2018年高二数学寒假作业(人教A版必修5)线性规划word版含答案
- 格式:doc
- 大小:541.00 KB
- 文档页数:12
高二数学上册寒假作业1——直线与线性规划(带答案)——直线与线性规划一、填空题:1.直线x cos α+3y +2=0的倾斜角的范围是____ __. 2.不等式3<+y x 表示的平面区域内的整点个数为___ __.3.两条直线330x y +-=与610x my ++=平行,则它们间的距离为___ __.4.在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是___ __.5.直线过点(2,-3),且在两个坐标轴上的截距互为相反数,则这样的直线方程是___________ . 6.过点P (1,2)作直线l ,使直线l 与点M (2,3)和点N (4,-5)距离相等,则直线l 的方程为____ . 7.已知A (4,0)、B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是____ __.8.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 __.9.一条直线过点P (1,2)且被两条平行直线4x +3y +1=0和4x +3y +6=0截取的线段长为2,求这条直线的方程 .10.在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是______.11.已知b >0,直线(b 2+1)x +ay +2=0与直线x -b 2y =0互相垂直,则ab 的最小值等于_____. 12.已知直线l :Ax +By +C =0(A ,B 不全为0),两点111(,)P x y ,222(,)P x y ,若1122()()0Ax By C Ax By C ++++>,且1122Ax By C Ax By C ++>++,则正确是_______.①直线l 与线段P 2 P 1的延长线相交 ②直线l 与线段P 2 P 1相交 ③直线l 与线段P 2 P 1的延长线相交 ④直线l 与直线P 2 P 1不相交13.已知定点P (6,4)与直线l 1:y =4x ,过点P 的直线l 与l 1交于第一象限的Q 点,与x 轴正半轴交于点M ,使△OQM 面积最小的直线l 的方程________________.14.已知△ABC 的两个顶点坐标为B (1,4)、C (6,2),顶点A 在直线x -y +3=0上,若△ABC 的面积为21.则顶点A的坐标为.二、解答题:15.(1)若x,y满足约束条件356023150x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩当且仅当x=y=3时,z=ax-y取得最小值,求实数a的取值范围;(2)已知变量x,y满足约束条件10230x yx y--≤⎧⎨--≥⎩,当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值a2+b2的最小值.16.设直线l1:y=2x与直线l2:x+y=3交于P点.(1)当直线l过P点,且与直线l0:2x+y=0平行时,求直线l的方程;(2)当直线l过P点,且原点O到直线l的距离为1时,求直线l的方程.17.在直线l:3x-y-1=0上求一点P,使得P到A(4,1)和B(0,4)的距离之差最大.解:如图所示,设点B关于l的对称点为B′,连结AB′并延长交l于P,此时的P满足P A-PB 的值最大.18.有一批同规格的钢条,每根钢条有两种切割方式,可截成长度为a的钢条2根,长度为b的钢条1根;或截成长度为a的钢条1根,长度为b的钢条3根.现长度为a的钢条至少需要15根,长度为b的钢条至少需要27根.问:如何切割可使钢条用量最省?19.设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ).(1)若直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)若a >-1,直线l 与x 、y 轴分别交于M 、N 两点,求△OMN 面积取最小值时,直线l 对应的方程.20.过点M (2,4)作互相垂直的两条直线12l l ,,直线1l 与x 轴正半轴交于点A ,直线2l 与y 轴正半轴交于点B .(1)当△AOB 的面积达到最大值时,求四边形AOBM 外接圆方程;(2)若直线AB 将四边形OAMB 分割成面积相等的两部分,求△AOB 的面积.答案 一、填空题: 1.解析:[0,π6]∪[5π6,π) 解析:由直线x cos α+3y +2=0,所以直线的斜率为k =-cos α3.设直线的倾斜角为β,则tan β=-cos α3,又因为-33≤-cos α3≤33,即-33≤tan β≤33,所以β∈[0,π6]∪ [5π6,π).2. 13个3. 7104. 45.32y x =-或5x y -=6. 4x +y -6=0或3x +2y -7=0 7. 210 8. 18 9.解析:①当斜率不存在时,直线方程为x =1,与两直线交点A (1,-53),B (1,-103),∴AB =⎪⎪⎪⎪-53-(-103)=53≠2.∴x =1不是所求直线. ②当斜率存在时,设为k ,则所求直线的方程为y -2=k (x -1),它与两已知直线分别联立方程组,求出它与两已知直线的交点坐标分别是A (3k -73k +4,-5k +83k +4),B (3k -123k +4,8-10k 3k +4).由AB 2=(53k +4)2+(5k 3k +4)2=2,得k =7或k =-17.故所求直线的方程为x +7y -15=0或7x -y -5=0. 10.解析:画出可行域如3所示,当34s ≤<时, 目标函数32z x y =+,(4,24)B s s --处取得最大值, 即max 3(4)2(24)4[7,8)z s s s =-+-=+∈;当45s ≤≤时, 目标函数32z x y =+在点(0,4)E 处取得最大值,即max 30248z =⨯+⨯=,故[7,8]z ∈,11.解析:由两条直线垂直可得:-b 2+1a ·1b 2=-1,解得a =b 2+1b 2, 所以ab =b 2+1b 2·b =b 2+1b =b +1b .又因为b >0,故b +1b ≥2 b ·1b =2,当且仅当b =1b ,即b =1时取“=”. 12.解析:由题可知,1122()()0Ax By C Ax By C ++++>,表示两点在直线的同一旁,又因为1122||||Ax By C Ax By C ++>++表示1P 到直线距离大于2P 的距离,所以12P P 直线不会与直线平行,否则2P 的距离小,所以在线段12P P 方向的延长线上会与直线相交,故选③ 13.解析:∵Q 点在l 1:y =4x 上,可设Q (x 0,4x 0),则PQ 的方程为y -44x 0-4=x -6x 0-6.令y =0,得x =5x 0x 0-1(x 0>1),∴M ⎝⎛⎭⎫5x 0x 0-1,0.∴S △OQM =12×5x 0x 0-1×4x 0=10×x 20x 0-1=10×⎣⎡⎦⎤(x 0-1)+1x 0-1+2≥40.当且仅当x 0-1=1x 0-1,即x 0=2时取等号. ∴Q (2,8).PQ 的方程为:y -48-4=x -62-6,∴x +y -10=0.14.解析:点C (6,2)到直线x -y +3=0的距离为d =|6-2+3|2=72,因为点A 在直线x -y +3=0上,可以验证点B (1,4)也在直线x -y +3=0上,所以设A (x ,y ).又因为直线x -y +3=0的倾斜角为45°,所以|AB |=|1-x|cos45°=2|1-x |,所以三角形面积S =12|AB |d =12×2|1-x |·72=21.所以x =7或x =-5.故A 点坐标为(7,10)或(-5,-2).二、简答题 15.解析:(1)23,35⎛⎫- ⎪⎝⎭;(2)4.16.解析:由23y xx y =⎧⎨+=⎩,解得交点P 的坐标为(1,2).(1)设直线l 的方程为2x +y +C =0(C ≠0),将点P 的坐标代入上式,求得C =-4, 所以直线l 的方程为2x +y -4=0.(2)当直线l 的斜率不存在时,方程为x =1,符合题意;当直线l 的斜率存在时,设为k ,则直线l 的方程为y -2=k (x -1),整理得kx -y +2-k =0, 则原点O 到直线l 的距离2211k d k -==+,解得34k =,此时直线l 的方程为3x -4y +5=0. 综上,直线l 的方程为x =1或3x -4y +5=0. 17.设B ′的坐标为(a ,b ),则k BB ′·k l =-1,即b -4a ·3=-1.∴a +3b -12=0. ①又由于线段BB ′的中点坐标为(a 2,b +42),且在直线l 上,∴3×a 2-b +42-1=0,即3a -b -6=0. ②①②联立,解得a =3,b =3,∴B ′(3,3).于是AB ′的方程为y -13-1=x -43-4,即2x +y -9=0.解⎩⎪⎨⎪⎧ 3x -y -1=0,2x +y -9=0,得⎩⎪⎨⎪⎧x =2,y =5,即l 与AB ′的交点坐标为P (2,5). 18.解:设按第一种切割方式切割的钢条x 根,按第二种切割方式切割的钢条y 根, 根据题意得约束条件是⎩⎪⎨⎪⎧2x +y ≥15,x +3y ≥27,x >0,x ∈N *,y >0,y ∈N *,目标函数是z =x +y ,画出不等式组表示的平面区域如图阴影部分.由⎩⎪⎨⎪⎧ 2x +y =15,x +3y =27,解得⎩⎪⎨⎪⎧x =3.6,y =7.8.此时z =11.4,但x ,y ,z 都应当为正整数,所以点(3.6,7.8)不是最优解.经过可行域内的整点且使z 最小的直线是x +y =12,即z =12,满足该约束条件的(x ,y )有两个: (4,8)或(3,9),它们都是最优解.即满足条件的切割方式有两种,按第一种方式切割钢条4根,按第二种方式切割钢条8根;或按第一种方式切割钢条3根,按第二种方式切割钢条9根,均可满足要求. 19.解:(1)当直线l 经过坐标原点时,该直线在两坐标轴上的截距都为0, 此时2+a =0,解得a =-2,此时直线l 的方程为-x +y =0,即x -y =0; 当直线l 不经过坐标原点,即a ≠-2时,由直线在两坐标轴上的截距相等可得2+aa +1=2+a , 解得a =0,此时直线l 的方程为x +y -2=0. 所以,直线l 的方程为x -y =0或x +y -2=0.(2)由直线方程可求得M (2+a a +1,0)、N (0,2+a ),又因为a >-1,故S △OMN =12×2+a a +1×(2+a )=12×[(a +1)+1]2a +1=12×(a +1)2+2(a +1)+1a +1=12×[(a +1)+1a +1+2]≥12×(2(a +1)×1a +1+2)=2,当且仅当a +1=1a +1,即a =0或a =-2(舍去)时等号成立.此时直线l 的方程为x +y -2=0. 20.解:(1)当直线2l 的斜率为0时,12442AOBM S =⨯⨯=四边形;当直线2l 的斜率不为0时,设直线2l 的斜率为k ,则直线2l 的方程为y-4=k (x -2),令x =0得y =4-2k 直线1l 的方程为14(2)y x k-=--,令y =0得x =2+4k .此时1(42)(24)2AOB S k k =-+=2464k k -++=21254()24k --+.于是当34k =时,AOB S 取最大值254. 由于2544>,所以当△AOB 面积最大时5(0)2B ,,A (5,0),四边形AOBM 的外接圆方程为225502x y x y +--=.(2)当直线2l 的斜率为0时,显然直线AB 将四边形OAMB 分割成面积相等的两部分,此时4AOBS =;当直线2l 的斜率不为0时,由(1)得:1(42)(24)2AOBS k k =-+. 11(24)4(42)28622OAM OBMOAMB S SSk k k =+=+⋅+-⋅=+四边形 于是11(42)(24)(86)22k k k -+=+,解得3(04k k ==舍去).所以△AOB 的面积为254或4.。
训练01 正弦定理与余弦定理高考频度:★★★★☆ 难易程度:★★★☆☆在ABC △中,a ,b ,c 分别为角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求角A 的大小;(2)若sin B +sin C =1,试判断ABC △的形状. 【参考答案】(1)A =23π;(2)ABC △是等腰钝角三角形.(1)在解决三角形问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.正、余弦定理在应用时,应注意灵活性,已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断. (2)几何中的长度、角度的计算通常转化为三角形中边长和角的计算,这样就可以利用正、余弦定理解决问题.解决此类问题的关键是构造三角形,把已知和所求的量尽量放在同一个三角形中.(3)研究测量距离问题是高考中的常考内容,既有选择题、填空题,也有解答题,难度一般适中,属中档题.解题时要选取合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.1.(2017新课标全国Ⅰ文)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin sin (sin cos )0B A C C +-=,2a =,c =C =A .π12B .π6C .π4D .π32.已知A ,B ,C 为ABC △的内角,tan A 、tan B 是关于x 的方程210()x p p +-+=∈R 的两个实根.(1)求C 的大小;(2)若3AB =p 的值.3.ABC △的内角A ,B ,C 的对边分别为a ,b ,c .已知sin 0A A +=,a =2b =. (1)求c 的值;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练02 等差数列与等比数列的综合问题高考频度:★★★★☆ 难易程度:★★★☆☆已知等差数列{}n a 满足32a =,前3项和3S =92. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足1b =1a ,4b =15a ,求数列{}n b 的前n 项和n T . 【参考答案】(1)1=2n n a +;(2)21nn T =-.解决等差数列与等比数列的综合问题,关键是理清两个数列的关系,(1)如果同一数列中部分项成等差数列,部分项成等比数列,则要把成等差数列和成等比数列的项分别抽出来,研究这些项与序号之间的关系;(2)如果两个数列是通过运算综合在一起的,就要从分析运算入手,把两个数列分割开,再根据两个数列各自的特征进行求解.1.已知公差不为0的等差数列{}n a 满足134,,a a a 成等比数列,n S 为数列{}n a 的前n 项和,则5a = A .0B .2-C .3D .无法求解2.(2017新课标全国Ⅰ文)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.3.已知等差数列{}n a 的前n 项和为n S ,且373,28a S ==,在等比数列{}n b 中,344,8b b ==. (1)求n a 及n b ;(2)设数列{}n n a b 的前n 项和为n T ,求n T ._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练03 简单的线性规划问题高考频度:★★★★★ 难易程度:★★★☆☆(1)已知x ,y 满足10240220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩,如果目标函数1y z x m +=-的取值范围为[0,2),则m 的取值范围为A .[0,12] B .(-∞,12] C .(-∞,12)D .(-∞,0](2)若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)【参考答案】(1)C ;(2)D .【试题解析】(1)作出10240220x y x y x y +-≥⎧⎪--≤⎨⎪--≥⎩表示的可行域,如图中阴影部分所示.目标函数1y z x m +=-的几何意义为可行域内的点(x ,y )与A (m ,-1)连线的斜率.由10240x y x y +-=⎧⎨--=⎩得21x y =⎧⎨=-⎩,即B (2,-1).由题意知2m =不符合题意,故点A 与点B 不重合,因而当连接AB 时,斜率取到最小值0.由1y =-与220x y --=得交点C (12,-1),在点A 由点C 向左移动的过程中,可行域内的点与点A 连线的斜率小于2,而目标函数的取值范围满足z ∈[0,2),则12m <,故选C .求解线性规划问题时需要注意以下几点:(1)在可行解中,只有一组(x ,y )使目标函数取得最值时,最优解只有1个.如边界为实线的可行域,当目标函数对应的直线不与边界平行时,会在某个顶点处取得最值.(2)同时有多个可行解取得一样的最值时,最优解有多个.如边界为实线的可行域,目标函数对应的直线与某一边界线平行时,会有多个最优解.(3)可行域一边开放或边界线为虚线均可导致目标函数找不到相应的最值,此时也就不存在最优解. (4)对于面积问题,可先画出平面区域,然后判断其形状(三角形区域是比较简单的情况),求得相应的交点坐标、相关的线段长度等,若图形为规则图形,则直接利用面积公式求解;若图形为不规则图形,则运用割补法计算平面区域的面积,其中求解距离问题时常常用到点到直线的距离公式. (5)对于求参问题,则需根据区域的形状判断动直线的位置,从而确定参数的取值或范围.1.设x ,y 满足211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,若3M x y =+,N =(12)x 72-,则A .M N >B .M N =C .M N <D .M ,N 的大小关系不能确定2.设实数x ,y 满足约束条件3602000x y x y x y --≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩,若目标函数0),(0z ax by a b =+>>的最大值为10,则222a b a ++的最小值为A .2113 B .2213 C .3613D .2413_______________________________________________________________________________ ______________________________________________________________________________________________________________________________________________________________训练04 基本不等式高考频度:★★★☆☆ 难易程度:★★☆☆☆(1)函数1(0)4y x x x=+>取得最小值时,x 的值为 A .12-B .12C .1D .2(2)已知1x >,1y >,且2log x ,14,2log y 成等比数列,则xy 有A B .最小值2CD .最大值2(3)已知,,x y z 为正实数,则222xy yzx y z +++的最大值为A .5B .45C .2D .23【参考答案】(1)B ;(2)A ;(3)C .(3)由题意可得:222211,22x y z y +≥+≥,结合不等式的性质有2x z y ==时等号成立,即2222xy yz x y z +≤++222xy yz x y z +++的最大值为2.故选C .利用基本不等式求最值的常用技巧如下:(1)若直接满足基本不等式条件,则直接应用基本不等式.(2)若不直接满足基本不等式条件,则需要创造条件对式子进行恒等变形,如构造“1”的代换等.常见的变形手段有:①拆——裂项拆项,对分子的次数不低于分母次数的分式进行整式分离——分离成整式与“真分式”的和,再根据分式中分母的情况对整式进行拆项,为应用基本不等式凑定积创造条件;②并——分组并项,目的是分组后各组可以单独应用基本不等式,或分组后先由一组应用基本不等式,再组与组之间应用基本不等式得出最值;③配——配式配系数,有时为了挖掘出“积”或“和”为定值,常常需要根据题设条件采取合理配式、配系数的方法,使配式与待求式相乘后可以应用基本不等式得出定值,或配以恰当的系数后,使积式中的各项之和为定值.(3)若一次应用基本不等式不能达到要求,需多次应用基本不等式,但要注意等号成立的条件必须要一致.注意:若可用基本不等式,但等号不成立,则一般利用函数的单调性求解.1.若正实数a ,b 满足1a b +=,则A .11a b+有最大值4BC .ab 有最小值14D .22a b +有最小值22.在区间[2,4]-上随机地取一个数x A .13 B .12C .23D .343.某建筑公司用8000万元购得一块空地,计划在该块地上建造一栋至少12层、每层4000平方米的楼房,经初步估计得知,如果将楼房建为1(2)x x ≥层,则每平方米的平均建筑费用为3000()50Q x x =+(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为_____________层,每平方米的平均综合费用最少为_____________元(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练05 命题真假的判断高考频度:★★★☆☆ 难易程度:★★☆☆☆(1)已知命题p :2+2=5,命题q :23≤,则下列判断错误的是A .p q ∨为真,q ⌝为假B .p q ∧为假,q ⌝为假C .p q ∧为真,q ⌝为假D .p q ∧为假,p q ∨为真(2)已知命题p :∀x ∈[1,2],230x a -≥,命题q :∃x ∈R ,2220x ax a ++-=,若命题“p 且q ”是真命题,则实数a 的取值范围为_______________; (3)下列命题:①“54>或45>”;②命题“若a b >,则a c b c +>+”的否命题; ③命题“矩形的两条对角线相等”的逆命题. 其中真命题的个数为_______________.【参考答案】(1)C ;(2)(,2][,13]-∞-;(3)2.(3)①因为54>是真命题,所以“54>或45>”是真命题;②命题“若a b >,则a c b c +>+”的否命题为“若a b ≤,则a c b c +≤+”,不等式两边同时加上一个数,不等式方向不变,故命题“若a b >,则a c b c +>+”的否命题为真命题;③命题“矩形的两条对角线相等”的逆命题为“若两个四边形的对角线相等,则这个四边形是矩形”,显然不正确,如等腰梯形的对角线相等,但不是矩形,故命题“矩形的两条对角线相等”的逆命题为假命题.所以正命题的个数为2.(1)四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.(2)给出一个命题,要判断它是真命题,需经过严格的推理证明;而要说明它是假命题,则只需举一反例即可;②由于原命题与其逆否命题为等价命题,有时可以利用这种等价性间接地证明命题的真假. (3)辨别复合命题的构成形式时,应根据组成复合命题的语句中所出现的逻辑联结词,或语句的意义确定复合命题的形式.当p q ∨为真,p 与q 一真一假;p q ∧为假时,p 与q 至少有一个为假.(4)要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.要确定一个特称命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该特称命题是假命题.1.给出下列两个命题,命题p :函数[(ln 11)()]y x x =-+为偶函数;命题q :函数1ln 1xy x-=+是奇函数,则下列命题为假命题的是 A .p q ∧ B .()p q ∨⌝ C .p q ∨D .()p q ∧⌝2.给出以下四个命题:①“若0x y +=,则x ,y 互为相反数”的逆命题; ②“全等三角形的面积相等”的否命题;③“若1q ≤-,则20x x q ++=有实根”的逆否命题; ④“若ab 是正整数,则a ,b 都是正整数”.其中的假命题是_______________.(写出所有假命题的序号)3.若tan 1m x ≤+”为真命题,则实数m 的最大值为_______________._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练06 充分、必要条件的判断高考频度:★★★☆☆ 难易程度:★★☆☆☆(1)(2017天津)设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2017浙江)已知等差数列{}n a 的公差为d ,前n 项和为n S ,则“0d >”是“4652S S S +>”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【参考答案】(1)B ;(2)C .(1)从定义来看,若p q ⇒,则p 是q 的充分条件,若q p ⇒,则p 是q 的必要条件,若p q ⇔,则p 是q 的充要条件;从集合的角度看,若A B ⊆,则A 是B 的充分条件,若B A ⊆,则A 是B 的必要条件,若A B =,则A 是B 的充要条件,若A 是B 的真子集,则A 是B 的充分而不必要条件,若B 是A 的真子集,则A 是B 的必要而不充分条件. (2)设“若p ,则q ”为原命题,那么:①原命题为真,逆命题为假时,则p 是q 的充分不必要条件; ②原命题为假,逆命题为真时,则p 是q 的必要不充分条件; ③当原命题与逆命题都为真时,则p 是q 的充要条件;④当原命题与逆命题都为假时,则p 是q 的既不充分也不必要条件.1.设θ∈R ,则“ππ||1212θ-<”是“1sin 2θ<”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.若条件:1p x ≤,且p ⌝是q 的充分不必要条件,则q 可以是 A .1x > B .0x > C .2x ≤D .10x -<<_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练07 全称量词与存在量词高考频度:★★★☆☆ 难易程度:★★☆☆☆(1)命题“对任意的x ∈R ,都有2e ln(1)0x x ++≥”的否定为A .对任意的x ∈R ,都有2e ln(1)0x x ++< B .不存在x ∈R ,使得2e ln(1)0x x ++<C .存在0x ∈R ,使得020e ln(1)0xx ++≥ D .存在0x ∈R ,使得020e ln(1)0x x ++<(2)命题“有些实数的平方是0”的否定为A .x ∀∈R ,20x ≠B .0x ∃∈R ,200x ≠ C .x ∀∈R ,20x =D .0x ∃∈R ,200x =【参考答案】(1)D ;(2)A .1.下列命题中,是真命题且是全称命题的是A .对任意的a b ∈R 、,都有222220a b a b -+-<+B .菱形的两条对角线相等C .x ∃∈R x =D .正比例函数在定义域上是单调函数 2.下列特称命题是假命题的是 A .有些不相似的三角形面积相等B .存在一实数0x ,使20010x x ++<C .存在实数a ,使函数=y ax b +的值随x 的增大而增大D .有一个实数的倒数是它本身3.若命题“0x ∃∈R ,使得200(1)10x a x +-+<”是假命题,则实数a 的取值范围是__________________._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练08 椭圆的离心率高考频度:★★★★☆ 难易程度:★★☆☆☆(1)(2017浙江)椭圆22194x y +=的离心率是A B C .23D .59(2)已知椭圆的方程为222(3)0x y m m +=>,则此椭圆的离心率为A .13BCD .12(3)(2017新课标全国III 文)已知椭圆C :22220)1(x y a ba b +=>>的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A BC .3D .13【参考答案】(1)B ;(2)B ;(3)A .(3)以线段12A A 为直径的圆的圆心为坐标原点(0,0),半径为r a =,圆的方程为222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离等于半径,即d a ==,整理可得223a b =,即2223()a a c =-即2223a c =,从而22223c e a ==,则椭圆的离心率c e a ===,故选A .1.已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为A.13B.12C.23D.342.直线y=与椭圆C:22221(0)x ya ba b+=>>交于A,B两点,以线段AB为直径的圆恰好经过椭圆的右焦点,则椭圆C的离心率为A BC1D.4-_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练09 双曲线的离心率与渐近线方程高考频度:★★★★☆难易程度:★★★☆☆(1)已知F 1,F 2分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若双曲线上存在点A ,使得1290F AF ∠=︒,且|AF 1|=3|AF 2|,则双曲线的离心率e =ABCD(2)设1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,若在双曲线右支上存在点P ,满足212PF F F =,且2F 到直线1PF 的距离等于双曲线的实轴长,则该双曲线的渐近线方程为A .430x y ±=B .350x y ±=C .540x y ±=D .340x y ±=【参考答案】(1)B ;(2)A .【试题解析】(1)由121223AF AF a AF AF ⎧-=⎪⎨=⎪⎩⇒123AF a AF a ⎧=⎪⎨=⎪⎩,由1290F AF ∠=︒,得2221212AF AF F F +=,即222(()2)3a a c +=,得e =B .(1)对于双曲线的渐近线方程,有以下两种考查方式:①已知双曲线的方程求其渐近线方程;②给出双曲线的渐近线方程求双曲线方程,由渐近线方程可确定a ,b 的关系,结合已知条件可解.1.(2017新课标全国II 文)若1a >,则双曲线2221x y a-=的离心率的取值范围是A .)+∞B .2)C .D .(1,2)2.如图,已知F 1、F 2分别为双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,P 为第一象限内一点,且满足|F 2P|=a ,(1F P +12F F )·2F P =0,线段F 2P 与双曲线C 交于点Q ,若|F 2P|=5|F 2Q|,则双曲线C 的渐近线方程为A .y x =B .12y x =±C .2y x =±D .3y x =±3.若双曲线22221(0,0)x y a b a b-=>>的一条渐近线经过点(3,)4-,则此双曲线的离心率为 ._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练10 抛物线的定义的应用高考频度:★★★☆☆ 难易程度:★★★☆☆(1)已知抛物线C :20)2(x py p =>上一点4(),A m 到其焦点的距离为174,则p ,m 的值分别为 A .1p =,2m = B .1p =,2m =± C .12p =,2m = D .12p =,2m =± (2)过抛物线24y x =的焦点作直线交抛物线于点11(),A x y ,22(),B x y ,若7AB =,则AB 的中点M到抛物线准线的距离为_________________;(3)已知等腰梯形ABCD 的顶点都在抛物线22(0)y px p =>上,且AB CD ∥,2AB =,4CD =,60ADC ∠=︒,则点A 到抛物线的焦点的距离是_________________.【参考答案】(1)D ;(2)72;(3)12.(3)由题意可设(,1)A m,(2)D m +A到抛物线的焦点的距离是2p m +=+=1.如图,已知点()Q 及抛物线24x y =上的动点,()P x y ,则y PQ +的最小值是A .2B .3C .4D .2.设F 为抛物线2:12C x y =的焦点,A ,B ,C 为抛物线上不同的三点,若FA FB FC ++=0,则FA FB FC ++=A .3B .9C .12D .183.已知11(),A x y ,22(),B x y ,33(),C x y 是抛物线20)2(y px p =>上的三个点,且它们到焦点F 的距离AF ,BF ,CF 成等差数列,求证:2222132y y y =+._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练11 导数的几何意义高考频度:★★★☆☆ 难易程度:★★☆☆☆(1)曲线2xy x =+在点(−1,−1)处的切线方程为 A .21y x =+B .21y x =-C .23y x =--D .22y x =--(2)已知函数()f x 是奇函数,当0x <时,()ln()2f x x x x =-++,则曲线()y f x =在1x =处的切线方程为 A .23y x =+B .23y x =-C .23y x =-+D .23y x =--(3)已知曲线1n y x+=在点(1,1)处的切线与x 轴的交点的横坐标为n x ()n *∈N ,令lg n n a x =,则1299a a a ++⋅⋅⋅+=__________________.【参考答案】(1)A ;(2)B ;(3)2-. 【试题解析】(1)因为22(2)(2)2(2)(2)x x x x y x x ''+-+'==++,所以切线的斜率122|2(12)x k y =-'===-+,所以切线方程为(11)2y x +=+,即21y x =+.故选A .若已知曲线过点00(),P x y ,求曲线过点P 的切线,则需分点00(),P x y 是切点和不是切点两种情况求解: (1)当点00(),P x y 是切点时,切线方程为000()()y y x f 'x x -=-; (2)当点00(),P x y 不是切点时,可分以下几步完成: 第一步:设出切点坐标11()),(P x f x ';第二步:写出过11()),(P x f x '的切线方程为111()()()y f x x x 'x f -=-; 第三步:将点P 的坐标00(,)x y 代入切线方程求出1x ;第四步:将1x 的值代入方程111()()()y f x x x 'x f -=-,可得过点00(),P x y 的切线方程.1.曲线2e x y =在点2(1,e )处的切线与坐标轴所围成的三角形的面积为A B .2e CD .23e2.已知函数()e 1xf x mx =-+的图象为曲线C ,若曲线C 存在与直线e y x =垂直的切线,则实数m 的取值范围为A .[e,)+∞B .(e,)+∞CD 3.设函数ln ,0()21,0x x f x x x >⎧=⎨--≤⎩,D 是由x 轴和曲线()y f x =及该曲线在点(1,0)处的切线所围成的封闭区域,则2z x y =-在D 上的最大值为__________________._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练12 函数的单调性问题高考频度:★★★★★ 难易程度:★★★★☆已知函数322()4361f x x tx t x t =+-+-,其中t ∈R . (1)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)当0t ≠时,求()f x 的单调区间.【参考答案】(1)60x y +=;(2)见试题解析.【试题解析】(1)当1t =时,32()436f x x x x =+-,(0)0f =,因为2()1266f x x x '=+-,(0)6f '=-,所以曲线()y f x =在点(0,(0))f 处的切线方程为6y x =-,即60x y +=.②若0t >,则tt >-,当x 变化时,()f x ',()f x 的变化情况如下表:所以()f x 的单调递增区间是(,)t -∞-,(,)2+∞;()f x 的单调递减区间是(,)2t t -.(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0f x '>(()0f x '<)是函数()f x 在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数()f x 在(),a b 内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(),a b 的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数f (x )在区间内的单调性.1.(2017浙江)函数()y f x =的导函数()y f 'x =的图象如图所示,则函数()y f x =的图象可能是2.已知函数ln ()xf x x a=+在1x =处的切线方程为20x y b -+=. (1)求实数a ,b 的值; (2)若函数21()()2g x f x x kx =+-,且()g x 是其定义域上的增函数,求实数k 的取值范围._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练13 函数的极值与最值问题高考频度:★★★★☆ 难易程度:★★★★☆已知函数n (l )f x x x =.(1)求函数()f x 的单调区间和极值; (2)若4()x m f k m≥+-对任意的[3,5]m ∈恒成立,求实数k 的取值范围.【参考答案】(1)见试题解析;(2)291[,)5e++∞. 【试题解析】(1)函数()f x 的定义域为(0,)+∞,()1ln f x x '=+,令0()f 'x >,得1e x >;令0()f 'x <,得10e x <<. 故函数()f x 在(10,e )上单调递减,在1(,)e+∞上单调递增.故当1e x =时,()f x 取得极小值,且1111()ln e e e e()f x f ===-极小值,无极大值.(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)求函数()f x 极值的方法:①确定函数()f x 的定义域;②求导函数()f 'x ;③求方程0()f 'x =的根; ④检查()f 'x 在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f 'x 在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f 'x ,求方程0()f 'x =的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围.(4)求()f x 在[,]a b 上的最大值与最小值的步骤为:①求()f x 在(,)a b 内的极值;②将函数()f x 的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.1.若32(),242()()3f x m n x mx m x n =∈++-+R 在R 上有两个极值点,则实数m 的取值范围为 A .(1,1)-B .(1,2)C .(,1)(2,)-∞+∞UD .(,1)(1,)-∞-+∞U2.(2016江苏)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥1111P A B C D -,下部的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的4倍.(1)若6m AB =,12m PO =,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6m ,则当1PO 为多少时,仓库的容积最大?_______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练14 利用导数研究函数的零点或方程的根高考频度:★★★★☆ 难易程度:★★★★☆设函数32()f x x ax bx c =+++.(1)设4a b ==,若函数()f x 有三个不同零点,求实数c 的取值范围; (2)求证:230a b ->是()f x 有三个不同零点的必要而不充分条件. 【参考答案】(1)32(0,)27;(2)证明见试题解析.(2)当24120a b =-<∆时,2()320f x x ax b '=++>,(,)x ∈-∞+∞, 此时函数()f x 在区间(,)-∞+∞上单调递增,所以()f x 不可能有三个不同零点. 当24120a b =-=∆时,2()32f x x ax b '=++只有一个零点,记作0x . 当0(,)x x ∈-∞时,()0f x '>,()f x 在区间0(,)x -∞上单调递增; 当0(,)x x ∈+∞时,()0f x '>,()f x 在区间0(,)x +∞上单调递增. 所以()f x 不可能有三个不同零点.综上所述,若函数()f x 有三个不同零点,则必有24120a b =->∆. 故230a b ->是()f x 有三个不同零点的必要条件.当4a b ==,0c =时,230a b ->,322()44(2)f x x x x x x =++=+只有两个不同零点,所以230a b ->不是()f x 有三个不同零点的充分条件, 因此230a b ->是()f x 有三个不同零点的必要而不充分条件.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.1.已知函数384()ln 33f x x x =--,则函数()f x 的零点个数为_______________. 2.已知函数2()(2)e (1)xf x x a x =-+-有两个零点,求实数a 的取值范围._______________________________________________________________________________ _______________________________________________________________________________ _______________________________________________________________________________训练15 导数的综合应用高考频度:★★★★★ 难易程度:★★★★☆(2017新课标全国Ⅲ文)已知函数2ln )1(()2x ax f x a x =+++. (1)讨论()f x 的单调性; (2)当a ﹤0时,证明:3()24f x a≤--.【参考答案】(1)见试题解析;(2)见试题解析.(2)由(1)可知,当0a <时,()f x 在12x a =-处取得最大值,最大值为111()ln()1224f a a a-=---.所以3()24f x a ≤--等价于113ln()12244a a a ---≤--,即11ln()1022a a-++≤. 设()ln 1g x x x =-+,则1()1g x x'=-,当(0,1)x ∈时,()0g x '>;当(1,)x ∈+∞时,()0g x '<,所以()g x 在(0,1)上单调递增,在(1,)+∞上单调递减,故当1x =时()g x 取得最大值,最大值为0(1)g =,所以当0x >时,()0g x ≤. 从而当0a <时,11ln()1022a a -++≤,即3()24f x a≤--.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.1.已知点P 与2()ln 32(0)g x a x b a =+>图象的公共点,若以P 为切点可作直线l 与两曲线都相切,则实数b 的最大值为___________________. 2.已知函数2()f x x x =-,e (1)xg x ax =--,其中e 为自然对数的底数.(1)讨论函数()g x 的单调性;(2)当0x >时,()()f x g x ≤恒成立,求实数a 的最大值._______________________________________________________________________________ _______________________________________________________________________________答案及解析训练01 正弦定理与余弦定理【参考答案】1.【答案】B【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更合适,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式时,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.2.【答案】(1)60C =︒;(2)1-【解析】(1)由已知,方程210x p x p +-+=的判别式为22)4(1)3440p p p ∆=--+=-≥+,所以2p ≤-tan tan 1A B p =-,于是1tan tan 1(1)0A B p p -=--=≠60C =︒.3.【答案】(1)4c =;(2【解析】(1)由已知可得tan A =2π3A =. 在ABC △中,由余弦定理得22π2844cos 3c c =+-,即22240c c +-=,解得4c =(负值舍去).(2)由题设可得π2CAD ∠=,所以π6BAD BAC CAD ∠=∠-∠=.故ABD △面积与ACD △面积的比值为1πsin 26112AB AD AC AD ⋅⋅=⋅.又ABC △的面积为142sin 2BAC ⨯⨯∠=,所以ABD △.训练02 等差数列与等比数列的综合问题【参考答案】1.【答案】A【解析】设等差数列{}n a 的公差为d ,首项为1a ,所以312a a d =+,413a a d =+.因为134,,a a a 成等比数列,所以2111()(23)a d a a d +=+,解得14a d =-,所以5140a a d =+=.故选A .2.【答案】(1)(2)nn a =-;(2)1122()33n n n S +-=-+,1n S +,n S ,2n S +成等差数列.【思路分析】(1)由等比数列的通项公式解得2q =-,12a =-即可求解;(2)利用等差中项即可证明1n S +,n S ,2n S +成等差数列.3.【答案】(1)n a n =,12n n b -=;(2)(1)21n n T n =-⋅+.(2)由(1)知n a n =,12n n b -=,所以12n n n a b n -=⋅. 所以23112232422n n T n -=+⨯+⨯+⨯++⨯ ①,2312122232(1)22n n n T n n -=⨯+⨯+⨯++-⨯+⨯ ②,②-12)n -++=故(1)21nn T n =-⋅+.训练03 简单的线性规划问题【参考答案】1.【答案】A【解析】作出不等式组211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩表示的平面区域,如图中阴影部分所示,当直线30x y M +-=经过点A (-1,2)时,目标函数3M x y =+取得最小值-1. 又由平面区域知13x -≤≤,则当1x =-时,N =1()2x72-取得最大值32-. 由此可知一定有M N >,故选A . 2.【答案】C方法2:由题意知,不等式组3602000x y x y x y --≤⎧⎪-+≥⎪⎨≥⎪⎪≥⎩所表示的平面区域如图中阴影部分所示,因为0a >,0b >,所以由可行域得当目标函数过点(4,6)时,z 取得最大值,所以4610a b +=,532b a -=,所以22225325()32b a b a b b -++=++-=2134b -212b +454,当2113b =时,222a b a ++取得最小值3613.训练04 基本不等式【参考答案】2.【答案】A2211y a a =++,则11=,当且仅当2211a a =++,即0a =时,等号成立,所以问题转化为||1x ≤,即11x -≤≤,所以在区间[2,4]-上随机地取一个数xA .3.【答案】20 5000【解析】设楼房每平方米的平均综合费用为()f x ,则8000100002000050400()()0f x Q x x x x ⨯=+=+3000(12,)x x +≥∈N 30005000≥=,当且仅当20x =时,等号取到.所以当20x =时,最小值为5000元.故该楼房应建为20层,每平方米的平均综合费用最少为5000元.训练05 命题真假的判断【参考答案】1.【答案】D【解析】函数[(ln 11)()]y x x =-+]的定义域是()1,1-,且是偶函数,故命题p 为真命题; 函数1ln1xy x-=+的定义域是()1,1-,且是奇函数,故命题q 是真命题, 故命题p q ∧,()p q ∨⌝,p q ∨均为真命题,命题()p q ∧⌝为假命题.故选D .3.【答案】1-【解析】根据正切函数的性质可知tan 1y x =+tan )113(y π=-+=,所以1m ≤m 的最大值为1训练06 充分、必要条件的判断【参考答案】1.【答案】A 【解析】πππ||012126θθ-<⇔<<1sin 2θ⇒<,但0θ=时1sin 02θ=<,不满足ππ||1212θ-<,所以“ππ||1212θ-<”是“1sin 2θ<”的充分不必要条件,故选A .训练07 全称量词与存在量词【参考答案】1.【答案】D【解析】A 中含有全称量词“任意的”,因为2222222=(10+1a b a b a b --+-+-≥)();故是假命题.B 、D 在叙述上没有全称量词,但实际上是指“所有的”,菱形的对角线不一定相等,所以B 是假命题,C 是特称命题,故选D .故选B . 3.【答案】[1,3]-【解析】由题设可知:“x ∀∈R ,都有01)1(2≥+-+x a x 恒成立”,所以2(1)40a ∆=--≤,即2|1|≤-a ,也即212≤-≤-a ,所以31≤≤-a .故实数a 的取值范围是[1,3]-.【易错点晴】本题考查的是全称命题的否定与特称命题之间的关系.求解时要充分借助“全称命题的否定是特称命题”、“特称命题的否定是全称命题”这一事实,先搞清所给的命题是全称命题还是特称命题,然后再依据上述结论加以判别求解写出答案.解答本题时,先将问题合理转化为:“x ∀∈R ,都有01)1(2≥+-+x a x 恒成立”是真命题,进而获解.常常会和命题四种形式中“否命题”混淆,从造成解答上的错误.训练08 椭圆的离心率【参考答案】1.【答案】A【解析】由题意设直线l 的方程为()y k x a =+,分别令x c =-与0x =得||()FM k a c =-,||OE k a =.设OE 的中点为N ,则O B N F B M△∽△,则1||||2||||OE OB FM BF =,即2(c )k a a k a a c=-+,整理,得13c a =,所以椭圆C 的离心率13e =,故选A . 【名师点睛】求解椭圆的离心率问题有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ca或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .训练09 双曲线的离心率与渐近线方程【参考答案】1.【答案】C【解析】由题意222222111c a e a a a+===+,因为1a >,所以21112a <+<,则1e <<C . 【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题的关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.2.【答案】B3.【答案】53【解析】双曲线22221(0,0)x y a b a b-=>>的渐近线bx y a =-过点(3,)4-,即34b a -=-,即34b a =,而222a b c +=,所以35c a =,即双曲线的离心率53c e a ==.训练10 抛物线的定义的应用【参考答案】1.【答案】A【解析】作PB x ⊥轴于A 点,并与准线相交于B 点.抛物线24x y =的焦点为()0,1F ,准线为1y =-,由抛物线的几何意义可得PB PF =,所以11y PQ PA PQ PB PQ PF PQ +=+=+-=+-≥112FQ -=.故选A .。
2018年高二数学寒假作业(人教A版必修5)立体几何的热点问题(时间:40分钟)1.(2017·东北三省模拟)已知等腰梯形ABCD如图①所示,其中AB∥CD,E,F分别为AB和CD的中点,且AB=EF=2,CD=4,M为CE的中点,现将梯形ABCD沿EF所在直线折起,使平面EFCB⊥平面EFDA,如图②所示,N是CD的中点。
(1)证明:MN∥平面EFDA;(2)求二面角M-NA-F的余弦值。
2.如图①,正方形ABCD的边长为4,AB=AE=BF=12EF,AB∥EF,把四边形ABCD沿AB折起,使得AD⊥底面AEFB,G是EF的中点,如图②。
(1)求证:AG⊥平面BCE;(2)求二面角C-AE-F的余弦值。
3.(2016·湖北模拟)在如图所示的几何体中,四边形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E为AB的中点。
(1)求证:AN∥平面MEC;(2)在线段AM上是否存在点P,使二面角P-EC-D的大小为π6?若存在,求出AP的长h;若不存在,请说明理由。
4.(2017·郑州一中模拟)如图,AB是半圆O的直径,C是半圆O上除A,B外的一个动点,DC 垂直于半圆O所在的平面,DC∥EB,且DC=EB=1,AB=4。
(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE体积最大时,求二面角D-AE-B的平面角的余弦值。
(时间:20分钟)1. (2016·豫南九校联考)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=22,BC=42,PA=2,点M在PD上(不与P、D重合)。
(1)求证:AB⊥PC;(2)若二面角M-AC-D的大小为45°,求BM与平面PAC所成角的正弦值。
2.如图①,在等腰梯形ABCD中,AD∥BC,AD=1,BC=3,E为BC上一点,BE=2EC,且DE=3。
【最新2018】高二数学寒假作业答案解析word版本
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!
== 本文为word格式,下载后可方便编辑和修改! ==
高二数学寒假作业答案解析
1.已知集合,,则 ( C )
A. B. C. D.
2. 设是定义在上的奇函数,当时,,则 ( A )
A. B. C.1 D.3
3. 已知向量满足,则 ( D )
A.0
B.1
C.2
D.
4.设是等比数列,则是数列是递增数列的( B )
A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
5. 设m,n是两条不同的直线,、、是三个不同的平面,给出下列命题,正确的是( B )
A.若,,则
B.若,,则
C.若,,则
D.若,,,则 [来
6. 函数y=sin(2x+)的图象沿x轴向左平移个单位后,得到一个偶函数的
图象,则的一个可能的值为( A )
A. B. C. D.
7.已知的内角A,B,C所对的边分别为a,b,c,若的可能取值为( D )
A. B. C. D.
8.设函数,则的值为( A )。
温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课后提升作业二十二简单的线性规划问题(45分钟70分)一、选择题(每小题5分,共40分)1.z=x-y在错误!未找到引用源。
的线性约束条件下,取得最大值的可行解为( ) A.(0,1) B.(-1,-1)C.(1,0)D.错误!未找到引用源。
【解析】选C.可以验证这四个点均是可行解,当x=0,y=1时,z=-1;当x=-1,y=-1时,z=0;当x=1,y=0时,z=1;当x=错误!未找到引用源。
,y=错误!未找到引用源。
时,z=0.2.(2015·广东高考)若变量x,y满足约束条件错误!未找到引用源。
则z=2x+3y的最大值为( )A.10B.8C.5D.2【解题指南】先根据不等式组画出可行域,再作直线l0:2x+3y=0,平移直线l0,找到z取最大值时与可行域的交点,进而求出z的最大值.【解析】选C.作出可行域如图所示:作直线l0:2x+3y=0,再作一族平行于l0的直线l:2x+3y=z,当直线l经过点Α时,z=2x+3y取得最大值,由错误!未找到引用源。
解得错误!未找到引用源。
所以点Α的坐标为(4,-1),所以z max=2×4+3×(-1)=5.3.(2015·福建高考)若变量x,y满足约束条件错误!未找到引用源。
则z=2x-y的最小值等于( )A.-错误!未找到引用源。
B.-2C.-错误!未找到引用源。
D.2【解题指南】画出可行域,根据目标函数确定出在y轴上截距最大时,z取最小值.【解析】选A.画出可行域如图所示,当目标函数对应直线平移至B点时截距最大,所以错误!未找到引用源。
⇒B错误!未找到引用源。
,把点B坐标代入目标函数可得z min=2×(-1)-错误!未找到引用源。
=-错误!未找到引用源。
.4.若变量x,y满足错误!未找到引用源。
作业范围:必修第三章不等式
姓名学校班级
时间: 分钟分值分
第Ⅰ卷
一、选择题(本卷共小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的.)
.若,则下列不等式成立的是()
..
..
】学年湖南岳阳县一中高二月月考数学(理)试卷
【答案】
考点:不等式性质.
【题型】选择题
【难度】较易
.不等式的解集为()
..
..
】学年山东桓台二中高二月月考数学试卷
【答案】
【解析】,,,则不等式的解集为. 考点:一元二次不等式解法.
【题型】选择题
【难度】较易
.变量满足约束条件,则目标函数的最小值为()
....
】【百强校】届山东德州宁津县一中高三上月考二数学(文)试卷
【答案】
考点:线性规划.
【题型】选择题
【难度】较易
.设,则下列不等式成立的是()
..
..
】学年湖南岳阳县一中高二月月考数学(文)试卷
【答案】
【解析】由可设,代入选项验证可知成立. 考点:不等式性质.
【题型】选择题
【难度】较易。
2018年高二数学寒假作业(人教A 版必修5) 简单的逻辑联结词、全称量词与存在量词(时间:40分钟)一、选择题1.下列命题的否定是真命题的是( ) A .有些实数的绝对值是正数 B .所有平行四边形都不是菱形 C .任意两个正方形都是相似的 D .3是方程x 2-9=0的一个根2.若p :∀x ∈R ,sin x ≤1,则( ) A .綈p :∃x ∈R ,sin x >1 B .綈p :∀x ∈R ,sin x >1 C .綈p :∃x ∈R ,sin x ≥1 D .綈p :∀x ∈R ,sin x ≥13.命题p :若sin x >sin y ,则x >y ;命题q :x 2+y 2≥2xy 。
下列命题为假命题的是( )A .p 或qB .p 且qC .qD .綈p4.下列命题中,真命题是( ) A .∀x ∈R ,-x 2-1<0 B .∃x 0∈R ,x 20+x 0=-1 C .∀x ∈R ,x 2-x +14>0D .∃x 0∈R ,x 20+2x 0+2<05.如果命题“p 且q ”是假命题,“綈p ”也是假命题,则( ) A .命题“綈p 或q ”是假命题 B .命题“p 或q ”是假命题 C .命题“綈p 且q ”是真命题 D .命题“p 且綈q ”是假命题6.(2016·江南十校联考)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .p ∧(綈q )C .(綈p )∧qD .(綈p )∧(綈q )7.已知命题p :抛物线y =2x 2的准线方程是y =-12,命题q :若函数f (x+1)为偶函数,则f (x )的图象关于x =1对称,则下列命题是真命题的是( )A .p ∧qB .p ∧(綈q )C .(綈p )∧(綈q )D .p ∨q8.若命题“∃x 0∈R ,x 20+(a -1)x 0+1<0”是真命题,则实数a 的取值范围是( )A .[-1,3]B .(-1,3)C .(-∞,-1]∪[3,+∞)D .(-∞,-1)∪(3,+∞)二、填空题9.已知命题p ,若ab =0,则a =0,则綈p 为________;命题p 的否命题为________。
[2018高二数学寒假作业检测题及答案]2018年高二数学高二网权威发布2018高二数学寒假作业检测题及答案,更多2018高二数学寒假作业检测题及答案相关信息请访问高二网。
【导语】2018高二数学寒假作业答案!不知不觉又一个寒假快要来临了,那寒假回去除了开心过年,还要做什么呢?那就是大家的寒假作业啦!那么,今天大范文网就给大家整理了2018高二数学寒假作业答案,供家长参考。
1.在5的二项展开式中,x的系数为() A.10B.-10C.40D.-40 解析:选DTr+1=C(2x2)5-rr=(-1)r·25-r·C·x10-3r,令10-3r=1,得r=3.所以x的系数为(-1)3·25-3·C=-40. 2.在(1+)2-(1+)4的展开式中,x的系数等于() A.3B.-3C.4D.-4 解析:选B因为(1+)2的展开式中x的系数为1,(1+)4的展开式中x的系数为C=4,所以在(1+)2-(1+)4的展开式中,x的系数等于-3. 3.(2013·全国高考)(1+x)8(1+y)4的展开式中x2y2的系数是() A.56B.84C.112D.168 解析:选D(1+x)8展开式中x2的系数是C,(1+y)4的展开式中y2的系数是C,根据多项式乘法法则可得(1+x)8(1+y)4展开式中x2y2的系数为CC=28×6=168. 4.5的展开式中各项系数的和为2,则该展开式中常数项为() A.-40B.-20C.20D.40 解析:选D由题意,令x=1得展开式各项系数的和为(1+a)·(2-1)5=2,a=1. 二项式5的通项公式为Tr+1=C(-1)r·25-r·x5-2r,5展开式中的常数项为x·C(-1)322·x-1+·C·(-1)2·23·x=-40+80=40. 5.在(1-x)n=a0+a1x+a2x2+a3x3+…+anxn中,若2a2+an-3=0,则自然数n的值是() A.7B.8C.9D.10 解析:选B易知a2=C,an-3=(-1)n-3·C=(-1)n-3C,又2a2+an-3=0,所以2C+(-1)n-3C=0,将各选项逐一代入检验可知n=8满足上式. 6.设aZ,且0≤a A.0B.1C.11D.12 解析:选D512012+a=(13×4-1)2012+a,被13整除余1+a,结合选项可得a=12时,512012+a能被13整除.7.(2015·杭州模拟)二项式5的展开式中第四项的系数为________. 解析:由已知可得第四项的系数为C(-2)3=-80,注意第四项即r=3. 答案:-808.(2013·四川高考)二项式(x+y)5的展开式中,含x2y3的项的系数是________(用数字作答). 解析:由二项式定理得(x+y)5的展开式中x2y3项为Cx5-3y3=10x2y3,即x2y3的系数为10. 答案:10 .(2013·浙江高考)设二项式5的展开式中常数项为A,则A=________.解析:因为5的通项Tr+1=C()5-r·r=(-1)rCxx-=(-1)rCx.令15-5r=0,得r=3,所以常数项为(-1)3Cx0=-10.即A=-10. 答案:-1010.已知(1-2x)7=a0+a1x+a2x2+…+a7x7,求:(1)a1+a2+…+a7;(2)a1+a3+a5+a7; (3)a0+a2+a4+a6; (4)|a0|+|a1|+|a2|+…+|a7|.解:令x=1,则a0+a1+a2+a3+a4+a5+a6+a7=-1. 令x=-1,则a0-a1+a2-a3+a4-a5+a6-a7=37. (1)∵a0=C=1,a1+a2+a3+…+a7=-2.(2)(-)÷2,得a1+a3+a5+a7==-1094.(3)(+)÷2,得a0+a2+a4+a6==1093. (4)(1-2x)7展开式中a0、a2、a4、a6大于零,而a1、a3、a5、a7小于零,|a0|+|a1|+|a2|+…+|a7|=(a0+a2+a4+a6)-(a1+a3+a5+a7) =1093-(-1094)=2187.11.若某一等差数列的首项为C-A,公差为m的展开式中的常数项,其中m是7777-15除以19的余数,则此数列前多少项的和最大?并求出这个最大值. 解:设该等差数列为{an},公差为d,前n项和为Sn.由已知得又nN*,n=2,C-A=C-A=C-A=-5×4=100,a1=100. 7777-15=(76+1)77-15=7677+C·7676+…+C·76+1-15=76(7676+C·7675+…+C)-14 =76M-14(MN*),7777-15除以19的余数是5,即m=5.m的展开式的通项是Tr+1=C·5-rr=(-1)rC5-2rxr-5(r=0,1,2,3,4,5),令r-5=0,得r=3,代入上式,得T4=-4,即d=-4,从而等差数列的通项公式是an=100+(n-1)×(-4)=104-4n. 设其前k项之和最大,则解得k=25或k=26,故此数列的前25项之和与前26项之和相等且最大,S25=S26=×25=×25=1300.12.从函数角度看,组合数C可看成是以r为自变量的函数f(r),其定义域是{r|rN,r≤n}.(1)证明:f(r)=f(r-1); (2)利用(1)的结论,证明:当n为偶数时,(a+b)n的展开式中最中间一项的二项式系数最大. 解:(1)证明:f(r)=C=,f(r-1)=C=,f(r-1)=·=.则f(r)=f(r-1)成立. (2)设n=2k,f(r)=f(r-1),f(r-1)>0,=. 令f(r)≥f(r-1),则≥1,则r≤k+(等号不成立). 当r=1,2,…,k时,f(r)>f(r-1)成立. 反之,当r=k+1,k+2,…,2k时,f(r)。
2018年高二数学寒假作业(人教A版必修5) 线性规划
1.若,xy满足不等式组0{2 22xyxyxy,则34zxy的最小值是( ) A. -7 B. -6 C. -11 D. 14
2.设动点,Pxy满足240250{ 00xyxyxy,则52zxy的最大值是( ) A. 50 B. 60 C. 70 D. 100 3.已知函数fx的定义域为2,,且421ff, fx为fx的导函数,函数yfx
的图像如图所示,则平面区域0{0 21abfab所围成的面积是( )
A. 2 B. 4 C. 5 D. 8 4.若直线2yx上存在点,xy满足约束条件30,{230, ,xyxyxm则实数m的最大值为( ) (A)1 (B)1 (C)32 (D)2 5.若不等式组表示一个三角形内部的区域,则实数的取值范围是( ) A. B. C. D.
6.设,xy满足约束条件70{310 350xyxyxy ,则142yxz的最大值为( ) A.1024 B. 256 C. 8 D. 4
7.若变量,xy满足约束条件8{ 2400xyyxxy,且5zyx的最大值为a,最小值为b,则ab的值是( ) A. 48 B. 30 C. 24 D. 16 8.若0,0ab,且当0{0 1xyxy时,恒有1axby,则以,ab为坐标点,Pab所形成的平面区域的面积等于( ) A. 12 B. 1 C. 4 D. 2
9.直线l过点1,2A且不过第四象限,那么直线l的斜率的取值范围为( ) A. 0,2 B. 0,2 C. 10,2 D. 10,2
10.若不等式组20,,02,xyymx表示的平面区域是一个三角形,则m的取值范围是( ) A.[2,4) B.[2,) C.[2,4] D.(2,4] 11.若yx,满足约束条件0033033yyxyx,则当31xy取最大值时,yx的值为( ) A.1 B.1 C.3 D.3
12.在平面直角坐标系中,已知点(2,1)A和坐标满足11yxxyy的动点(,)Mxy,则目标函数 zOAOM的最大值为( )
A.4 B.5 C.6 D.7 2018年高二数学寒假作业(人教A版必修5) 线性规划答案
1.若,xy满足不等式组0{2 22xyxyxy,则34zxy的最小值是( ) A. -7 B. -6 C. -11 D. 14 【答案】A 【解析】先作可行域,则直线34zxy过点P(-1,-1)时z取最小值-7,选A.
2.设动点,Pxy满足240250{ 00xyxyxy,则52zxy的最大值是( ) A. 50 B. 60 C. 70 D. 100 【答案】D 【解析】作出不等式组对应的平面区域如图:(阴影部分ABCO). 由52zxy得y=−52x+z2,平移直线y=−52x+z2, 由图象可知当直线y=−52x+z2经过点C(20,0)时,直线y=−52x+z2的截距最大,此时z最大. 代入目标函数52zxy得z=5×20=100. 即目标函数52zxy的最大值为100. 故选:D. 点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得. 3.已知函数fx的定义域为2,,且421ff, fx为fx的导函数,函数yfx
的图像如图所示,则平面区域0{0 21abfab所围成的面积是( )
A. 2 B. 4 C. 5 D. 8 【答案】B
∴02a+b<4.由0{0 024abab„,画出图象如图 ∴阴影部分的面积12442S. 故选C.
4.若直线2yx上存在点,xy满足约束条件30,{230, ,xyxyxm则实数m的最大值为( ) (A)1 (B)1 (C)32 (D)2 【答案】B 【解析】如图,
点睛:直线2yx上存在点,xy满足约束条件,即直线和可行域有公共区域. 5.若不等式组表示一个三角形内部的区域,则实数的取值范围是( ) A. B. C. D. 【答案】C 【解析】
表示直线的右上方,若构成三角形,点A在的右上方即可. 又,所以,即. 故选C 点睛:本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.
6.设,xy满足约束条件70{310 350xyxyxy ,则142yxz的最大值为( ) A.1024 B. 256 C. 8 D. 4 【答案】B
【解析】由21422yxxyz,令u=2x−y, 作出约束条件70{310 350xyxyxy ,对应的平面区域如图(阴影部分): 平移直线y=2x−u 点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.
7.若变量,xy满足约束条件8{ 2400xyyxxy,且5zyx的最大值为a,最小值为b,则ab的值是( ) A. 48 B. 30 C. 24 D. 16 【答案】C 【点睛】本题除了做约束条件的可行域再平移0l 求得正解这种常规解法之外,也可以采用构造法解题,这就要求考生要有较强的观察能力,或者采用设元求出构造所学的系数.
8.若0,0ab,且当0{0 1xyxy时,恒有1axby,则以,ab为坐标点,Pab所形成的平面区域的面积等于( ) A. 12 B. 1 C. 4 D. 2 【答案】B 【解析】
令zaxby, 1axby 恒成立,即函数zaxby,在可行域要求的条件下, 1maxz 恒成立. 当直线0axbyz过点10(,) 或点01(,) 时, 0101ab,. 点Pab(,) 形成的图形是边长为1的正方形. ∴所求的面积211S. 故选B 9.直线l过点1,2A且不过第四象限,那么直线l的斜率的取值范围为( )
A. 0,2 B. 0,2 C. 10,2 D. 10,2 【答案】A 【解析】∵直线l 过点12A(,) ,且不过第四象限, ∴作出图象,
当直线位于如图所示的阴影区域内时满足条件, 由图可知,当直线过A 且平行于x 轴时,直线斜率取最小值0mink; 当直线过1200AO(,),(,) 时,直线斜率取最大值2maxk. ∴直线l的斜率的取值范围是02,. 故选A
10.若不等式组20,,02,xyymx表示的平面区域是一个三角形,则m的取值范围是( ) A.[2,4) B.[2,) C.[2,4] D.(2,4] 【答案】A
考点:简单线性规划. 【方法点睛】本题主要考查简单线性规划问题,属于基础题.处理此类问题时,首先应明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范 围等.本题考查方向为可行域的确定,通过对不等式中参数的可能取值而确认满足条件的可行域. 11.若yx,满足约束条件0033033yyxyx,则当31xy取最大值时,yx的值为( ) A.1 B.1 C.3 D.3 【答案】D
考点:简单线性规划. 12.在平面直角坐标系中,已知点(2,1)A和坐标满足11yxxyy的动点(,)Mxy,则目标函数 zOAOM的最大值为( )
A.4 B.5 C.6 D.7 【答案】B 【解析】 试题分析:画出约束条件表示的可行域如图,可解得点2,1A,目标函数2zOAOMxy,化为2yxz,平移直线2yxz经过点2,1A时,z有最大值2215,故选B. 12-1-2-1
-2
12x
y
OA
考点:1、可行域的画法最优解的求法;2、平面向量的数量积公式. 【方法点晴】本题主要考查可行域的画法最优解的求法、平面向量的数量积公式,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.