-32,3,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的值域为⎣⎢⎡⎦⎥⎤-32,3. (2)依题意,f (x )=sin 2x +3cos x -34=-cos 2x +3cos x +14=-⎝⎛⎭⎪⎫cos x -322+1,因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以cos x ∈[0,1],因此当cos x =32时,f (x )max =1.(3)设t =sin x -cos x ,则-2≤t ≤2,t 2=sin 2x +cos 2x -2sin x cos x ,则sin x cos x =1-t 22,所以y =-t 22+t +12=-12(t -1)2+1.当t =1时,y max =1;当t =-2时,y min =-12- 2.所以函数的值域为⎣⎢⎡⎦⎥⎤-12-2,1.【答案】 (1)⎣⎢⎡⎦⎥⎤-32,3 (2)1 (3)⎣⎢⎡⎦⎥⎤-12-2,1求三角函数的值域(最值)的4种类型及解法思路(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).(4)形如y =t +at (a >0,t >0)的可考虑基本不等式.1.若函数f (x )=(1+3tan x )cos x ,-π3≤x ≤π6,则f (x )的最大值为( ) A .1 B .2 C. 3D.3+1解析:选C.f (x )=(1+3tan x )cos x =cos x +3sin x =2sin ⎝ ⎛⎭⎪⎫x +π6.因为-π3≤x≤π6,所以-π6≤x +π6≤π3,故当x =π6时,f (x )取最大值为 3.故选C.2.设x ∈⎝⎛⎭⎪⎫0,π2,则函数y =sin 2x 2sin 2x +1的最大值为________.解析:因为x ∈⎝ ⎛⎭⎪⎫0,π2,所以tan x >0,y =sin 2x 2sin 2x +1=2sin x cos x 3sin 2x +cos 2x =2tan x 3tan 2x +1=23tan x +1tan x≤223=33,当且仅当3tan x =1tan x 时等号成立,故最大值为33. 答案:33[学生用书P80]思想方法系列8 换元法求三角函数的最值(值域)已知函数f (x )=-10sin 2x -10sin x -12,x ∈⎣⎢⎡⎦⎥⎤-π2,m 的值域为⎣⎢⎡⎦⎥⎤-12,2,则实数m 的取值范围是________. 【解析】 记t =sin x ,x ∈⎣⎢⎡⎦⎥⎤-π2,m ,则函数f (x )可转化为g (t )=-10t 2-10t-12=-10⎝ ⎛⎭⎪⎫t +122+2. 因为函数的最大值为2,显然此时t =-12. 令g (t )=-12,得t =-1或t =0,由题意知x ∈⎣⎢⎡⎦⎥⎤-π2,m ,当x =-π2时,t =-1,g (-1)=-12,结合g (t )的图象及函数的值域为⎣⎢⎡⎦⎥⎤-12,2,可得-12≤sin m ≤0,解得-π6≤m ≤0.【答案】 ⎣⎢⎡⎦⎥⎤-π6,0对于函数y =a sin 2(ωx +φ)+b sin(ωx +φ)+c 的最值或值域问题,可通过换元(令t =sin(ωx +φ))转化为y =at 2+bt +c 的最值或值域问题.用换元法求解此类问题时,需注意换元后“元”的取值范围的变化.函数y =(4-3sin x )(4-3cos x )的最小值为________.解析:y =16-12(sin x +cos x )+9sin x cos x , 令t =sin x +cos x , 则t ∈[-2,2], 且sin x cos x =t 2-12,所以y =16-12t +9×t 2-12=12(9t 2-24t +23). 故当t =43时,y min =72. 答案:72[学生用书P377(单独成册)][A 级 基础练]1.函数y =tan ⎝ ⎛⎭⎪⎫π4-x 的定义域是( )A .{x |x ≠π4}B .{x |x ≠-π4}C .{x |x ≠k π+π4(k ∈Z )}D .{x |x ≠k π+3π4(k ∈Z )}解析:选D.y =tan ⎝ ⎛⎭⎪⎫π4-x =-tan ⎝ ⎛⎭⎪⎫x -π4,由x -π4≠π2+k π(k ∈Z ),得x ≠k π+3π4(k ∈Z ).故选D.2.函数y =|cos x |的一个单调增区间是( ) A .[-π2,π2] B .[0,π] C .[π,3π2]D .[3π2,2π]解析:选D.将y =cos x 的图象位于x 轴下方的图象关于x 轴对称翻折到x 轴上方,x 轴上方(或x 轴上)的图象不变,即得y =|cos x |的图象(如图).故选D.3.函数y =tan x +sin x -|tan x -sin x |在区间⎝ ⎛⎭⎪⎫π2,3π2内的图象是( )解析:选 D.y =tan x +sin x -|tan x -sin x |=⎩⎨⎧2tan x ,x ∈⎝ ⎛⎦⎥⎤π2,π,2sin x ,x ∈⎝⎛⎭⎪⎫π,3π2.结合选项中图形知,D 正确.4.(2020·贵阳市第一学期监测考试)已知函数f (x )=cos 2x +3sin 2x ,则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z ) B .[k π,k π+π2](k ∈Z ) C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )解析:选A.f (x )=cos 2x +3sin 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,则由-π2+2k π≤2x +π6≤π2+2k π(k ∈Z ),得-π3+k π≤x ≤π6+k π(k ∈Z ),即函数f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ),故选A.5.(2020·昆明市三诊一模)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π4(ω>0),x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是⎣⎢⎡⎦⎥⎤-22,1,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤0,32 B .⎣⎢⎡⎦⎥⎤32,3 C.⎣⎢⎡⎦⎥⎤3,72 D.⎣⎢⎡⎦⎥⎤52,72 解析:选B.方法一:因为x ∈⎣⎢⎡⎦⎥⎤0,π2,ω>0,所以ωx -π4∈⎣⎢⎡⎦⎥⎤-π4,ωπ2-π4.又当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )∈⎣⎢⎡⎦⎥⎤-22,1,所以π2≤ωπ2-π4≤5π4,解得32≤ω≤3,故选B.方法二:当ω=2时,f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2,所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4, 所以sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,满足题意,故排除A ,C ,D ,故选B.6.比较大小:sin ⎝ ⎛⎭⎪⎫-π18________sin ⎝ ⎛⎭⎪⎫-π10.解析:因为y =sin x 在⎣⎢⎡⎦⎥⎤-π2,0上为增函数且-π18>-π10>-π2,故sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.答案:>7.设函数f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0).若f (x )≤f ⎝ ⎛⎭⎪⎫π4对任意的实数x 都成立,则ω的最小值为________.解析:由于对任意的实数都有f (x )≤f ⎝ ⎛⎭⎪⎫π4成立,故当x =π4时,函数f (x )有最大值,故f ⎝ ⎛⎭⎪⎫π4=1,πω4-π6=2k π(k ∈Z ),所以ω=8k +23(k ∈Z ),又ω>0,所以ωmin=23.答案:238.若函数f (x )=3sin ⎝ ⎛⎭⎪⎫x +π10-2在区间⎣⎢⎡⎦⎥⎤π2,a 上单调,则实数a 的最大值是________.解析:方法一:令2k π+π2≤x +π10≤2k π+3π2,k ∈Z ,即2k π+2π5≤x ≤2k π+7π5,k ∈Z ,所以函数f (x )在区间⎣⎢⎡⎦⎥⎤2π5,7π5上单调递减,所以a 的最大值为7π5.方法二:因为π2≤x ≤a ,所以π2+π10≤x +π10≤a +π10, 而f (x )在⎣⎢⎡⎦⎥⎤π2,a 上单调,所以a +π10≤3π2,即a ≤7π5,所以a 的最大值为7π5. 答案:7π59.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π4.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,求函数f (x )的最大值和最小值.解:(1)令2k π-π2≤2x +π4≤2k π+π2,k ∈Z , 则k π-3π8≤x ≤k π+π8,k ∈Z .故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z .(2)当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,3π4≤2x +π4≤7π4,所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤22,所以-2≤f (x )≤1,所以当x ∈⎣⎢⎡⎦⎥⎤π4,3π4时,函数f (x )的最大值为1,最小值为- 2.10.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6.讨论函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的单调性并求出其值域.解:令-π2≤2x -π6≤π2,则-π6≤x ≤π3. 令π2≤2x -π6≤3π2,则π3≤x ≤5π6.因为-π12≤x ≤π2,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6在区间⎣⎢⎡⎦⎥⎤-π12,π3上单调递增,在区间⎝ ⎛⎦⎥⎤π3,π2上单调递减. 当x =π3时,f (x )取得最大值为1.因为f ⎝ ⎛⎭⎪⎫-π12=-32<f ⎝ ⎛⎭⎪⎫π2=12,所以当x =-π12时,f (x )min =-32. 所以f (x )的值域为⎣⎢⎡⎦⎥⎤-32,1.[B 级 综合练]11.(2020·贵阳市第一学期监测考试)已知函数f (x )=sin(2x +φ),其中φ∈(0,2π),若f (x )≤f ⎝ ⎛⎭⎪⎫π6对于一切x ∈R 恒成立,则f (x )的单调递增区间是( )A .[k π,k π+π2](k ∈Z )B .[k π-π3,k π+π6](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )解析:选B.因为f (x )≤f ⎝ ⎛⎭⎪⎫π6对于x ∈R 恒成立,则f ⎝ ⎛⎭⎪⎫π6为函数f (x )的最大值,即2×π6+φ=2k π+π2(k ∈Z ),则φ=2k π+π6(k ∈Z ),又φ∈(0,2π),所以φ=π6,所以f (x )=sin ⎝ ⎛⎭⎪⎫2x + π6.令2x +π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ),则x ∈⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ).故选B.12.(2020·沈阳市教学质量监测(一))已知函数f (x )=3sin 2x -2cos 2x +1,则下列选项正确的是( )A .当x =π6时,f (x )取得最大值B .f (x )在区间⎣⎢⎡⎦⎥⎤-π3,0上单调递增C .f (x )在区间⎣⎢⎡⎦⎥⎤π3,5π6上单调递减D .f (x )的图象的一条对称轴为直线x =π12解析:选C.由题意可知f (x )=3sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π6.对于选项A ,当x =π6时,f ⎝ ⎛⎭⎪⎫π6=1,不是最大值,选项A 错误;对于选项B ,当2k π-π2≤2x-π6≤2k π+π2,k ∈Z ,即k π-π6≤x ≤k π+π3,k ∈Z 时,f (x )单调递增,可知⎣⎢⎡⎦⎥⎤-π3,0不是f (x )的单调递增区间,选项B 错误;对于选项C ,当2k π+π2≤2x -π6≤2k π+3π2,k ∈Z ,即k π+π3≤x ≤k π+5π6,k ∈Z 时,f (x )单调递减,可知⎣⎢⎡⎦⎥⎤π3,5π6是f (x )的单调递减区间,选项C 正确;对于选项D ,由2x -π6=k π+π2,k ∈Z ,得x =k π2+π3,k ∈Z ,所以直线x =π12不是f (x )的图象的一条对称轴,选项D 错误.故选C.13.(2021·沈阳市教学质量监测(一))设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π5(ω>0),已知f (x )在[0,2π]有且仅有5个零点,则ω的取值范围是________.解析:当x ∈[0,2π]时,ωx +π5∈⎣⎢⎡⎦⎥⎤π5,2πω+π5,因为f (x )=[0,2π]有且仅有5个零点,所以5π≤2πω+π5<6π,所以125≤ω<2910.答案:⎣⎢⎡⎭⎪⎫125,291014.已知f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1.(1)求f (x )的单调递增区间;(2)当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )的最大值为4,求a 的值;(3)在(2)的条件下,求满足f (x )=1且x ∈[-π,π]的x 的取值集合. 解:(1)f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+a +1,由2k π-π2≤2x +π6≤2k π+π2,k ∈Z , 可得k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π3,k π+π6,k ∈Z .(2)当x =π6时,f (x )取得最大值4, 即f ⎝ ⎛⎭⎪⎫π6=2sin π2+a +1=a +3=4,所以a =1.(3)由f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6+2=1,可得sin ⎝⎛⎭⎪⎫2x +π6=-12,则2x +π6=7π6+2k π,k ∈Z 或2x +π6=116π+2k π,k ∈Z , 即x =π2+k π,k ∈Z 或x =5π6+k π,k ∈Z , 又x ∈[-π,π],解得x =-π2,-π6,π2,5π6,所以x 的取值集合为⎩⎨⎧⎭⎬⎫-π2,-π6,π2,5π6.[C 级 提升练]15.(2021·湖北八校第一次联考)若函数f (x )=sin x +3cos x 在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,则函数g (x )=cos x -3sin x 在区间[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值2D .可以取得最小值-2解析:选 D.f (x )=sin x +3cos x =2sin ⎝⎛⎭⎪⎫x +π3,g (x )=cos x -3sin x =2cos ⎝ ⎛⎭⎪⎫x +π3=2sin ⎝⎛⎭⎪⎫x +π2+π3.f (x )在区间[a ,b ]上是减函数,且f (a )=2,f (b )=-2,不妨令a +π3=π2,b +π3=3π2,则a +π2+π3=π,b +π2+π3=2π,故g (x )在[a ,b ]上既不是增函数,也不是减函数,g (x )在[a ,b ]上可以取得最小值-2,故选D.16.已知函数f (x )=(x -a )k ,角A ,B ,C 为锐角三角形ABC 的三个内角,则下列判断正确的是( )A .当k =1,a =2时,f (sin A )<f (cosB )B .当k =1,a =2时,f (cos A )>f (sin B )C .当k =2,a =1时,f (sin A )>f (cos B )D .当k =2,a =1时,f (cos A )>f (sin B )解析:选D.A ,B ,C 为锐角三角形ABC 的三个内角,因为A +B >π2,所以π2>A >π2-B >0,所以sin A >sin ⎝ ⎛⎭⎪⎫π2-B =cos B ,cos A <cos ⎝ ⎛⎭⎪⎫π2-B =sin B ,且sin A ,sin B ,cos A ,cos B ∈(0,1).当k =1,a =2时,函数f (x )=x -2单调递增,所以f (sin A )>f (cos B ),f (cos A )<f (sin B ),故A ,B 错误;当k =2,a =1时,函数f (x )=(x -1)2在(0,1)上单调递减,所以f (sin A )<f (cosB ),f (cos A )>f (sin B ),故C 错误,D 正确.。
高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
高三理科数学二轮复习最值专题(2)三角函数篇类型一:形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值)。
例1.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0 D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 例2.已知函数f (x )=(sin x +cos x )2+cos 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. 解:(1)因为f (x )=sin 2x +cos 2x +2sin x cos x +cos 2x =1+sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4+1, 所以函数f (x )的最小正周期T =2π2=π. (2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+1. 当x ∈⎣⎡⎦⎤0,π2时,2x +π4∈⎣⎡⎦⎤π4,5π4,由正弦函数y =sin x 在⎣⎡⎦⎤π4,5π4上的图象知,当2x +π4=π2,即x =π8时,f (x )取最大值2+1;当2x +π4=5π4,即x =π2时,f (x )取最小值0.综上,f (x )在⎣⎡⎦⎤0,π2上的最大值为2+1,最小值为0.类型二:形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值)。
例3、求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. [思路点拨] 利用换元法求解,令t =sin x .转化为二次函数最值问题.[解]:令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54,∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. 类型三:形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).例4、求函数y =sin x +cos x +3cos x sin x 的最值.[解] 令t =sin x +cos x ,∴t ∈[-2, 2 ].又(sin x +cos x )2-2sin x cos x =1,∴sin x cos x =t 2-12, ∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53,y 大=f (2)=32+ 2. 类型四:“逆向题”,即已知函数的最值去求某参数的值。
高三数学第二轮数学专题复习全套教案目标为高三学生提供一套完整的数学专题复教案,帮助他们加深对数学知识的理解和掌握,为高考做好准备。
复内容1. 函数与方程- 函数的概念和性质- 一次函数和二次函数的图像、性质及应用- 方程的根与解的判定- 一元一次方程组和一元二次方程的求解方法- 函数方程的解法和应用2. 三角函数- 三角函数的概念和性质- 常用三角函数的图像、性质及应用- 三角函数的基本关系式和恒等变换- 解三角函数方程和不等式的方法3. 数列与数学归纳法- 数列的概念和性质- 等差数列和等比数列的推导和应用- 数学归纳法的基本原理和应用- 常见数列问题的解法4. 三角比例和相似- 三角比例的性质和应用- 直角三角形和一般三角形的相似性质- 解三角形的基本方法和应用- 四边形的性质和计算教学安排1. 每个教题讲解时长约为30分钟,包括概念讲解和示例演练。
2. 每个专题分为3节课,共计9节课。
3. 每节课后设置10道练题,供学生完成并检查答案。
4. 每周安排一次模拟考试,让学生检验自己的研究成果。
教案编写原则1. 教案内容简明扼要,重点突出,不涉及复杂的法律问题。
2. 尽可能使用清晰简单的语言,避免使用过多的专业术语。
3. 引用的内容必须能够得到确认,并标明出处。
4. 鼓励学生积极参与讨论和解决问题,培养他们的思考能力和解决问题的能力。
结语这份高三数学第二轮数学专题复全套教案旨在帮助学生复数学知识,强化概念和技巧的掌握。
教案内容简明扼要,注重培养学生的思考能力和解决问题的能力。
希望学生能够利用这份教案,全面提升数学水平,为高考取得好成绩做好准备。
> 注意:该文档的内容是根据提供的信息创作的,内容的准确性和可行性需要进一步核实确认。
冲刺高考二轮 三角函数与解三角形大题备考强化练(原卷+答案)1.在△ABC 中,sin 2C =3 sin C . (1)求∠C ;(2)若b =6,且△ABC 的面积为63 ,求△ABC 的周长.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5 c ,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.3.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为S 1,S 2,S 3.已知S 1-S 2+S 3=32 ,sin B =13.(1)求△ABC 的面积.(2)若sin A sin C =23,求b .4.记△ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知b 2=ac ,点D 在边AC 上,BD sin ∠ABC =a sin C .(1)证明:BD =b ;(2)若AD =2DC ,求cos ∠ABC .5.已知函数f (x )=A sin (ωx +π4 )(A >0,0<ω<1),f (π4 )=f (π2 ),且f (x )在(0,3π4)上的最大值为2 .(1)求f (x )的解析式;(2)将函数f (x )图象上所有点的横坐标缩小为原来的13,纵坐标不变,得到函数g (x )的图象,若g (α2 )=12 ,求sin 2α的值.6.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,点M 在边AC 上,BM 平分∠ABC ,△ABM 的面积是△BCM 面积的2倍.(1)求sin C sin A;(2)若cos B =14,b =2,求△ABC 的面积.7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b =2,c sinB +C2=a sin C (1)求角A 的大小;(2)请在①sin B =217②a +c =7两个条件任选一个,求△ABC 的面积.注:如果分别选择多个条件进行解答,按第一个解答过程计分.8.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且b sin B +C2=a sin B .求:(1)角A ; (2)a -c b 的取值范围.参考答案1.解析:(1)由sin2C =3 sin C ,得2sin C cos C =3 sin C . 因为∠C ∈(0,π),所以sin C ≠0, 所以cos C =32 ,所以∠C =π6. (2)因为∠C =π6,b =6,所以△ABC 的面积S =12 ab sin C =12 a ×6×sin π6 =63 ,所以a =43 .在△ABC 中,由余弦定理,得c 2=a 2+b 2-2ab cos C =(43 )2+62-2×43 ×6×32=12,解得c =23 .所以△ABC 的周长为a +b +c =43 +6+23 =6+63 . 2.解析:(1)依题意,在△ABC 中, ∵cos C =35,∴sin C =1-cos 2C =45.由4a =5 c ,结合正弦定理可得4sin A =5 sin C ,∴sin A =54 sin C =54 ×45 =55. (2)由(1)可知,sin C =45 >0,cos C =35 >0,a =54 c ,∴A <C <π2 ,cos A =1-sin 2A=255.在△ABC 中,sin B =sin (A +C )=sin A cos C +cos A sin C ,∴b =35 a +255 c =11.结合4a =5 c ,可求得a =5.∴△ABC 的面积S =12 ab sin C =12 ×5×11×45 =22.3.解析:(1)∵边长为a 的正三角形的面积为34a 2, ∴S 1-S 2+S 3=34 (a 2-b 2+c 2)=32. 结合余弦定理,得ac cos B =1,即cos B =1ac .由sin B =13 ,得cos B =223 ,∴ac =324 ,故S △ABC =12 ac sin B =12 ×324 ×13 =28.(2)由正弦定理,得b 2sin 2B =a sin A ·c sin C =ac sin A sin C =32423 =94 ,故b =32 sin B =12 .4.解析:(1)由题设,BD =a sin C sin ∠ABC ,由正弦定理知:c sin C =b sin ∠ABC ,即sin Csin ∠ABC=cb,∴BD =acb ,又b 2=ac ,∴BD =b ,得证.(2)由题意知:BD =b ,AD =2b 3 ,DC =b3,∴cos ∠ADB =b 2+4b 29-c 22b ·2b 3 =13b 29-c 24b 23 ,同理cos ∠CDB =b 2+b 29-a 22b ·b 3 =10b 29-a22b 23, ∵∠ADB =π-∠CDB ,∴13b 29-c 24b 23 =a 2-10b 292b 23 ,整理得2a 2+c 2=11b 23 ,又b 2=ac ,∴2a 2+b 4a 2 =11b 23 ,整理得6a 4-11a 2b 2+3b 4=0,解得a 2b 2 =13 或a 2b 2 =32, 由余弦定理知:cos ∠ABC =a 2+c 2-b 22ac =43 -a 22b2 ,当a 2b 2 =13 时,cos ∠ABC =76 >1不合题意;当a 2b 2 =32 时,cos ∠ABC =712 ; 综上,cos ∠ABC =712.5.解析:(1)因为0<ω<1,所以周期T =2πω >2π,又f (x )在(0,3π4 )上的最大值为2 ,且f (π4 )=f (π2),所以当x =12 (π4 +π2 )=3π8 时,f (x )取得最大值2 ,所以A =2 ,且f (3π8 )=2 ,即2 sin (3π8 ω+π4)=2 ,∵0<ω<1,∴π4 <3π8 ω+π4 <5π8 ,故3π8 ω+π4 =π2 ,解得ω=23 ,故f (x )=2 sin (23x +π4); (2)g (x )=f (3x )=2 sin (2x +π4 ),又g (α2 )=2 sin (α+π4 )=12 ,则sin (α+π4 )=122,sin 2α=-cos (2α+π2 )=2sin 2(α+π4 )-1=-34.6.解析:(1)S △ABM =12 AB ·BM ·sin ∠ABM ,S △BCM =12 BC ·BM ·sin ∠MBC ,因为S △ABM =2S △BCM ,∠ABM =∠MBC ,所以AB =2BC , 由正弦定理可得sin C sin A =ABBC=2.(2)由(1)知c =2a ,由余弦定理b 2=a 2+c 2-2ac cos B ,又cos B =14 ,b =2,所以4=a 2+4a 2-4a 2×14,所以a =1,c =2,因为cos B =14 ,且0<B <π,可得sin B =1-cos 2B =154 ,所以S △ABC =12 ac sin B =12 ×1×2×154 =154 .7.解析:(1)由c sin B +C 2 =a sin C 可得:sin C sin B +C2=sin A sin C , 即sin C sinπ-A2=sin A sin C , 即sin C cos A 2 =2sin A 2 cos A2 sin C ,因为0<C <π,0<A <π,所以sin C >0,0<A 2 <π2 ,cos A2 >0,所以sin A 2 =12 , 即A 2 =π6 , A =π3 .(2)选① :sin B =217 ,由正弦定理可得a sin A =bsin B, 即a 32 =2217,解得a =7 , 由余弦定理可得a 2=b 2+c 2-2bc cos A ,即7=4+c 2-2c ,解得c =3(负值舍), 所以S △ABC =12 bc sin A =12 ×2×3×32 =332.选② :a +c =7,由余弦定理可得a 2=b 2+c 2-2bc cos A , 即(7-c )2=4+c 2-2c ,解得c =154,所以S △ABC =12 bc sin A =12 ×2×154 ×32 =1538 .8.解析:(1)∵b sinB +C2=a sin B , ∴sin B cos A2 =sin A sin B ,∵B ∈(0,π),∴sin B ≠0, ∴cos A 2 =2sin A 2 cos A 2,∵A ∈(0,π),∴cos A 2 ≠0,∴sin A 2 =12 ,∵0<A 2 <π2 ,∴A 2 =π6 ,∴A =π3.(2)由正弦定理,a -c b =sin A -sin Csin B =sin π3-sin (2π3-B )sin B=32-32cos B -12sin B sin B =32 ·1-cos B sin B -12=32 ·1-(1-2sin 2B 2)2sin B 2cosB 2 -12 =32 tan B 2 -12. 因为0<B <2π3 ,所以0<B 2 <π3 ,所以0<tan B2<3 ,所以-12 <32 tan B 2 -12 <1,所以a -c b 的取值范围是(-12 ,1).。
2013届高三二轮复习三角函数专题三 解三角形专题——主要内容就正弦定理,余弦定理,面积公式 1、已知△ABC的内角A,B,C所对的边分别为a,b,c且a=2,cosB=35. (1)若b=4,求sinA的值. (2)若△ABC的面积S△ABC=4,求b,c的值.
2、在ABC中,已知45A,4cos5B. (Ⅰ)求cosC的值; (Ⅱ)若10,BCD为AB的中点,求CD的长.
3、在ABC△中,角ABC,,的对边分别为tan37abcC,,,. (1)求cosC; (2)若25CACB,且9ab,求c. xyBA
O
4、如图,在平面直角坐标系xOy中,锐角和钝角的终边分别与单位圆交于A,B两点. (Ⅰ)若点A的横坐标是35,点B的纵坐标是1213,求sin()的值; (Ⅱ) 若∣AB∣=32, 求OAOB的值以及三角形OAB的面积
5、在ABC中,内角A,B,C的对边分别为a,b,c.已知cosA-2cosC2c-a=cosBb. (1)求sinsinCA的值; (2)若cosB=14,2b,求ABC的面积. 6、一缉私艇发现在北偏东45方向,距离12 nmile的海面上有一走私船正以10 nmile/h的速度沿东偏南15方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东45的方向去追,.求追及所需的时间和角的正弦值.
第二部分:选填填空专题 1. 在△ABC中,,C=65,a=3,b=1,则c= ( )
(A)7 (B)1 (C)4+3 (D)34 2. 已知ABC中,030,1,3Bba,则其面积等于 ( )
A.23或3 B.23 C.23或43 D.43 3. ABC中,若2,3,4cba,则ABC的外接圆半径为 ( ) A.15158 B.151516 C.13136 D.131312 4. 在ABC中,下列关系式不一定成立的是 ( ) A.sinsinaBbA B.coscosabCcB C.2222cosabcabC D. sinsinbcAaC 5. 若△ABC的三个内角满足sin:sin:sin5:11:13ABC,则△ABC( ) A.一定是锐角三角形 B.一定是直角三角形 C.一定是钝角三角形 D.可能是锐角三角形,也可能是钝角三角形 6. 在△ABC中,sinA>sinB是A>B的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
7、在△ABC中,a,b,c分别是角A,B,C所对的边.若A=π3,b=1,△ABC的面积为32,
A B C 北 东 则a的值为( ) A.1 B.2 C.32 D.3
8、在ABC中,三内角满足B+C=2A,且最大边与最小边分别是方程212320xx的两根,则ABC外接圆的面积是( ) A.16 B.64 C.124 D.15 9、若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC, 那么ΔABC是( ) A.直角三角形 B.等边三角形 C.等腰三角形 D.等腰直角三角形
10、一质点受到平面上的三个力F1→、F2→、F3→(单位:牛顿)的作用而处于平衡状态,已知F1→、F2→成60°角,且F1→、F2→的大小分别为2和4,则F3
→的大小为 ( )
A.6 B.2 C.25 D.27 11、(2012·北师大附中模拟)一艘海轮从A处出发,以每小时40海里的速度沿东偏南50°
方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是东偏南20°,在B处观察灯塔,其方向是北偏东65°,那么B、C两点间的距离是( ) A.102海里 B.103海里 C.202海里 D.203海里
12. (1)在△ABC中,a=32,b=22,B=45°,则A等于____________ (2)ABC中,若,Asinb2a3则B的值为___________ 13. 在△ABC中,角A、B、C所对的边分别为a、b、c ,若CaAcbcoscos3, 则Acos_________. 14、以向量2,4,2,2ba所在线段为邻边的平行四边形的面积为_______ 15、如图,在四边形ABCD中,已知AD⊥CD,AD=10, AB=14,∠BDA=60°,∠BCD=135°,
则BC的长为________.
16、在200米高的山顶上,测得山下一塔顶与塔底的俯角分别为30°、60°,则塔高为________
2013届高三二轮复习 三角函数专题三 2013-3-24 1、已知△ABC的内角A,B,C所对的边分别为a,b,c且a=2,cosB=35. (1)若b=4,求sinA的值.(2)若△ABC的面积S△ABC=4,求b,c的值. [解] (1)∵cosB=35>0,且0<B<π
∴sinB=1-cos2B=45
由正弦定理asinA=bsinB得sinA=asinBb=2×454=25. (2)∵S△ABC=4,即12acsinB=4 ∴12×2×c×45=4,∴c=5 由余弦定理b2=a2+c2-2accosB
∴b= 22+52-2×2×5×35=17. 2、在ABC中,已知45A,4cos5B. (Ⅰ)求cosC的值; (Ⅱ)若10,BCD为AB的中点,求CD的长. 解:(Ⅰ)4cos,5B且(0,180)B,∴23sin1cos5BB.-------------2分 coscos(180)cos(135)CABB ------ 3分
2423cos135cossin135sin2525BB2
10. -----------6分
(Ⅱ)由(Ⅰ)可得2227sin1cos1()21010CB. ---------8分 由正弦定理得sinsinBCABAC,即10722102AB,解得14AB. ---------10分 在BCD中,7BD, 22247102710375CD, 所以37CD. ------12分
3、在ABC△中,角ABC,,的对边分别为tan37abcC,,,. xyBA
O
(1)求cosC; (2)若25CACB,且9ab,求c. 解:(1)sintan3737cosCCC, 又22sincos1CC 解得1cos8C. tan0C,C是锐角. 1cos8C.
(2)∵25CACB,即abcosC=25 ,又cosC=81 20ab. 又9ab 22281aabb. 2241ab.
2222cos36cababC. 6c.
4、如图,在平面直角坐标系xOy中,锐角和钝角的终边分别与单位圆交于A,B两
点. (Ⅰ)若点A的横坐标是35,点B的纵坐标是1213,求sin()的值; (Ⅱ) 若∣AB∣=32, 求OAOB的值以及三角形OAB的面积 解:(Ⅰ)根据三角函数的定义得, 3cos5, 12sin13. …………2分 ∵的终边在第一象限,∴4sin5. ………3分 ∵的终边在第二象限,∴ 5cos13.………4分 ∴sin()=sincoscossin=455()13+351213=1665.……………7分 (Ⅱ)方法(1)∵∣AB∣=|AB|=|OBOA|, ……………………………………9分 又∵222||222OBOAOBOAOAOBOAOB,…………………11分 ∴9224OAOB, ∴18OAOB.………13分
方法(2)∵222||||||1cos2||||8OAOBABAOBOAOB, …………………10分 ∴OAOB=1||||cos8OAOBAOB . ………………………………… 13分 5、在ABC中,内角A,B,C的对边分别为a,b,c.已知cosA-2cosC2c-a=cosBb. (1)求sinsinCA的值; (2)若cosB=14,2b,求ABC的面积. 【解析】(Ⅰ)由正弦定理得2sin,aRA2sin,bRB2sin,cRC所以cosA-2cosC2c-a=
cosBb=2sinsinsinCAB,即
sincos2sincos2sincossincosBABCCBAB,即有sin()2sin()ABBC,
即sin2sinCA,所以sinsinCA=2. (Ⅱ)由(Ⅰ)知: sinsincCaA=2,即c=2a,又因为2b,所以由余弦定理得: 2222cosbcaacB,即222124224aaaa,解得1a,所以c=2,又因为
cosB=14,所以sinB=154,故ABC的面积为11sin1222acB154=154. 6、一缉私艇发现在北偏东45方向,距离12 nmile的海面上有一走私船正以10 nmile/h的速度沿东偏南15方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东45的方向去追,.求追及所需的时间和角的正弦值. 解:设缉私艇在A点出发,走私船在C点逃窜,经过t小时后,缉私艇在B点追上走私船。 有题设得:CAB,1207545ACB,12AC,tBC10,tAB14。
在ABC中,由正弦定理得:ACBABACBBCsinsin,即120sin14sin10tt
1435sin
在ABC中,由余弦定理得:ACBBCACBCACABcos2222 即:ttt12010014419622
整理得:06542tt 解得:432tt或 2t 答:经过2小时后,缉私艇在B点追上走私船,角的正弦值为1435sin。
A B C 北 东