线性代数(第五版)课件
- 格式:pptx
- 大小:6.27 MB
- 文档页数:460
第1页 第2页第一章 行列式行列式是研究线性方程组的一个有力工具,本章给出了行列式的定义、性质及其计算方法.§1 全排列及其逆序数一、排列及其逆序数定义对于n 个不同的元素,可以给它们规定一个次序,并称这规定的次序为标准次序.例如1,2,,n 这n 个自然数,一般规定由小到大的次序为标准次序.定义 1 由n 个自然数n ,,2,1 组成的一个有序数组n i i i ,,,21 ,称为一个n 元全排列,简称为排列.例如由1,2,3这三个数组成的123,132,213,231,312,321都是3元(全)排列.定义 2 在一个排列里,如果某一个较大的数码排在一个较小的数码前面,就说这两个数码构成一个逆序(反序),在一个排列里出现的逆序总数叫做这个排列的逆序数,用),,,(21n i i i τ表示排列n i i i ,,,21 的逆序数.根据定义2,可按如下方法计算排列的逆序数: 设在一个n 级排列12n i i i 中,比(1,2,,)t i t n =大的且排在t i 前面的数共有i t 个,则t i 的逆序的个数为i t ,而该排列中所有数的逆序的个数之和就是这个排列的逆序数.即12121().nn n i i i i i t t t t τ==+++=∑例1 计算排列45321的逆序数.解 因为4排在首位,故其逆序数为0;比5大且排在5前面的数有0个,故其逆序数为0; 比3大且排在3前面的数有2个,故其逆序数为2; 比2大且排在2前面的数有3个,故其逆序数为3; 比1大且排在1前面的数有4个,故其逆序数为4. 可见所求排列的逆序数为(45321)002349τ=++++=.定义 3 逆序数为偶数的排列叫做偶排列, 逆序数为奇数的排列叫做奇排列.),,,(21n i i i τ=2i 前面大于2i 的元素个数+3i 前面大于3i 的元素的个数++ n i 前面大于n i 的元素的个数,例如:3300)2341(=++=τ, 逆序数为3,)2341(τ为奇排列. 6321)4321(=++=τ, 逆序数为6,)4321(τ为偶排列.定义4 把一个排列中某两个数码i 和j 互换位置,而其余数码不动,就第3页 第4页得到一个新排列.对一个排列所施行的这样一个变换叫做一个对换.例如排列2341经过元素2,4对换变成排列4321,可记为43212341)4,2(−−→−定理1 对换改变排列的奇偶性. 证明 先证相邻对换设排列为m l b b ab a a 11对换a 与b .m l b b ba a a 11 当b a <时, 经对换后a 的逆序数增加1 ,b 的逆序数不变; 当b a >时, 经对换后a 的逆序数不变,b 的逆序数减少1. 因此对换相邻两个元素,排列改变奇偶性.再证非相邻对换,现设排列为 n m l c bc b ab a a 111现来对换a 与bn m l m n m l c c b abb a a c bc b ab a a 111111−−−−→−次相邻对换nm l m n m l c ac b bb a a c bc b abb a a 1111111−−−−→−+次相邻对换nm l m n m l c ac b bb a a c bc b ab a a 11112111−−−−−→−∴+次相邻对换因此对换两个元素,排列改变奇偶性.也就是说,只要经过一次对换,奇排列变成偶排列,而偶排列变成奇排列.推论 奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数.二、排列及其逆序数性质与定理性质1设n i i i 21和n j j j 21是n 个数码的任意两个排列,那么总可以通过一系列对换由n i i i 21得出n j j j 21.引理1 对换的可逆性——即对同一排列连续施行两次同一对换排列还原.所以任意n 元排列n i i i 21可经过一系列对换变为自然排列n 12.而自然排列n 12可经一系列对换变为任意一个n 元排列n j j j 21.事实上,由引理1可知:任意一个n 元排列n j j j 21可经一系列对换变为自然排列n 12,由引理1对换的可逆性,故自然排列可经(同样的)一系列对换变为任一排列.定理2 2≥n 时,n 个数码的排列中,奇排列与偶排列的个数相等,均为2!n 个. 证明:设n 个数的排列中,奇排列有p 个,偶排列有q 个,则!n q p =+,对p 个奇排列,施行同一对换,则由定理1得到p 个偶排列.(而且是p 个不同的偶排列)因为总共有q 个偶排列,所以q p ≤.同理 p q ≤.第5页 第6页所以 2!n q p ==.§2行列式的定义引言 三阶行列式的构成规律为:322113312312332211333231232221131211a a a a a a a a a a a a a a a a a a ++= 322311332112312213a a a a a a a a a ---其中:符号333231232221131211a a a a a a a a a 是由23个元素ij a 构成的三行、三列方表,横排叫行,纵排叫列;在上述形式下元素ij a 的第一个下标叫行下标,第二个下标叫列下标.从形式上看,三阶行列式是上述特定符号表示的一个数,这个数由一些项的和而得:1)项的构成:由取自不同的行又于不同的列上的元素的乘积; 2)项数:三阶行列式是3!=6项的代数和;3)项的符号:每项的一般形式可以写成321321j j j a a a 时,即行标为自然排列时,该项的符号为)(321)1(j j j τ-,即由列标排列321j j j 的奇偶性决定.一、n 阶行列式的定义 定义5 n 阶行列式定义为∑+-==nn nn n n j j j i i i j i j i j i i i i j j j nnn n nna a a a a a a a a a a a A212122112121)()(212222111211)1(ττ用符号nnn n nn a a a a a a a a a 212222111211表示由2n 个数ij a 所组成的n 阶行列式,简记为A 或D ,这是一个数,其中n i i i 21和n j j j 21都是n 级排列,∑表示对所有的n 级排列求和.由定义可以看出,n 阶行列式的值等于所有取自不同的行、不同的列上的n 个元素的乘积n n j i j i j i a a a 2211的代数和,共有!n 项,每一项前面的符号由排列n i i i 21和n j j j 21的逆序数)(21n i i i τ+)(21n j j j τ决定.第7页 第8页另外行列式的还可以定义为∑-==nn nj j j j j j nnn n nna a a a a a a a a a a a A 212121)(212222111211)1(τ或∑-==n i i i i i i nnn n nnn n a a a a a a a a a a a a A 21)(2122221112112121)1(τ以上两个定义式分别以行列的排列为标准序列,其每一项前面的符号有n j j j 21和n i i i 21的逆序数决定.例2 在四阶行列式中,21321443a a a a 应带什么符号?解 1)按行列式定义5计算,因为2132144314213243a a a a a a a a =,而4123的逆序数为 (4123)01113τ=+++=,所以21321443a a a a 的前面应带负号. 2)按行列式定义5计算,因为21321443a a a a行指标排列的逆序数为 (2314)00202τ=+++=,列指标排列的逆序数为 (1243)00011τ=+++=. 所以21321443a a a a 的前面应带负号.例3 计算行列式44322321121100000000a a a a a a .分析 按行列式定义,每一项都是取自不同行不同列的4个元素的乘积,共有!4项.但此行列式中有很多零元素,因此有的项为零,故只需找出不含零元素的项,不妨设各个字母表示的都是非零元素.于是在第一行中只有两个非零元素11a 和12a .当第一行取11a 时,第二行只能取23a (21a 与11a 同列,故不能取),第三行只能取32a ,第四行只能取44a ,即44322311a a a a 是其中的一项.另外,当第一行取12a 时,第二行可以取21a 和23a ,但当第二行取23a ,第三行只能取零元素,故第二行只可以取21a ,第三行取33a ,第四行取44a ,即另一非零项为44332112a a a a .解 44332112)2134(44322311)1324()1()1(a a a a a a a a D ττ-+-= 4433211244322311a a a a a a a a --=第9页 第10页例4 证明n 行列式(1)nn nnnnnnn n a a a a a a a a a a a a a a a 22112221121121222111000==,(2)11,212)1(1,121,21)1(n n n n n nn n n n n n na a a a a a a a a-----=证 (1) 记nnn n a a a a a a D21222111100=nnnna a a a a a D 0222112112=由于当i j >时,0=ij a ,故1D 中可能不为0的元素i ip a ,其下标应有i p i ≤,即,11≤p ,22≤p .,n p n ≤在所有排列n p p p 21中,能满足上述关系的排列只有一个自然排列n 12,所以1D 中可能不为0的项只有一项nn a a a 2211)1(τ-,此项的符号所以,1)1()1(0=-=-τnn a a a 22111D =.由于当i j <时,0=ij a ,故2D 中可能不为0的元素i ip a ,其下标应有i p i ≥,即,11≥p,22≥p .,n p n ≥在所有排列n p p p 21中,能满足上述关系的排列只有一个自然排列n 12,所以2D 中可能不为0的项只有一项nn a a a 2211)1(τ-,此项的符号所以,1)1()1(0=-=-τnn a a a 22112D = 得证.(2) 根据行列式定义11,211,121,21)1(n n n t nnn n n n n n a a a a a a a a a----=其中t 为排列21)1( -n n 的逆序数,故2)1(210-=++++=n n n t 证毕. 二、子式、余子式与代数余子式第11页 第12页(1)k 阶子式:设nij a D =,在D 中取定某k 行k 列,位于这些行列相交处的元素构成的k 阶行列式,叫做D 的一个k 阶子式.(2)余子式:设nija D =)1(>n ,将元素ij a 所在的行、所在的列的元素划掉后余下的1-n 阶子式,叫做元素ij a 的余子式,记为ij M .nnj n j n n n ni j i j i i i n i j i j i i i n j j n j j ij a a a a a a a a a a a a a a a a a a a a a a a a a M1,1,21,11,11,12,11,1,11,11,12,11,121,21,2222111,11,11211+-+++-+++-+-----+-+-= (3)代数余子式:设nija D =)1(>n ,元素ij a 的余子式ij M 附以符号ji +-)1(后,叫做元素ij a 的代数余子式,记为ij A .即ij A =ji +-)1(ij M .三、行列式展开式定理定理3 设nij a D =,则D 等于它的任意一行(列)的所有元素与各自对应的代数余子式的乘积的和.即⎩⎨⎧++++++=nj nj j j jj inin i i i i A a A a A a A a A a A a D 22112211 ),,2,1,(n j i =.例5 已知,3256411222245233355554321=A求(1)55545552515432A A A A A ++++,(2)333231A A A ++及3534A A +.解:由行列式的性质可知(1) 55545552515432A A A A A ++++=05432111222245233355554321=(2) 5A 31+5A 32+5A 33+3A 34+3A 35 =03256411222335553355554321=第13页 第14页2A 31+2A 32+A 33+A 34+A 35 =03256411222112223355554321=解出A 31+A 32+A 33=0,A 34+A 35 =0 .§3行列式的性质设行列式nnn n n n a a a a a a a a a D212222111211=nnn nn n Ta a a a a a a a a D 212221212111=行列式TD 叫做行列式D 的转置行列式. 性质1 行列式与它的转置行列式相等,即TD D =.证明 用数用归纳法证明,对于二阶行列式性质1显然成立,假设对于n-1阶行列式性质1成立,把n 阶行列式D按第一行展开,依据归纳法假设可得∑∑=+=+=-=-=nj T j T j j nj j j jD M a M a D 11111111)1()1(右端恰为T D 按第一列的展开式.性质2 互换行列式的两行(列),行列式变号.证:先证明邻行互换时行列式变号,设1D 是由n 阶行列式D 的第i 行与第1+i 行互换得到的行列式:行行1,1,,11,1,11,11+=++--i i a a a a a a D n i i ni i n i i把1D 按第1+i 行展开∑∑=+=++-=--=-=nj ij ij j nj ij ij ji D M a M a D 11111)1()1(设2D 是由n 阶行列式D 的第i 行与第j 行互换得到的行列式,不妨设j i <,于是2D 可看成D 的第i 行依次经过i j -个邻行互换后到第j 行位置,而原第j 行又依次经过1--i j 邻行互换后到第i 行位置,因此D D D i j i j -=-=--+-)1()(2)1(推论:如果行列式有两行(列)完全相同,那么此行列式为零.第15页 第16页性质3:行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.即111211112112121212.n n i i in i i in n n nnn n nna a a a a a ka ka ka k a a a a a a a a a = 第i 行(或列)乘以k ,记为k i ⨯γ(或i c k ⨯).推论:行列式中某一行(列)所有元素的公因子可以提到行列式符号的外面.性质4:行列式中如果有两行(列)元素成比例,则此行列式为零. 性质5:若行列式的某一行(列)的元素都是两数之和.nnn inin i i n a a a a a a a a D111111'+'+= 那么D 等于下列两个行列式之和nnn ini n nn n in i n a a a a a a a a a a a a D1111111111''+= 若n 阶行列式每个元素都表示成是两数之和,则它可分解成2n个行列式.如a xb y a b yx b yc zd w c d w z d w ++++=+++++a b ayx b xyc dc wz dz w=+++性质6 把行列式的某一行(列)各元素乘以同一数后加到另一行(列)对应元素上去,行列式的值不变,即j i ≠时nnn in i nnn n jn in j i n a a a a a a a a ka a ka a a a 11111111111=++性质7 行列式任一行(列)各元素与另一行(列)对应元素的代数余子式乘积之和等于零,即第17页 第18页)(02211j i A a A a A a jn in j i j i ≠=+++或)(02211j i A a A a A a nj ni j i j i ≠=+++§4行列式的计算在计算三阶以上的行列式时,一般要注意观察其结构特点,利用行列式的有关性质,结合使用定义法、数学归纳法、递推法、换元法、析因子法、加边法等方法简化计算.一、直接利用行列式定义的证明 例6 证明行列式000000000055544544353425242322211514131211==a a a a a a a a a a a a a a a a D 证 按行列式定义,每一项都是取自不同行不同列的5个元素的乘积,在第一列中只有两个非零元素11a 和21a ,当第一列取元素11a ,第二列只能取22a ,而第三列所能够取的元素只有零元素,故这一项为零.同理,当第一列取21a 时,这一项也为零.行列式其它项也都为零因子,所以.0=D注 (1) 用n 阶行列式的定义直接计算行列式是相当麻烦的,因此仅当一个行列式的每一行(列)上n 个元素中有少数元素不为零,才用定义计算.其关键是处理好每一项前的符号,求出逆序数.一般方法是按行序排好,计算列排列的逆序数.(2) 结论:在一个n 阶行列式中,等于零的元素如果比)(2n n -还多,那么这个n 阶行列式必为零.二、利用行列式的性质化成三角形行列式计算例7 计算n 阶行列式ab b b b abbb b a bb b b aD=.解 这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,从第2列开始到第n 列都加到第1列上得ab b b n a babbn a b b a b n a b b b b n a D)1()1()1()1(-+-+-+-+=第19页 第20页ab b b abb b a b b b b n a1111])1([-+=ba b a b b a b bbb n a ----+=0001])1([1)]()1([---+=n b a b n a注 行列式每行(列)元素的和相等时,可将行列式的各行(列)加至第一行(列),利用行列式性质提取公因子后化简计算.三、降阶法:利用行列式按行(列)展开定理,化成较低行列式的计算例8 计算n 阶行列式)1(10)2(00000220000111321--------=n n n n n D n.解 注意到第2,3n ,, 行的元素之和都是零,将第2,3n ,, 列都加到第1列上去,然后按第1列展开,得:)1(10)2(00000220000101322)1(--------+=n n n n n n n D n)1(10)2(0000033000022000012)1(--------+=n n n n n)!1()1(211+-=-n n 四、递推公式法:应用行列式的性质,把一个n 阶行列式表示为具有相同结构的较低阶行列式的线性关系式,再根据此关系式递推得n 阶行列式的值.第21页 第22页例9 计算n 阶行列式xyx y x ya a a a xa D n ---+= 0000000. 解: 将行列式按第n 列展开,可得yx xyx ya xD D nn n ----+=+-11)1(11--+=n n ay xD=++=+=∴-----12211)(n n n n n n ay ay xD x ay xD D22111----++++=n n n n ayx x ay ay D x )(221---++++=n n n n yx x y y a x注:此题可按第一行展开即得结果.例10 计算n 阶行列式312300000310023100023=n D .解: 将行列式按第1列展开,可得2123---=n n n D D D (1)设)(211----=-n n n n xD D y xD D …….……(2) 比较(1)式与(2)式系数得⎩⎨⎧==+23xy y x所以⎩⎨⎧==⎩⎨⎧==12212211y x y x 或. 分别代入(2)式得⎩⎨⎧=-==-=-=-==-=--------1)2()2(22)(2)(212211122211D D D D D D D D D D D D n n n n nn n n n n (3)其中7,321==D D消去(3)式中的1-n D 得:.121-=+n n D第23页 第24页注 (1) 若行列式的某一行(列)至多有两个非零元素一般按此行(列)展开计算.(2) 递推法是计算或证明高阶行列式的惯用方法,有时和数学归纳法结合使用.五、用数学归纳法进行计算或证明. 例11 用数学归纳法证明θθθθθθθsin )1sin(cos 211cos 200000cos 210001cos 210001cos 2+==n D n证明 当1=k 时,θθθθθθsin 2sin sin sin cos 2cos 21===D 等式成立. 假设1-≤n k 时,等式成立,则只需证明当n k =时,等式也成立. n D 按第一行展开有θθθθθθcos 211cos 200000cos 210001cos 210001cos 2cos 2=n Dθθθθcos 211cos 200000cos 210001cos 2000011)1(21+-+21cos 2---=n n D D θ.根据归纳假设得:θθθθθθθsin )1sin(sin ]1)2sin[(sin sin cos 2+=---=n n n D n . 例12 证明n 阶行列式)(1000001000100011βαβαβαβααββαβααββααββα≠--=+++++=++n n n D证明 当1=n 时,βαβαβαβα--=+=+=221D 结论成立.当2=n 时,第25页 第26页βαβααββαβααββα--=-+=++=3322)(1D 结论成立. 假设k n <时,等式成立,则只需证明当k n =时,把k D 按其第1行展开,有βααββαβααββααββα+++++=100000010001000k D110000010001000)(-++++++=k βααββαβααββααββαβα210000010001000-+++++=k βααββαβααββααββααβ21)(---+=k k D D αββαβαβααββαβαβα-----+=--11)(k k k kβαβα--=++11k k故对一切自然数n ,结论都成立.六、 利用已知行列式,进行计算,其中最重要的已知行列式是范德蒙行列式.例13计算n 阶行列式1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+. 解:把D n+1的第n+1行换到第1行,第n 行换到第2行,…,同时将D n+1的第n+1列换到第1列,第n 列依次换到第2列,…,再有范德蒙行列式,得第27页 第28页nn nn a n a n a a n a n a D)1()(11111+--+--=+)(!2)!1(!11j i n n n i j -=-=∏+≤<≤ .七、加边升阶法,即不改变行列式的值的前提下适当增加一行一列或m 行m 列,以便容易求值.例14计算n 阶行列式1112212221212121+++=n n n nn n x x x x x x x x x x x x x x x D.解 1010101221222121212121+++=n n n n nnn x x x x x x x x x x x x x x x x x x D从第二行开始依次减去第一行的),,2,1(n i x i =倍,得10001000112121 nn x x x x x x ---=上式从第二列开始依次乘),,2,1(n i x i =倍加到第1列上的,得1010000112112n nj jx x x x ∑=+=上式∑=+=n j j x 121 例15计算n 阶行列式nn n n n n n n D n n n n n n n n -------------=----2313131311244444463333332222222 . 解: 对原行列式加边,增加第1行全为1,第一列除11a 外全为0,构造新的行列式为:第29页 第30页nn n n n n D n n n n n n -------=---211106333302222201111将第1行乘以i 加到第),,3,2(n i i =行,第i 行提取因数),,3,2(n i i =,得:nn n n D n n n n n n 2121211333122211111!------=将第n 列逐列移到第2列,第1-n 逐列移到第3列,等等,即得范德蒙德行列式,故∏=---=nk n n k D 12)2)(1()!()1(.例16 计算n 阶行列式).0(,212121≠+++=x a x a a a a x a a a a x D nnn解:nn nn a x a a a a x a a a a x a a a D +++=212121210001 xx x a a a i i n100100111n ,2,3,121---+=行行减第第 xx x a a a xa i xi n nj j100000011n ,2,3,11211-++=∑=列上加到第列乘以第 ⎪⎪⎭⎫⎝⎛+=∑=n j jn x a x 11. 八、析因子法,若行列式D 中一些元素是x (或某个参变量)的多项式常用析因子法.第31页 第32页例17 计算行列式 229132513232213211x x D --=解 D 可以看作关于x 的多项式)(x f .观察D 的一次因式, 当1±=x 时,08132513232113211)1(==±f当2±=x 时,05132513232213211)2(=-=±f可见)(x f 有因子:2,2,1,1+-+-x x x x另外,从行列式定义可知,D 中含有x 的最高次数为4. 故)2)(2)(1)(1(+-+-=x x x x C D 令0=x ,直接计算得,12-=D 于是3-=C故)2)(2)(1)(1(3+-+--=x x x x D .例18 计算行列式 11111321321121121221nn n n a a a a x a a a a x a a a a x a a a a x D---=解 观察行列式的特点,当x 取n a a a ,,,21 时,行列式都有两行相同,且此时的行列式值为零.故可将行列式看作关于x 的多项式,且此多项式有因子n a x a x a x ---,,,21 .故可设)())((21n a x a x a x C D ---=D 中最高项为n x ,系数为1.故1=C即行列式为)())((21n a x a x a x D ---= .以上方法,前三种方法是最基本的,需要指出的是:行列式的计算方法往往不是唯一的,有时需要多种方法交叉使用.由于行列式的计算方法很多,但具体到一个题目用什么方法去解往往不是一件容易决定的事情,必须首先观察行列式的具体特征,根据行列式的具体特征选择方法.第33页 第34页§5 克莱姆(Cramer )法则本节作为行列式的应用,完满地解决了含n 个未知量n 个方程的线性方程组,在其系数行列式不为零时,其解的存在性、个数及求解(公式)问题;理论完整且重要,定理的证明可按消元法的思想运用行列式的依行依列展开公式为之.设给定一个含n 个未知量n 个方程的线性方程组:⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212********* (1) 其系数构成的行列式nnn n in i i n a a a a a a a a a D212111211=叫做方程组(1)的(系数)行列式.克莱姆(Cramer 法则)对线性方程组(1),当它的(系数)行列式0≠D 时有且仅有一个解:DD x D Dx D D x n n ===,,,2211 .其中j D 是把D 的第j 列的元素换以方程组的常数项n b b b ,,21 而得到的n 阶行列式.推论 含有n 个未知数n 个方程的齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++000221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a (2) 当它的(系数)行列式0≠D 时仅有零解. 例19求一个一元二次多项式f (x ),使满足,0)1(=f ,3)2(=f .28)3(=-f解:设所求多项式为c bx ax x f ++=2)(, 由条件,0)1(=f ,3)2(=f .28)3(=-f可知⎪⎩⎪⎨⎧=+-=++=++28393240c b a c b a c b a,401328123110,201391241111-=-=-=-=D A 20283932411,60128913410132-=-===D D由克莱姆法则,得,1,3-,2===c b a 知13-2)(2+=x x x f .。