模糊线性规划中模糊目标系数的隶属函数的确定
- 格式:pdf
- 大小:271.18 KB
- 文档页数:4
第一章绪论1.1模糊优化设计概念现实生活和工程领域中,存在着许多不确定性的量。
这种不确定性主要表现在两个方面:一是随机性,一是模糊性。
随机性是由于事物的因果关系不确定造成的。
它由概率、统计加以研究,是概率力学设计的范畴。
模糊优化设计,主要设计食物的模糊性。
所谓模糊,是指边界不清楚,即在本质上没有确切的含义,在量上没有明确的界限[1]。
常规的优化设计是把设计中的各种因素均处理成确定的逻辑关系,忽略了事物之间存在的模糊性,使得设计变量和目标函数不能达到应有的取值范围,往往落下一些真正的优化结果。
事实上,事物之间的中介过渡过程所带来的事物普遍存在的模糊性,而且设计对像的复杂化必然涉及到模糊。
由于信息技术、人工智能的研究必然要考虑到模糊信息的识别与处理以及由于工程设计的不仅要面向用户需求的多样化和个性化,还要以满足社会需求为目标,并依赖社会环境、条件、自然资源政治经济政策等比较强列的模糊性问题等,这些必然导致设计的过程中纯在种种的模糊性问题。
而模糊优化正是解决这一问题的设计方法,是将模糊优化理论与普通优化方法相结合的一种新的设计方法,是普通优化设计的延伸和发展。
1.2模糊优化设计起源20世纪50年代在应用数学领域发展形成了以线性规划和非线性规划为最主要内容的数学规划理论,并应用于解决工程设计问题,形成了工程设计的优化设计理论和方法。
数值计算方法是利用已知的信息,通过迭代计算过程来逼近最优化问题的解。
这种方法由于其运算量大,甚至电子计算机出现和发展后才成为现实,并为数值优化方法的发展提供了重要的基础。
Dantzing提出了求线性规划问题的单纯方法,Bellman对动态规划问题提出了最优化原理[2],这两方面的研究工作为约束优化方法的进展铺平了道路。
Kuhn和Tucker关于规划问题最优解的必要条件和充分条件的研究工作为以后再非线性规划领域内的大量研究奠定了基础[3]。
20实际60年代初,Zoutend和Rosen对非线性规划的贡献有很重要的价值。
模糊划分系数
模糊划分系数是一种用于衡量模糊集合的不确定性程度的指标。
在模糊集合理论中,模糊划分系数越大,说明模糊集合的不确定性程度越高,反之则越低。
本文将从不同角度探讨模糊划分系数的概念和应用。
一、模糊划分系数的定义与计算
模糊划分系数是模糊集合理论中的一个重要概念,用于描述模糊集合的不确定性程度。
模糊划分系数的计算方法多种多样,其中一种常用的计算方法是基于隶属度函数的计算。
隶属度函数是描述元素与模糊集合之间隶属关系的函数,通过对隶属度函数的计算,可以得到模糊划分系数的数值。
模糊划分系数在模糊集合理论中有着广泛的应用。
一方面,模糊划分系数可以用于评估模糊集合的模糊程度,帮助我们理解模糊集合的不确定性特征。
另一方面,模糊划分系数还可以用于模糊决策中的权重分配和模糊聚类中的聚类分析等问题。
三、模糊划分系数的实例
为了更好地理解模糊划分系数的概念和应用,我们以一个实际问题为例进行说明。
假设我们要对一批商品进行分类,但是由于商品的属性信息存在一定的不确定性,因此我们需要使用模糊集合理论来描述商品的分类问题。
在这个问题中,模糊划分系数可以帮助我们评估商品分类的准确性,从而提高分类的效果。
四、结论
通过以上的介绍,我们可以看到,模糊划分系数在模糊集合理论中扮演着重要的角色。
它不仅可以帮助我们理解模糊集合的不确定性特征,还可以应用于模糊决策和模糊聚类等实际问题中。
因此,对于研究模糊集合的学者和工程师来说,深入理解和应用模糊划分系数是非常有意义的。
希望本文能给读者带来一定的启发和帮助。