计算方法_4方程求根的迭代法
- 格式:ppt
- 大小:636.50 KB
- 文档页数:67
计算方法4方程求根的迭代法四方程求根的迭代法是一种用于解决非线性方程的数值方法。
在计算方法中,非线性方程指的是形如f(x)=0的方程,其中f(x)包含x的非线性项。
在实际中,非线性方程的求解是非常常见的问题,因此有很多不同的迭代法可以用于解决这些问题。
以牛顿迭代法为例,它是一种基于线性近似的迭代方法。
该方法的基本思想是将非线性方程转化为线性方程,通过不断迭代来逼近方程的根。
具体而言,牛顿迭代法的步骤如下:1.选择初始估计值x0作为方程的根,并计算f(x0)的值。
2.计算f(x)的导数f'(x),并计算方程的线性近似式x-x0=-f(x0)/f'(x0)。
3.计算下一个近似值x1,即x1=x0-f(x0)/f'(x0)。
4.判断,x1-x0,是否小于给定的收敛条件,如果是则停止迭代,否则转到步骤55.将x1作为新的近似值x0,转到步骤2牛顿迭代法具有快速收敛的特点,尤其适用于具有单根的方程。
然而,该方法也存在一些限制,如在计算f'(x)时需要知道方程的导数,当方程的导数不易计算时,该方法可能不适用。
除了牛顿迭代法,还有其他一些常用的四方程迭代方法,如割线法、弦截法等。
每种方法都有其特点和适用范围,选择合适的方法对于求根问题的解决至关重要。
总结起来,四方程求根的迭代法是一种用于解决非线性方程的数值方法。
牛顿迭代法是其中一种常用的方法,通过不断迭代来逼近方程的根。
根据方程的特点和计算条件,选择合适的迭代方法是解决求根问题的关键。
希望以上的介绍可以帮助您更好地理解和应用这一方法。
迭代法是求解方程根的一种重要方法,它是以某种特定的搜索路径,通过不断迭代更新搜索解的值,最终求得方程的根的一种方法。
迭代法的核心思想是迭代的方法,通俗理解就是不断重复,不断迭代,不断改变,最终找到满足条件的解。
迭代法求解方程根的步骤大致如下:
首先,选定迭代法求解方程的初始值和迭代步长,然后设定迭代次数,并进行初始化。
其次,开始对迭代解进行更新。
在这一步中,根据方程的性质,以及初始值和迭代步长,通过计算求出新的迭代解,然后将新的迭代解更新到原来的迭代解中。
接着,计算迭代解的误差,并根据误差的大小,来判断迭代解是否收敛。
如果迭代解收敛,则将其作为方程的根;如果迭代解不收敛,则重复前面的步骤,继续迭代,直到解收敛为止。
最后,根据迭代解的误差,判断迭代解是否准确,即判断迭代解是否符合方程的性质。
如果误差满足要求,则将迭代解作为方程的根;如果误差过大,则需要重新调整迭代步长,并重复迭代,直到误差满足要求为止。
总之,迭代法求解方程根是一种重要的方法,它可以解决复杂的方程,在求解方程根方面有很大的帮助。
它的基本思想是:以某一特定搜索路径,通过迭代不断改变搜索解,最终得到解。
方程求根的迭代法一、考核知识点:区间二分法,弦位法(单点弦法、双点弦法)、切线法、一般迭代法,收敛性。
二、考核要求:1.熟练掌握用区间二分法求方程近似根的方法。
2.熟练掌握用单点弦法、双点弦法求方程近似根的方法。
了解其收敛性。
3.熟练掌握用切线性求方程近似根的方法。
了解其收敛性。
4.掌握用一般迭代法求方程的方法近似根的方法。
了解其收敛性。
三、重、难点分析例1 证明计算)0(>a a 的切线法迭代公式为:,1,0),(211=+=+n x a x x nn n 并用它求2的近似值(求出1x 即可)解 (1)因计算a 等于求02=-a x 正根,a x x f -=2)(,x x f 2)(=' 代入切线法迭代公式得)(21221nn n n n n x a x x x x x +=-=+ ,1,0=n (2) 设2)(2-=x x f ,因,0121)1(2<-=-=f 025.1)5.1(2>-=f 所以 []5.1,12*∈=x在[]5.1,1上 02)(>='x x f 02)(>=''x f由 0)()(0≥''x f x f ,选5.10=x用上面导出的迭代公式计算得 4167.11217)2(21001≈=+=x x x例2用单点弦法求方程 0153=+-x x 的最小正根(计算出1x ) 解:由于0375.1)5.0(,01)0(<-=>=f f 则]5.0,0[*∈x 在[0,0.5],,06)(,053)(2≥=''<-='x x f x x f 由,0)()(≥''x f c f 取5.0,00==x c 则单点弦法迭代公式 ,1,0)15(51),15(151032331=+--+=+--+---=+n x x x x x x x x x x x n n n n n n n n n n n 计算得 21.075.4375.15.01≈-=x 例3 用双点弦法,一般迭代法求0243=-+x x 的最小正根(求出2x 即可)。
§4.1 引 言绪论中讲到方程求根得二分法,但二分法收敛速度慢,有必要掌握新的方法。
§4.1.1迭代法的思想迭代法是一种逐次逼近法,使用某个固定公式(迭代公式)反复校正,逐步精确,直到满足精度。
迭代法求根分两步: 1) 猜测初值 2)迭代如求解初值问题00')(),,(y x y y x f y ==用梯形公式111[(,)(,)2n n n n n n h y y f x y f x y +++≈++ (1)看作关于1+n y 的函数方程,按欧拉公式提供猜测值),()0(1n n n n y x hf y y +=+,代入(1)得)],(),([2)0(11)1(1+++++=n n n n n n y x f y x f h y y若)1(1+n y 仍不满足要求,则将它代入(1)式,继续得到校正值)2(1+n y ,写成迭代公式)],(),([2)(11)1(1k n n n n n k n y x f y x f h y y ++++++= (2)一般地,为了求一元非线性方程0)(=x f 的根,可以先将其转换为如下的等价形式()x x ϕ= (3)式(3)中连续函数()x ϕ称为迭代函数,其右端含未知数,不能直接求解。
先用根的某个猜测值0x 代入(3),构造迭代公式:()k k x x ϕ=+1。
如果迭代值k x 有极限,则称迭代收敛,极限值k k x x ∞→=lim *就是方程(3)的根。
几何意义P127图4-1为使迭代法有效,必须保证它的收敛行,()x ϕ满足什么条件,才能保证收敛?以最简单的线性迭代()d kx x +=ϕ,可以看出收敛的充分必要条件()1'<=k x ϕ。
几何意义P127图4-2,3,4,5。
§4.1.3 压缩映像原理设*x 是方程()x x ϕ=的根,则由微分中值定理))(()()(*'*1*k k k x xx x x x-=-=-+εϕϕϕ,如果存在10<≤L ,使得],[b a x ∈有()k k x x L x x L x -≤-⇒≤+*1*'ϕ,则迭代误差0e L e kk ≤,由于10<≤L ,故0→k e ,即迭代收敛。
实验四 方程求根实验一. 实验目的(1)深入理解方程求根的迭代法的设计思想,学会利用校正技术和松弛技术解决某些实际的非线性方程问题,比较这些方法解题的不同之处。
(2)熟悉Matlab 编程环境,利用Matlab 解决具体的方程求根问题。
二. 实验要求用Matlab 软件实现根的二分搜索、迭代法、Newton 法、快速弦截法和弦截法,并用实例在计算机上计算。
三. 实验内容1. 实验题目(1)早在1225年,古代人曾求解方程020102)(23=-++=x x x x f 并给出了高精度的实根368808107.1*=x ,试用Newton 法和弦截法进行验证,要求精度610-=ε,并绘制方程的图形。
答:A.Newton 法:a .编写文件Newton.m 、func4.m 内容如下所示:b.运行,如下所示A为矩阵,由上面可知,对于初值为5,运行7次即可得到所需的精度,验证结果为古人给出的解释正确的;c.作图,编写下面的文件photo1.m.然后运行即可:注意下面中的x矩阵即为刚才计算出来的x系列,k为迭代的次数:a.编写文件Chord.m内容如下所示:b.运行结果如下所示:由上表可知,在精度为10^-6时有7位有效数字,古人的结果还是正确的c.作图,在上面运行后,即运行newton法时写的photo1.m文件即可出现图像:可以看到图中两条曲线基本重合; (2)取5.00=x ,用迭代法求方程x e x -=的根,然后用Aitken 方法加速,要求精度为结果有4为有效数字。
答:a. 编写文件func7.m 和Aiken.m ,内容如下所示:b .运行:具有四位有效数字 (3)用快速弦截法求解方程01)(=-=x xe x f ,要求精度为610-=ε,取6.05.010==x x ,作为开始值,并绘制1)(-=x xe x f 的图形。
答:对照可知,书本后面的程序已经正确,运行即可:下面为快速弦截法的主程序文件:函数文件如下:运行如下:作图,编写下面的文件:运行该文件就可以y=x*exp(x)-1函数和插值函数的图:可以看到两条直线基本重合在一起了,扩大图片可以看到两条直线是不重合的:2. 设计思想要求针对上述题目,详细分析每种算法的设计思想。
方程求根的迭代法原理与对比方程求根是数学中常见的问题之一,迭代法是解决方程求根的一种常用方法。
本文将介绍迭代法的原理,并对比几种常见的迭代法,以帮助读者更好地理解和应用于实际问题中。
一、迭代法的原理迭代法是一种通过反复逼近来求解方程根的方法。
其基本思想是从一个初始值开始,通过不断迭代,逐步逼近方程的根。
具体的迭代公式可以表示为:x_(n+1) = f(x_n)其中,x_n 表示第 n 次迭代的值,x_(n+1) 表示第 n+1 次迭代的值,f(x) 表示方程的函数表达式。
通过不断迭代,当 x_n 逐渐接近方程的根时,x_(n+1) 也会越来越接近方程的根。
当两者的差值小于预设的精度要求时,即可认为找到了方程的近似根。
二、常见的迭代法1. 不动点迭代法不动点迭代法是最简单且常见的迭代法之一。
它的迭代公式为:x_(n+1) = g(x_n)其中,g(x) 是一个满足条件的函数,通常通过选取合适的 g(x) 来使得迭代收敛。
例如,对于方程 x^2 - 2 = 0,可以选择 g(x) = sqrt(2 + x)。
2. 牛顿迭代法牛顿迭代法是一种较为高效的迭代法,其迭代公式为:x_(n+1) = x_n - f(x_n)/f'(x_n)其中,f(x) 和 f'(x) 分别表示方程的函数和导数。
牛顿迭代法的关键在于利用函数的切线来逼近方程的根,通过不断迭代,可以快速地找到根的近似值。
3. 弦截法弦截法是一种基于线性插值的迭代法。
其迭代公式为:x_(n+1) = x_n - f(x_n)(x_n - x_(n-1))/(f(x_n) - f(x_(n-1)))弦截法通过连接两个迭代点的直线与 x 轴的交点来逼近方程的根。
相比于牛顿迭代法,弦截法不需要计算导数,适用于一些无法直接求导的函数。
三、迭代法的对比不同的迭代法在收敛速度、稳定性和适用范围上有所差异。
牛顿迭代法通常收敛速度较快,但对于某些特殊情况可能发散;弦截法相对稳定,但收敛速度较慢;不动点迭代法则是最简单但收敛速度相对较慢的方法。