第二节 迭代法 2
- 格式:ppt
- 大小:719.00 KB
- 文档页数:25
迭代法f1,f2=f2,f1+f2讲解【原创实用版】目录1.迭代法的基本概念2.迭代法 f1,f2=f2,f1+f2 的含义3.迭代法 f1,f2=f2,f1+f2 的实际应用4.迭代法 f1,f2=f2,f1+f2 的优点与局限性正文迭代法是一种求解方程或优化问题的数学方法,它通过不断接近真实的解,逐步改善近似解。
在迭代过程中,先取一个近似解,然后根据这个近似解计算出一个新的近似解,如此循环往复,直到满足某种停止条件。
迭代法在许多领域都有广泛的应用,如数值计算、物理学、经济学等。
迭代法 f1,f2=f2,f1+f2 是一种特殊的迭代法,它的含义是:用 f1 和 f2 表示某个变量,然后通过 f2,f1+f2 的迭代关系来不断更新 f1 和 f2 的值,从而逐步接近真实的解。
这种迭代法在数学和物理学中经常出现,特别是在求解常微分方程的数值解时,可以使用迭代法 f1,f2=f2,f1+f2 来提高计算精度。
迭代法 f1,f2=f2,f1+f2 的实际应用举例如下:假设我们要求解如下常微分方程:dx/dt = x + 2ydy/dt = -x + y我们可以使用迭代法 f1,f2=f2,f1+f2 来求解这个方程。
首先,我们取 f1=x,f2=y 作为初始近似解,然后根据迭代关系 f2,f1+f2 来更新 f1 和 f2 的值,如此循环往复,直到满足某种停止条件,例如计算到足够多的时间步或者达到预设的误差范围。
迭代法 f1,f2=f2,f1+f2 的优点在于其简单易行,适用于许多实际问题。
然而,它也存在一些局限性,例如在处理某些非线性问题时,迭代过程可能收敛到错误的解,或者收敛速度较慢,需要较长的计算时间。
因此,在实际应用中,我们需要根据问题的具体情况选择合适的迭代法,并结合其他优化技巧,以提高计算效率和精度。
总之,迭代法 f1,f2=f2,f1+f2 是一种实用的数学方法,它有助于我们解决许多实际问题。
第二章 迭代法的一般原理非线性方程组无论从理论上还是计算方法上,都比线性方程组复杂得多。
一般的非线性方程组很难求出解析解,往往只能求出其数值解,且往往只能借助于迭代法。
本章我们将讨论迭代法的一般原理、迭代法的一般构造及迭代收敛速度的衡量标准。
2-1 迭代法与不动点定理设n n R R D →⊂:f ,考虑方程()0=x f (2-1)若存在D *∈x ,使()0=*x f ,则称*x 为方程(2-1) 的解。
用迭代法求解(2-1) ,先将(2-1)化为等价的方程()x g x = (2-2)这里映象n n R R D →⊂:g 。
方程(2-2)的解*x (即()**x g x =)称为映象g 的不动点。
因此用迭代法解方程(2-1),就是求(2-2)中映象g 的不动点。
这样以及g 是否存在不动点自然就是我们关心的问题。
定理2-1 若n n R R D →⊂:g 为有界闭集D D ⊂0上的严格非膨胀映象,()00D D ⊂g ,则g 在0D 内有唯一不动点。
证 唯一性 设g 在0D 内至少有两个不动点1x ,2x ,则()()2121x x x g x g x x 21-≤-=-α 因1<α,所以由上式推得21x x =。
唯一性得证。
记()()x g x x -=ϕ,由g 及泛数的连续性可知1:R R D n →⊂ϕ连续。
因0D 为有界闭集,故ϕ在0D 上有最小值。
设0D *∈x 为最小点,即()()x g x x -=∈min 0D x *ϕ则*x 为g 的不动点。
因为若不然,则有()**x g x ≠,再由g 严格非膨胀,可得()()()()()***x g g x g x g -=ϕ()()***x x g x ϕ=-<这与*x 为ϕ的最小点相矛盾,故*x 为g 的不动点。
注 定理中0D 的有界闭性、g 的压缩性和g 映0D 入自身,此3个条件缺一不可。
例如,()xx x g 1+=在[)+∞=,D 10上严格非膨胀,但它在0D 中却没有不动点。
§2简单迭代法——不动点迭代(iterate)迭代法是数值计算中的一类典型方法,被用于数值计算的各方面中。
一、简单迭代法设方程f(x)=0 (3)在[a,b]区间内有一个根*x ,把(3)式写成一个等价的隐式方程x=g(x) (4)方程的根*x 代入(4)中,则有)(**=x g x (5)称*x 为g的不动点(在映射g下,象保持不变的点),方程求根的问题就转化为求(5)式的不动点的问题。
由于方程(4)是隐式的,无法直接得出它的根。
可采用一种逐步显式化的过程来逐次逼近,即从某个[a,b]内的猜测值0x 出发,将其代入(4)式右端,可求得)(01x g x =再以1x 为猜测值,进一步得到)(12x g x =重复上述过程,用递推关系——简单迭代公式求得序列}{k x 。
如果当k →∞时*→x x k ,}{k x 就是逼近不动点的近似解序列,称为迭代序列。
称(6)式为迭代格式,g(x)为迭代函数,而用迭代格式(6)求得方程不动点的方法,称为简单迭代法,当*∞→=x x k k lim 时,称为迭代收敛。
构造迭代函数g(x)的方法:(1)=x a x x -+2,或更一般地,对某个)(,02a x c x x c -+=≠;(2)x a x /=; (3))(21xa x x +=。
取a=3,0x =2及根*x =1.732051,给出三种情形的数值计算结果见表表 032=-x 的迭代例子问题:如何构造g(x),才能使迭代序列}{k x 一定收敛于不动点?误差怎样估计?通常通过对迭代序列}{k x 的收敛性进行分析,找出g(x)应满足的条件,从而建立一个一般理论,可解决上述问题。
二、迭代法的收敛性设迭代格式为),2,1,0()(1 ==+k x g x k k而且序列}{k x 收敛于不动点*x ,即∞→→-*k x x k (0时)因而有)3,2,1(1 =-≤-*-*k xx x x k k (7)由于),(),)((11*-*-*∈-'=-x x x x g x x k k k ξξ当g(x)满足中值定理条件时有),(),)((11*-*-*∈-'=-x x x x g x x k k k ξξ (8)注意到(8)式中只要1)(<<'L g ξ时,(7)式成立.经过上述分析知道,迭代序列的收敛性与g(x)的构造相关,只要再保证迭代值全落在[a,b]内,便得:假定迭代函数g(x)满足条件(1) 映内性:对任意x ∈[a,b]时,有a ≤g(x) ≤b ;(2) 压缩性:g(x)在[a,b]上可导,且存在正数L<1,使对任意 x ∈[a,b],有L x g <')( (9)则迭代格式)(1k k x g x =+对于任意初值0x ∈[a,b]均收敛于方程x=g(x)的根,并有误差估计式011x x LL x x kk --≤-*(10)证明 :收敛性是显然的。