方程求根的迭代法(19-20).
- 格式:ppt
- 大小:1.22 MB
- 文档页数:10
计算方法4方程求根的迭代法四方程求根的迭代法是一种用于解决非线性方程的数值方法。
在计算方法中,非线性方程指的是形如f(x)=0的方程,其中f(x)包含x的非线性项。
在实际中,非线性方程的求解是非常常见的问题,因此有很多不同的迭代法可以用于解决这些问题。
以牛顿迭代法为例,它是一种基于线性近似的迭代方法。
该方法的基本思想是将非线性方程转化为线性方程,通过不断迭代来逼近方程的根。
具体而言,牛顿迭代法的步骤如下:1.选择初始估计值x0作为方程的根,并计算f(x0)的值。
2.计算f(x)的导数f'(x),并计算方程的线性近似式x-x0=-f(x0)/f'(x0)。
3.计算下一个近似值x1,即x1=x0-f(x0)/f'(x0)。
4.判断,x1-x0,是否小于给定的收敛条件,如果是则停止迭代,否则转到步骤55.将x1作为新的近似值x0,转到步骤2牛顿迭代法具有快速收敛的特点,尤其适用于具有单根的方程。
然而,该方法也存在一些限制,如在计算f'(x)时需要知道方程的导数,当方程的导数不易计算时,该方法可能不适用。
除了牛顿迭代法,还有其他一些常用的四方程迭代方法,如割线法、弦截法等。
每种方法都有其特点和适用范围,选择合适的方法对于求根问题的解决至关重要。
总结起来,四方程求根的迭代法是一种用于解决非线性方程的数值方法。
牛顿迭代法是其中一种常用的方法,通过不断迭代来逼近方程的根。
根据方程的特点和计算条件,选择合适的迭代方法是解决求根问题的关键。
希望以上的介绍可以帮助您更好地理解和应用这一方法。
迭代法是求解方程根的一种重要方法,它是以某种特定的搜索路径,通过不断迭代更新搜索解的值,最终求得方程的根的一种方法。
迭代法的核心思想是迭代的方法,通俗理解就是不断重复,不断迭代,不断改变,最终找到满足条件的解。
迭代法求解方程根的步骤大致如下:
首先,选定迭代法求解方程的初始值和迭代步长,然后设定迭代次数,并进行初始化。
其次,开始对迭代解进行更新。
在这一步中,根据方程的性质,以及初始值和迭代步长,通过计算求出新的迭代解,然后将新的迭代解更新到原来的迭代解中。
接着,计算迭代解的误差,并根据误差的大小,来判断迭代解是否收敛。
如果迭代解收敛,则将其作为方程的根;如果迭代解不收敛,则重复前面的步骤,继续迭代,直到解收敛为止。
最后,根据迭代解的误差,判断迭代解是否准确,即判断迭代解是否符合方程的性质。
如果误差满足要求,则将迭代解作为方程的根;如果误差过大,则需要重新调整迭代步长,并重复迭代,直到误差满足要求为止。
总之,迭代法求解方程根是一种重要的方法,它可以解决复杂的方程,在求解方程根方面有很大的帮助。
它的基本思想是:以某一特定搜索路径,通过迭代不断改变搜索解,最终得到解。
§4.1 引 言绪论中讲到方程求根得二分法,但二分法收敛速度慢,有必要掌握新的方法。
§4.1.1迭代法的思想迭代法是一种逐次逼近法,使用某个固定公式(迭代公式)反复校正,逐步精确,直到满足精度。
迭代法求根分两步: 1) 猜测初值 2)迭代如求解初值问题00')(),,(y x y y x f y ==用梯形公式111[(,)(,)2n n n n n n h y y f x y f x y +++≈++ (1)看作关于1+n y 的函数方程,按欧拉公式提供猜测值),()0(1n n n n y x hf y y +=+,代入(1)得)],(),([2)0(11)1(1+++++=n n n n n n y x f y x f h y y若)1(1+n y 仍不满足要求,则将它代入(1)式,继续得到校正值)2(1+n y ,写成迭代公式)],(),([2)(11)1(1k n n n n n k n y x f y x f h y y ++++++= (2)一般地,为了求一元非线性方程0)(=x f 的根,可以先将其转换为如下的等价形式()x x ϕ= (3)式(3)中连续函数()x ϕ称为迭代函数,其右端含未知数,不能直接求解。
先用根的某个猜测值0x 代入(3),构造迭代公式:()k k x x ϕ=+1。
如果迭代值k x 有极限,则称迭代收敛,极限值k k x x ∞→=lim *就是方程(3)的根。
几何意义P127图4-1为使迭代法有效,必须保证它的收敛行,()x ϕ满足什么条件,才能保证收敛?以最简单的线性迭代()d kx x +=ϕ,可以看出收敛的充分必要条件()1'<=k x ϕ。
几何意义P127图4-2,3,4,5。
§4.1.3 压缩映像原理设*x 是方程()x x ϕ=的根,则由微分中值定理))(()()(*'*1*k k k x xx x x x-=-=-+εϕϕϕ,如果存在10<≤L ,使得],[b a x ∈有()k k x x L x x L x -≤-⇒≤+*1*'ϕ,则迭代误差0e L e kk ≤,由于10<≤L ,故0→k e ,即迭代收敛。
方程求根的迭代法--------------牛顿法和弦截法实验目的:实际问题中碰到的函数f(x)是各种各样的,有的表达是很复杂,这时求解函数方程f(x)=0的根就会变得很困难,而工程应用中,对计算的结果只要保证在某个误差范围之内就足够了,这就要求我们设计一种方法能够求解复杂函数方程的根,迭代法就是这样一种求解复杂函数方程的根的方法。
又由于通常对某些函数方程的根要求比较精确,误差要控制在一定的范围之内,所以计算过程比较复杂,这就要求这种算法能够便于利用计算机编程实现,牛顿法和弦截法为我们提供了一种既能够利用迭代法求解复杂方程的根,又能够便于利用计算机实现,从而方便我们求解,节省我们时间的求解方法。
本实验的目的就在于熟练掌握利用牛顿法和弦截法编程求解方程根,并且比较牛顿法和弦截法的收敛速度,比较两者的不同之处,进而加深对牛顿法和弦截法这两种方法的数学原理的理解。
实验编程实现方程f=@(x)x-exp(-x)及f=@(x)x*exp(x)-1分别利用牛顿法和弦截法求解,并且比较牛顿法和弦截法各自迭代多少次才能达到要求的某一精度,并且理解二者的差别和各自的优缺点。
本实验中要注意在牛顿法的迭代过程中,分母上会出现f(x)的导数项,所以在编程过程中,一定要在程序的一开始就先判断f'(x)是否等于0,如果等于0,则直接跳出,只有在其不为0的情况下才继续执行程序。
另外某些函数可能会发散或者是迭代过程收敛的非常慢,这时用牛顿法就是不合适的,所以这就要求我们另取其他方法。
所以在用牛顿法求解方程根的过程中,要设置一个最大的迭代次数,以免造成电脑资源不足,系统崩溃。
在弦截法的迭代过程中,除了与牛顿法相同的一些注意事项之外,还要注意在计算之前必须要先提供两个开始的值x0,x1。
实验原理: 迭代法的设计思想:迭代法是一种逐次逼近法,这种方法使用某个固定公式,即所谓的迭代公式,反复校正根的近似值,使之逐步精确化,直到得出满足精度要求的结果。
方程求根的数值方法数值方法是一种求解方程根的近似方法,它通过一系列计算和迭代来逼近方程的根。
这些方法常用于无法通过代数方法求得解析解的复杂方程,或者是当方程没有明确的解析解时。
在这篇文章中,我们将讨论三种常用的数值方法:二分法、牛顿法和割线法。
二分法是一种基于零点定理的根查找方法。
零点定理指出,如果一个函数在区间[a,b]的两个端点处取得正负值,那么这个函数在这个区间内至少存在一个根。
二分法的基本思想是将区间二分,并判断根是否在分割后的子区间内。
具体步骤如下:1.选择一个初始区间[a,b],使得f(a)和f(b)异号。
2.计算区间中点c=(a+b)/23.如果f(c)等于0或者f(c)的绝对值小于给定的误差限,那么c是近似的根。
4.如果f(c)和f(a)异号,那么根在左半区间[a,c]内;否则,根在右半区间[c,b]内。
5.重复步骤2到4,直到找到满足条件的近似根。
二分法的优点是简单易懂,收敛速度较快;缺点是每次迭代只能减少一半的区间长度。
牛顿法是一种迭代法,通过对函数f(x)的一阶导数进行线性逼近,来求得方程f(x)=0的根。
具体步骤如下:1.选择一个初始近似根x0。
2.计算函数f(x)在x=x0处的导数f'(x0)。
3.计算线性逼近方程的解x1=x0-f(x0)/f'(x0)。
4.如果f(x1)的绝对值小于给定的误差限,那么x1是近似的根。
5.否则,令x0=x1,重复步骤2到4,直到找到满足条件的近似根。
牛顿法的优点是收敛速度快,通常是二次收敛;缺点是对于一些特殊的函数,可能会出现发散或者陷入局部最优解的情况。
割线法是对牛顿法的改进,它通过将区间的两个端点连接起来,构建一条割线来逼近方程的根。
具体步骤如下:1.选择两个初始近似根x0和x1,使得f(x0)和f(x1)异号。
2.计算割线的斜率k=(f(x1)-f(x0))/(x1-x0)。
3.计算线性逼近方程的解x2=x1-f(x1)/k。