法平面和切平面公式
- 格式:docx
- 大小:37.15 KB
- 文档页数:2
曲面的切平面与法线方程设上中曲面Σ的方程为F (X , y , Z) = 0 ,函数F (X , y , Z)在曲面Σ上点'一J∣.∙.'一'.∣处可微,W t) =且1加卽龛丿,过点血任意引一条位于曲面Σ上的曲线Γ°设其∖=Λ(∕)y=y⅛)方程为A邛,且对应于点不全为零。
由于曲线Γ在Σ上,则有⅛ g(x吨)+卩(血吨)+叭(⅜F(⅛)及朮LF 。
该方程表示了曲面上任意一条过点「厂的曲线在该点的切线都与向量WO) 垂直,并且这些切线都位于同一平面上,这个平面就称为曲面Σ在点:处的切平面.点.称为切点.向量二心 2 -l称为曲面Σ在点-处的一个法向量。
记为G。
基本方法:1、设点l l- ■' ■" 1■■在曲面F(x, y, z)=0上,而F(x, y, Z)在点一∣处存在连续偏导数,且三个偏导数不同时为零,则曲面F(x, y, z)=0在点处的切平面方程为F:g )(r-r,>+ 兀厲XJ-Λ)÷Eg(H-^) = D法线方程为⅞ _ y~y ti_X(Jf O)=X^) =2、设点''■' ' l∙' ' ■'在曲面Z = f (x, y)上,且Z = f (x, y)在点M o (χo, y o)处存在连续偏导数,则该曲面在点Al∙, "-" - -■处的切平面方程为-f E j Ja-心)-力(心小Xy-几)2-齢MDX = x(u, V) , y = y(u, V) , Z = z(u, V)给出,∑上的点禺臨片九与UV平面上的点(U o , V0)对应,而X(U , V) , y(u , V) , Z(U , V)在( u o , v o)处可微.曲面∑在点X o处的切平面方程及法线方程分别为三、答疑解惑问题:曲面∑的参数方程为X = X(U , V) , y = y(u , V) , Z = Z(U , V),∑±的点:'I- ■ -,'ι■ •与u , V平面上的点(U o , VO)对应,怎样确定∑在点X o处的法向量?注释:设X(U , V) , y(U , V) , Z(U , V)在(U o , VO)处可微,考虑在∑上过点X o的两条曲线.Γ i: X = X(U , V o) , y = y(U , V o) , Z = Z(U , V o);Γ 2 : X = X(U o , V) , y = y(U o , V) , Z = Z(UO, V).它们在点X o处的切向量分别为ξ=C⅛冲"⅛(⅜, ⅛(¾,⅛))E■(兀(知岭h H(M e Mh 久(%%))过X o的法线方程为注:方法2实际上是方法1 中取..'l--λ.'<-的情形3、若曲面∑由参数方程当< 'I -时,得∑在点Xo 处的法向量为则∑在点Xo 处的法向量为<‰v)r ^f V),页陽叭四、典型例题 例1求椭球面x 2+2y 2+3z 2 = 6在(1, 1, 1 )处的切平面方程与法线方程解设F (x, y, Z ) = x 2+2y 2+3z 2 - 6,由于「八 FJ- •二在全平面上处处连续, 在(1,1,1 )处'一儿一「'■ 一",椭球面在点(1,1,1)处的法向量为(2, 4, 6).则所求切平面方程为2(z-l) + 4(y-1) ÷6(z-l) ■ 0即 X + 2y + 3z = 6.Λ- 1 _ y- I _1所求法线方程为---X-1 y-L Z-1 即 I-J ^ -.* i Z=—卡 y例2求曲面- 平行于Z = 2x+2y 的切平面方程则曲面在一1'^l 处的法向量为 'l ,' 曲面在点X 0处的切平面方程为解设切点为 兀馆%殆.曲面"J 」 j2,因此舐瀚(Λ-心)十 2⅛O- M)- (Z -2o)-0又切平面与已知平面 Z = 2x+2y 平行,因此解得切点坐标为- ■■■■'■',所求切平面方程为2(^-3)+2(y-l)-(z-3)-0例 3 求曲面■ ^ 11■: 1.∙ ^ ■ ■ - ■ :.「「’「 -^- - ^ 在点1 >. ^.:处的切平面方程和法线方程.解 点^∙l ∙,'^∙厂…对应曲面上的点11 1■■ 1 '其中Λ⅛ =^Sin⅞¾ COE ⅛J I y o sm⅛r ¾ = L 7COS ⅞⅞^^COS ⅛=^5m¼.os⅛u<A. j-i SC0SξK⅛ cos⅛ 5⅛≤9∣4 QCOS⅞⅛si∩¾则曲面在点"-处的法向量为 V’ 4,亠」5 所求曲面在点X o 处的切平面方程为‰⅛I JS αcos⅝⅞ GOS ⅞Sm ς⅛ sin ⅛ ^Sill 2 ≠¾ sin ⅛-<jsifl ⅛ sin ⅛ -*2sιn sm ⅞2 」2≡t? Sm 处 c□≡φ¾护 tin 贏 COS ⅛(X ^ΛSIH ‰ cos¾) + asm J ⅞¾ sm¾ sm ξ≡⅛ s πι ¾) + O lSln 砂 CaS3^ DiJS 妬)■ 0,即 Q .一 -i ∣ J ■: , ; J I ς, • ■ I ■] _ _ ∙fΛ- asuι⅞⅛ cos6⅛ _ y- ^Sin⅛⅛ sin 6⅛所求的法线方程为「一一 .,J -IJ - -J . L - -I - .'■ J -■-■.Λ- sm⅛ J -ΛCCS ⅞¾SIn ⅞J ¾COS ⅛SHl ⅞¾ sin ⅛cos⅛¾解过直线的平面方程可设为即]:":l "1'''其法向量为-■ 一且有J3Λ -2y-Z ~ 5例4求过直线',且与曲面L相切之切平面方程Q i Fm 2 ⅞⅛ cosg⅛3χ-2y- ∑ - 5^ Λ(Λ + y+ z) - QFgFQ =加- 2y 2 + 2z -设所求的切平面的切点为■ ■,则曲面上;=2处的法向量为(%γ用②.8,则(3 + Λχ÷(Λ-2)j b ÷(Z-l¼-5 = 03 + ∕⅛ 2-2 Λ-l由⑴、(3)解得代入(2)得e -⅛÷3-o则所求切平面方程为3x - 2I y-Z- 5 + 3(j ÷ιy +z) ■ O或…'--,.■-- I -即 6x + y + 2 Z = 5 或 10x + 5y + 6 Z = 5.例5试证曲面IT 丿上任一点处的切平面都过原点,其中 f(x)为可微函数(1)2÷⅛ 2t -1 15解得 t ι = 1, t 2 = 3 ,故λ 2=7.1 1■- ,''∙ 处的法向量为故曲面上点则过曲面上点--'-.' - ,.∙-的切平面方程为f-⅛∕∙卜fy-⅞∕"ι"^o ∕f -注意到<r <> ,从上述方程得切平面方程为■/ X ( ∖^∣( \f 西-—f 地也 y-^-Ok⅞∕ Jf O ∖λ(]√^J∖⅞∕可知其必定过原点.(X-X o )4 ∕{⅛-Λ)整理后得。
第六节 空间曲线的切线与空间曲面的切平面一、空间曲线的切线与法平面设空间的曲线C 由参数方程的形式给出:⎪⎩⎪⎨⎧===)()()(t z z t y y t x x ,),(βα∈t .设),(,10βα∈t t ,)(),(),((000t z t y t x A 、))(),(),((111t z t y t x B 为曲线上两点,B A ,的连线AB 称为曲线C 的割线,当A B →时,若AB 趋于一条直线,则此直线称为曲线C 在点A 的切线.如果)()()(t z z t y y t x x ===,,对于t 的导数都连续且不全为零即空间的曲线C 为光滑曲线,则曲线在点A 切线是存在的.因为割线的方程为也可以写为当A B →时,0t t →,割线的方向向量的极限为{})(),(),(000t z t y t x ''',此即为切线的方向向量,所以切线方程为)()()()()()(000000t z t z z t y t y y t x t x x '-='-='-.过点)(),(),((000t z t y t x A 且与切线垂直的平面称为空间的曲线C 在点)(),(),((000t z t y t x A 的法平面,法平面方程为如果空间的曲线C 由方程为且)(),(0'0'x z x y 存在,则曲线在点)(),(,(000x z x y x A 的切线是法平面方程为如果空间的曲线C 表示为空间两曲面的交,由方程组 确定时,假设在),,(000z y x A 有0),(),(≠∂∂=Az y G F J ,在),,(000z y x A 某邻域内满足隐函数组存在定理条件,则由方程组⎩⎨⎧==0),,(0),,(z y x G z y x F ,在点),,(000z y x A 附近能确定隐函数有)(),(0000x z z x y y ==,),(),(1,),(),(1x y G F J dx dz z x G F J dx dy ∂∂-=∂∂-=;于是空间的曲线C 在 点),,(000z y x A 的切线是 即法平面方程为类似地,如果在点),,(000z y x A 有0),(),(≠∂∂Ay x G F 或0),(),(≠∂∂Ax z G F 时,我们得到的切线方程和法平面方程有相同形式;所以,当向量时,空间的曲线C 在),,(000z y x A 的切线的方向向量为r例 求曲线θθθb z a y a x ===,sin ,cos 在点()πb a ,0,-处的切线方程. 解 当πθ=时,曲线过点()πb a ,0,-,曲线在此点的切线方向向量为{}{}b a b a a ,,0|,cos ,sin -=-=πθθθ,所以曲线的切线方程为bt z z a t y y t x x )()(0)(000-=--=-. 即 b b z a y a x π-=-=+0. 二、空间曲面的切平面与法线设曲面S 的一般方程为取),,(0000z y x P 为曲面S 上一点,设),,(z y x F 在),,(0000z y x P 的某邻域内具有连续偏导数,且0),,(),,(),,(000200020002≠++z y x F z y x F z y x F z y x ;设c 为曲面S 上过),,(0000z y x P 的任意一条光滑曲线:设)(),(),(000000t z z t y y t x x ===,我们有 上式对t 在0t t =求导得到因此,曲面S 上过),,(0000z y x P 的任意一条光滑曲线c 在),,(0000z y x P 点的切线都和向量 垂直,于是这些切线都在一个平面上,记为α,平面α就称为曲面S 在),,(0000z y x P 的切平面,向量n称为法向量;S 在),,(0000z y x P 的切平面方程是过点),,(0000z y x P 且与切平面α垂直的直线称为曲面S 在),,(0000z y x P 点法线,它的方程为 设曲面S 的方程为若),,(z y x F 在S 有连续偏导数且0),,(),,(),,(000200020002≠++z y x F z y x F z y x F z y x ,则称S 是光滑曲面;由上面讨论可以知道光滑曲面有切平面和法线;若曲面S 的方程的表示形式为 ),(y x f z =,这时,容易得到S 在),,(0000z y x P 的切平面方程为 法线方程为我们知道,函数),(y x f z =在点),(00y x 可微,则由Taylor 公式知))()((0))(,())(,(),(),(202000000000y y x x y y y x f x x y x f y x f y x f y x -+-+-+-=-也就是说,函数),(y x f z =在点),(00y x 附近可以用S 在),,(0000z y x P 的切平面近似代替,误差为2020)()(y y x x -+-的高阶无穷小;若曲面S 的方程表示为参数形式设),(),,(),,(000000000v u z z v u y y v u x x ===,),,(0000z y x P 为曲面上一点;假设在),,(0000z y x P 有0),(),(0≠∂∂=P v u y x J ,在),,(0000z y x P 某邻域内满足隐函数组存在定理条件,则由方程组⎩⎨⎧==),(),(v u y y v u x x ,在点),,(0000z y x P 附近能确定隐函数即x 和y 的逆映射 满足),(),,(000000y x v v y x u u ==;于是,曲面S 可以表示为由方程组⎩⎨⎧==),(),(v u y y v u x x ,两边分别同时对y x ,求偏导得到故所以,S 在),,(0000z y x P 的切平面方程为 法线方程为例 求曲面zxy z ln+=在点)1,1,1(的切平面和法线方程; 解 曲面方程为0ln ),,(=-+=z zxy z y x F ,易得}2,1,1{-=→n切面方程为 即02=-+z y x . 法线方程为习题1.求曲线t a z t a a y t a a x sin ,cos sin ,cos cos ===在点0t t =处的切线和法平面方程.2.求曲线⎩⎨⎧=++=++06222z y x z y x 在点)1,2,1(-处的切线和法平面方程.3.求曲面xy z arctan =在点)4/,1,1(π的切平面和法线方程;4;证明曲面)0(3>=a a xyz 上任意一点的切平面与坐标面形成的四面体体积为定值;5.证明曲面)(xy xf z =上任意一点的切平面过一定点;第七节 极值和最值问题一、无条件极值与一元函数极值类似,我们可以引入多元函数的极值概念;定义 n 元函数),,,(21n x x x f 在点),,,(002010n x x x P 的一个邻域⊂)(0P U n R 内有定义;若对任何点)(),,,(021P U x x x P n ∈ ,有)()(0P f P f ≥或)()(0P f P f ≤则称n 元函数),,,(21n x x x f 在),,,(002010n x x x P 取得极大或极小值, ),,,(002010n x x x P 称为函数),,,(21n x x x f 的极大或极小值点;极大值和极小值统称为极值,极大值点和极小值点统称为极值点;类似一元函数,我们称使得n 元函数),,,(21n x x x f 的各个一阶偏导数同时为零的点为驻点;我们有如下定理;定理 若),,,(002010n x x x P 为n 元函数),,,(21n x x x f 的极值点,且),,,(21n x x x f 在),,,(002010n x x x P 的一阶偏导数存在,则),,,(002010n x x x P 为n 元函数),,,(21n x x x f 的驻点;证 考虑一元函数)2,1)(,,,,()(001n i x x x f x ni i ==φ,则i x 是)(i x φ的极值点,Fermat 马定理告诉我们,可导函数在极值点的导数是零,于是和一元函数类似,反过来,驻点不一定是极值点;而偏导数不存在的点也有可能是极值点;判断多元函数的极值点要比一元函数复杂的多,下面我们仅对二元函数不加证明给出一个判别定理;定理 若),(000y x P 为二元函数),(y x f 的驻点,且),(y x f 在),(000y x P 的一个邻域⊂)(0P U 2R 中有二阶连续偏导数;令2B AC CB B A Q -==,则(1) 当0>Q 时,若0>A ,),(y x f 在),(000y x P 取极小值;若0<A ,),(y x f 在),(000y x P 取极大值;(2) 当0<Q 时,),(y x f 在),(000y x P 不取极值;(3) 当0=Q 时,),(y x f 在),(000y x P 可能取极值,也可能不取极值; 例 求函数)6(32y x y x z --=的极值; 解 解方程组得驻点为)3,2(0P 及直线0,0==y x 上的点;对)3,2(0P 点有0,144,108,1622>--=-=-=B AC C B A ,于是函数z 在)3,2(0P 取积大值108)(0=P z ; 容易判断,满足条件⎩⎨⎧<<=600y x 的点为函数z 的极小值点,极小值为0;满足条件的⎩⎨⎧<=00y x 和⎩⎨⎧>=6y x 的点为函数z 的极大值点,极大值为0; 一、 最值问题在社会生产各个领域我们都会遇上最值问题,即如何用最小的成本获取最大利益的问题,这些问题一般都可以归结为求某一函数在某一范围内的最大值和最小值的问题;我们称使得函数取得最大值和最小值的点为函数的最大值点和最小值点,统称为最值点;函数的最大值和最小值统称为最值;1、 一元函数设)(x f y =是定义在闭区间],[b a 上的连续函数,则)(x f 在],[b a 上一定有最大值和最小值;区间的两个端点a 和b 可能成为其最值点,而如果最值点在开区间),(b a 取得的话,则一定是)(x f 的极值点,即是)(x f 的驻点或是使导数)('x f 不存在的点;假设)(x f 的所有驻点是11211,,k x x x ,使导数)('x f 不存在的点是22221,,m x x x ,那么例 求抛物线x y 22=上与)4,1(最近的点;解 设),(y x 是抛物线x y 22=上的点,则),(y x 与)4,1(的距离是考虑函数2)(d y f =,由0)('=y f ,得到唯一驻点2=y ,于是抛物线x y 22=上与)4,1(最近的点是)2,2(2、多元函数类似一元函数,n 元函数),,,(21n x x x f 的最值问题就是求),,,(21n x x x f 在某个区域⊂D n R 上的最大值和最小值,我们只需求出),,,(21n x x x f 在D 内部的所有极值和边界上最值,从中比较就可以选出),,,(21n x x x f 在D 上的最值;例 求平面42=++z y x 与点)2,0,1(-的最短距离;解 设),,(z y x 是平面42=++z y x 上的点,则),,(z y x 与)2,0,1(-的距离是 考虑函数2),(d y x f =,由0,0'==y x f f ,得到唯一驻点)3/5,6/11(,于是平面42=++z y x 与点)2,0,1(-的最短距离是665)3/5,6/11(=d 三、条件极值问题和Lagrange 乘子法前面我们研究的极值和最值问题都是直接给出一个目标函数n 元函数),,,(21n x x x f ,然后求其极值或最值,是无条件极值问题,但是,更多的极值和最值问题是有约束条件的,即条件极值问题;一般来说,条件极值问题是指:求目标函数n 元函数),,,(21n x x x f y =在一组约束条件⎪⎪⎩⎪⎪⎨⎧<===)(,0),,(0),,(0),,(21212211n m x x x G x x x G x x x G n m nn 下的极值; 我们可以尝试对上面方程组用消元法解出m 个变量,从而转化为上一节的无条件极值问题来解决,但是,消元法往往比较困难甚至是不可能的,所以,我们需要给出一种新的方法来求条件极值;下面我们介绍拉格朗日乘子法;我们以二元函数为例来说明,即:求目标函数),(y x f z =在一个约束条件0),(=y x F 限制下的极值问题;假设点),(000y x P 为函数),(y x f z =在条件0),(=y x F 下的极值点,且0),(=y x F 满足隐函数存在定理的条件,确定隐函数)(x g y =,则0x x =是一元函数))(,(x g x f z =的极值点;于是 由隐函数存在定理得到 令λ=),(),(0000y x F y x f y y ,于是极值点),(000y x P 需要满足三个条件:因此,如果我们构造拉格朗日函数其中,λ称为拉格朗日乘子,则上面三个条件就是也就是说我们讨论的条件极值问题转化为拉格朗日函数的无条件极值问题;用这种方法去求可能的极值点的方法,称为拉格朗日乘子法;类似地,求目标函数n 元函数),,,(21n x x x f y =在一组约束条件⎪⎪⎩⎪⎪⎨⎧<===)(,0),,(0),,(0),,(21212211n m x x x G x x x G x x x G n m nn 下的极值时,我们可以构造相应的拉格朗日函数为于是,所求条件极值点满足方程组例横断面为半圆形的圆柱形的张口浴盆,其表面积等于S ,问其尺寸怎样时,此盆有最大的容积解 设圆半径为r ,高为h ,则表面积)0,0)((2>>+=h r rh r S π,容积h r V 221π=; 构造拉格朗日函数 解方程组 得到ππ32,300S h S r ==,这时33027πS V =; 由实际情况知道,V 一定达到最大体积,因此,当00232r Sh ==π时,体积最大; 习题1. 求函数xy y x z 333-+=的极值; 2. 求函数22442y xy x y x z ---+=的极值; 3.求椭圆4422=+y x 上与)0,1(最远的点 4.求平面1=-+z y x 与点)1,1,2(-的最短距离; 5.求曲面12+=xy z 上与)0,0,0(最近的点6.已知容积为V 的开顶长方浴盆,问其尺寸怎样时,此盆有最小的表面积7.求用平面0=++Cz By Ax 与椭圆柱面12222=+by a x 相交所成椭圆的面积;第八节 导数在经济学中的应用一、导数的经济意义 1.边际函数定义 设函数)(x f y =可导,则导函数)('x f 在经济学中称为边际函数; 在经济学中,我们经常用到边际函数,例如:边际成本函数、边际收益函数、边际利润函数等等,它们都是表示一种经济变量相对于另一种经济变量的变化率问题,都反映了导数在经济学中的应用;成本函数)(x C 表示生产x 个单位某种产品时的总成本;平均成本函数)(x c 表示生产x个单位某种产品时,平均每个单位的成本,即xx C x c )()(=;边际成本函数是成本函数)(x C 相对于x 的变化率,即)(x C 的导函数)('x C ;由微分近似计算公式我们知道令1=∆x ,我们有)()1()('x C x C x C -+≈,也就是说,边际成本函数)('x C 可以近似表示已经生产x 个单位产品后再生产一个产品所需要的成本;在生产中,我们当然希望平均成本函数)(x c 取得极小值,这时,我们可以得到0)('=x c即则0)()('=-x C x xC ,于是我们得到)()('x c x C =;因此,平均成本函数)(x c 取得极小值时,边际成本函数和平均成本函数相等;这在经济学中是一个重要原则,就是说在生产中,当边际成本函数低于平均成本函数时,我们应该提高产量,以降低平均成本;当边际成本函数高于平均成本函数时,我们应该减少产量,以降低平均成本; 例 设某种产品生产x 个单位时的成本为21.02250)(x x x C ++=;求(1) 当生产产品100单位时的边际成本和平均成本; (2) 当生产产品数量为多少时平均成本最低; 解 1边际成本函数和平均成本函数为 于是,5.14)100(,22)100('==c C2平均成本函数)(x c 取得极小值时,边际成本函数和平均成本函数相等,即 因此,当生产产品数量为50时平均成本最低; 类似边际成本函数我们可以讨论其它边际函数;需求函数)(x p 表示销售x 单位某种产品时的单个产品的价格;那么,)(x p 是x 的单调减少函数;收益函数是)()(x xp x R =,边际收益函数是)('x R ;利润函数是 边际利润函数是)('x P ;当利润函数取极大值时,0)()()('''=-=x C x R x P ,于是,)()(''x C x R =,也就是说取得最大利润的必要条件是边际利润等于边际成本;为了保证取得最大利润还需要下面条件即)()(''''x C x R <;所以,当)()(''x C x R =且)()(''''x C x R <时取得最大利润;例设某种产品生产x 个单位时的成本为320003.001.028.127)(x x x x C +-+=,需求函数x x p 01.028.10)(-=;当生产产品数量要达到多大时可以取得最大利润 解 收益函数是 由)()(''x C x R =得到 我们得到100=x ;容易验证对任意0>x 有)()(''''x C x R <;所以,当生产产品数量达到100单位水平可以取得最大利润;2.弹性在经济学中我们常常用到弹性的概念,弹性也是一种变化率问题,与导数概念密切相关;定义 设函数)(x f y =在点0x 可导,则称00x x yy ∆∆为函数)(x f y =在点0x 与x x ∆+0两点间的弹性;称00x x yy ∆∆在0→∆x 时的极限为函数)(x f y =在点0x 的弹性,记为x x ExEy =或)(0x f ExE即如果)(x f y =在),(b a x ∈可导,相应地,我们可以给出),(b a 上弹性函数的定义当x 很小时,我们有近似计算公式也就是说,函数的弹性是函数的相对改变量与自变量相对改变量之比,上式表示当x 从0x 产生001的改变时, )(x f y =改变000)(x f ExE需求函数)(p f Q =表示在价格为p 时,产品的需求量为Q ;需求函数)(p f Q =是单调减少函数,)(p f Q =的反函数也称为需求函数,就是我们前面提到的需求函数)(x p ;需求函数)(p f Q =对价格p 的导数称为边际需求函数;需求函数)(p f Q =的弹性为由于)(p f Q =是单调减少函数,因此0≤EpEf; 收益函数)()(p pf pQ p R ==,于是令EpEfE d =,我们有 若1<d E ,则需求变动幅度小于价格变动幅度,称为低弹性,这时,0)('>p R ,)(p R 是单调增加函数;也就是说当价格上涨时收益增加, 当价格下跌时收益减少;若1>d E ,则需求变动幅度大于价格变动幅度,称为高弹性,这时,0)('<p R ,)(p R 是单调减少函数;也就是说当价格上涨时收益减少, 当价格下跌时收益增加;若1=d E ,则需求变动幅度和价格变动幅度相同,称为单位弹性,这时,0)('=p R ;也就是说当价格改变时,收益没有变化;类似上面对需求弹性的研究,我们也可以讨论供给弹性;供给函数)(p Q ϕ=是指商品生产商的供给量Q 与价格p 之间的关系函数;)(p Q ϕ=是单调增加函数;边际供给函数是)(p Q ϕ=对价格p 的导数,供给弹性函数是例 设某种产品的需求函数为p Q 5100-=,其中价格)20,0(∈p ; 1求需求函数Q 的弹性EpEQ; 2用需求弹性说明价格在什么范围变化时,降低价格反而使收益增加; 解 1需求函数Q 的弹性20-=p pEp EQ ; 2容易得到当2010<<p 时,1>=EpEQE d ,这时,0)('<p R ,当价格下跌时收益增加;二、其它应用举例导数在经济学中有很多应用,下面举一些例题说明;首先,我们考虑连续复利率问题;假设初始资金为0A ,如果年利率为r ,那么,t 年后资金为t r A t A )1()(0+=;通常情况下是一年多次计息,假设一年n 次计息,那么 我们这里是连续复利率计算问题,令∞→n 得到 于是,我们得到连续复利率计算公式rt e A t A 0)(=;例某企业酿造了一批好酒,如果现在就出售,总收入为0R ,如果贮藏起来,t 年后出售,收入为520)(t eR t R =;如果银行年利率为r ,并且以连续复利率计算,问贮藏多少年后出售可以使收入的现值最大;解 由连续复利率计算公式,t 年后的总收入)(t R 的现值)(t X 为 由0)('=t X 得,2251r t =年;故贮藏2251r年出售,总收入的现值最大; 下面,我们再举一个其它应用题;例 某企业生产某型号仪器,年产量A 台,分几批生产,每批生产准备费为B 元,假设产品均匀投入市场,且上一批用完后立即生产下一批,平均库存量为批量的一半;设每年一台仪器的库存费为C 元;问如何选择批量,使一年中库存费与准备费之和最小;解 设批量为x 台,则库存费为C x 2,每年生产的批数为xA,生产准备费为B x A ,于是总费用为 令0)('=x f ,得到CABx 2=; 因此,批量为CABx 2=台时,一年中库存费与准备费之和最小; 多元函数的偏导数在经济学中也有非常广泛的应用;n 元函数),,,(21n x x x f y =的偏导数),,2,1)(,,(21n i x x x f x n i=∂∂称为对i x 的边际函数;我们可以类似一元函数引入边际成本函数、边际收益函数、边际利润函数等等;我们还可以类似一元函数引入函数的偏弹性概念;这里不再一一详细叙述;下面我们举几个多元函数应用题;例 假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是其中1p 和2p 为售价,1Q 和2Q 为销售量;总成本函数为1如果该企业实行价格差别策略,试确定两个市场上该产品的销售量和价格,使该企业获得最大利润;2如果该企业实行价格无差别策略,试确定两个市场上该产品的销售量和统一的价格,使该企业总利润最大化;并比较两种策略下的总利润大小;解 1总利润函数是 由得5,421==Q Q ,这时7,1021==p p ;因为这是一个实际问题,一定存在最大值,且驻点唯一,因此当7,1021==p p 时,取得最大利润(3) 若实行价格无差别策略,则21p p =,即有约束条件 构造拉格朗日函数 由得2,4,521===λQ Q ,这时821==p p ; 最大利润因此,企业实行价格差别策略所得利润要大于实行价格无差别策略的利润;例 假设某企业通过电视和报纸作广告,已知销售收入为 其中x 万元和y 万元为电视广告费和报纸广告费; 1在广告费用不限的情况下求最佳广告策略; 2如果广告费用限制为万元,求相应广告策略; 解 1利润函数为 由得到唯一驻点1,5.1==y x ;这时最大利润为41)1,5.1(=P 万元2构造拉格朗日函数为 由得到唯一驻点5.1,0==y x ;这时最大利润为39)5.1,0(=P 万元习题1.设某种产品生产x 个单位时的成本为230040000)(x x x C ++=;求 1当生产产品1000单位时的边际成本和平均成本; 2当生产产品数量为多少时平均成本最低;2.设某种产品生产x 个单位时的成本为32001.0361450)(x x x x C +-+=,需求函数x x p 01.060)(-=;当生产产品数量要达到多大时可以取得最大利润 3.设某种产品的需求函数为5p e Q -=,求6=p 时的需求弹性; 4. 设某种产品的需求函数为p Q 2100-=讨论其弹性的变化; 5;某产品的总收益函数和成本函数分别是 厂商追求最大利润,政府对产品征税,求:1求产品产量和价格为多少时,厂商能取得税前最大利润; 2征税收益的最大值及此时的税率; 3厂商纳税后的最大利润;6.假设某厂家在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是其中1p 和2p 为售价,1Q 和2Q 为销售量;总成本函数为试确定两个市场上该产品的销售价格,使该企业获得最大利润;第九节 曲率所谓曲率就是用来描述曲线的弯曲程度的.线有直线和非直线,如果一个人沿着直线行走,他不需要转动方向;但如果他沿着一条非直线行走时,他在每一点行进的方向是曲线的切线方向.因而他在每一点行进的方向大多是不一样的.人移动时,他要转动方向.当曲线的弯曲程度大一点时,人走相同的距离目光的转向要大一点.在直线上转向是没有的.因而我们就用曲线上单位距离切线方向即目光方向的转动角度来刻画曲线的弯曲程度.设光滑曲线方程为()x f y =,()b a x ,∈,()b a x x ,,21∈,()()111,x f x P ,()()222,x f x P 是曲线上的两点.当弧21P P 很小时,可以用21P P 的直线距离来近似.设曲线在点21,P P 的切线与x 轴正向的夹角分别是ααα∆+,,则()()()21tan ,tan x f x f '=∆+'=ααα,所以()()()21arctan ,arctan x f x f '=∆+'=ααα.而()()()()21221221x f x f x x P P -+-=,这时有1212limP P x x α∆→是刻画曲线在点1x 的弯曲程度的,通常记为k . 定义 若函数()x f y =具有两阶连续的导数,则曲线上单位长度的切线转动 称为函数()x f y =的曲率.显然曲率0≥k .例 求抛物线c bx ax y ++=2的曲率. 解:b ax y +='2,a y 2='', 所以曲率为()()232212b ax ak ++=.显然当02=+b ax 时,k 最大. 即在abx 2-=对称轴处,曲线弯曲程度最大. 例 求直线b kx y +=的曲率. 解:因为k y =',0=''y , 所以0=k .即直线没有弯曲.上面这种方法是对显函数而言的.如果曲线有参数方程()()⎩⎨⎧==t y y t x x 给出,求曲率的过程可以如下进行.先求()()t x t y dx dy ''=,()()()()()()322t x t y t x t x t y dx dy dx d dx y d ''''-'''=⎪⎭⎫ ⎝⎛=,代入前面求曲率的公式,得到()()()()()()()2322t y t x t y t x t x t y k '+''''-'''=.例 求半径为R 的圆的曲率. 解:可设圆方程为⎩⎨⎧==θθsin cos R y R x ,则θsin R x -=',θcos R y ='; θcos R x -='',θsin R y -='';代入上面的公式,得()()()RR R R R R R k 1sin cos sin sin cos cos 2322=+⋅-⋅-=θθθθθθ. 即圆的弯曲程度是其半径的倒数.R 越大,曲率越小.为此我们一般曲线上任意一点可以用一个圆弧来表示.相比较着一点的曲率的倒数,即k1称为该点的曲率半径,也就是说,该点的弯曲程度与半径为k1的圆的弯曲程度接近.此时在该点的法线上的的一侧一点O,使得k OP 1=,点O称为曲率中心.以O 为圆心,k1为半径的圆称为P 点的曲率圆.下面考虑隐函数曲率的求法.求隐函数的曲率,关键在于求y y ''',.举一个例子.例 求曲线12222=+b y a x ()0,0>>b a 上一点的曲率.解:对12222=+by a x 两边对x 求导,得到0121222='+y by a x. 所以 ya xb y 22-='.又对0121222='+y by a x两边对x 求导,得到 01212122222=''+'+y by y b a . 所以32422223242244221y a b a x b y y a b y x a b a b y y =⎪⎪⎭⎫ ⎝⎛+-=⎪⎪⎭⎫ ⎝⎛+-='', ()()232424442321xb y ab a y y k +='+''=.特别地,当R b a ==时,Rk 1=. 最后介绍极坐标系下,曲线的曲率的求法. 例 求阿基米德螺线θa r =的曲率.解:因为θθθcos cos a r x ==,θθθsin sin a r y ==,所以θθθsin cos a a x -=',θθθcos sin a a y +='. θθθcos sin 2a a x --='',θθθsin cos 2a a y --=''. 代入公式()()()()()()()2322t y t x t y t x t x t y k '+''''-'''=,得()()232223222222122θθθθ++=++=a a aa a k .曲率半径为k1.。
几何练习计算曲面的切平面和法线计算曲面的切平面和法线曲面是几何学中重要的概念之一,它在许多数学、物理学和工程学领域中都有广泛应用。
对于曲面上的点,我们可以通过计算其切平面和法线来描述其性质。
本文将介绍如何计算曲面的切平面和法线,以及其在实际问题中的应用。
一、切平面切平面是曲面上某一点的切线所在的平面。
在几何学中,切线是曲线上某一点处切线与曲线相切的直线。
类比地,曲面上某一点的切线与曲面相切的平面就是切平面。
计算曲面的切平面的一种常用方法是使用偏导数。
对于一个曲面,可以用一个方程来表示,例如 z = f(x, y)。
对于这个曲面上的一点 (x0,y0, z0),切平面可以通过计算该点处的偏导数来确定。
偏导数描述了函数在某一点处的变化率,对于函数 z = f(x, y),它的偏导数可以表示为∂z/∂x 和∂z/∂y。
对于曲面上的一点 (x0, y0, z0),其切线的斜率就是∂z/∂x 和∂z/∂y。
因此,切线的方向向量为(∂z/∂x, ∂z/∂y, 1)。
通过这个方向向量,我们可以确定切平面的法向量。
由于切平面上的点与切线垂直,所以切平面的法向量与切线的方向向量垂直。
因此,切平面的法向量为 (-∂z/∂x, -∂z/∂y, 1)。
曲面上的法线是与切平面垂直的直线。
对于一个给定点,我们可以通过计算切平面的法向量来确定其法线。
法线与切平面的法向量方向相同,因此曲面上一点的法线方向向量为 (-∂z/∂x, -∂z/∂y, 1)。
法线的长度可以通过对法向量进行单位化来得到,单位化后的法向量为:n = (-∂z/∂x, -∂z/∂y, 1) / √( (∂z/∂x)^2 + (∂z/∂y)^2 + 1 )三、应用举例计算曲面的切平面和法线在许多实际问题中都有广泛应用。
以下是一些应用举例:1. 切平面和法线在计算机图形学中被用于生成逼真的曲面渲染效果。
通过计算曲面上每个点处的切平面和法线,可以确定光线与曲面的相交关系,从而实现曲面的光照效果。
法平面方程公式(一)法平面方程公式什么是法平面方程公式法平面方程公式是描述平面上的法向量与点的关系的公式。
在三维几何中,法向量表示垂直于平面的向量,可以用来表示平面的方向以及过点的平面位置。
法平面方程公式的一般形式法平面方程的一般形式为:Ax + By + Cz + D = 0其中,A、B、C是平面的法向量的分量,D是常数。
如何确定法平面方程的系数为了确定法平面方程的系数A、B、C和常数D,我们需要知道平面上的一个点和法向量。
步骤1:确定法向量可以通过两个向量的向量积来得到法向量。
假设我们有两个向量A和B,那么法向量N可以通过以下公式来计算:N = A × B步骤2:确定常数D常数D可以通过将平面上的一个点坐标代入法平面方程中得到。
这个点可以是平面上的任意点。
举例说明假设有一个平面P,该平面上有一点A(2, 3, 4)和法向量N(1, -2, 1)。
步骤1:确定法向量向量积计算法向量N:N = A × B = (1, -2, 1)步骤2:确定常数D将点A的坐标代入法平面方程中:A × N + D = 0(2, 3, 4) × (1, -2, 1) + D = 0解得D = -3所以平面P的法平面方程为:x - 2y + z - 3 = 0这个方程描述了平面P上所有点的坐标和法向量的关系。
通过法平面方程,我们可以判断一个点是否在平面上,以及计算平面的法向量等信息,对于建模和分析三维几何对象非常有用。
•法向量:N = (1, -2, 1)•常数:D = -3•法平面方程:x - 2y + z - 3 = 0总结法平面方程公式是描述平面上法向量与点的关系的公式。
通过确定平面上的一个点和法向量,我们可以得到平面的法平面方程。
这个方程可以用来判断点是否在平面上,以及计算平面的法向量等信息。
切平面方程和法平面方程公式切平面和法平面是在解析几何中常用的概念,用于描述空间中的平面和与其相切或垂直的平面。
在本文中,我们将介绍切平面和法平面的概念、计算方法和公式。
1.切平面的概念和计算方法在空间中的曲线上任取一点,将该点的切向量作为平面的法向量,通过该点的切平面定义为与该切向量垂直的平面。
切平面与曲线相切于该点。
计算切平面的方法主要有以下几种:1.1利用曲线的参数方程计算切平面对于曲线的参数方程x=f(t)、y=g(t)、z=h(t),其切向量可通过求导得到:T=(dx/dt, dy/dt, dz/dt)假设在参数t=t₀处取点,曲线上的一点坐标为(x₀,y₀,z₀),则切向量即为曲线在该点处的切向量。
将切向量作为法向量,通过(x₀,y₀,z₀)点即可得到切平面的方程。
1.2利用曲线的切向量和一点计算切平面除了利用参数方程计算切平面,我们还可以通过曲线在给定一点的切向量求解切平面。
设曲线的切向量为V=(a,b,c),过曲线上点P(x₀,y₀,z₀),切平面的方程为:a(x-x₀)+b(y-y₀)+c(z-z₀)=0其中,(x,y,z)为切平面上的任意一点。
2.法平面的概念和计算方法与切平面相对应,在空间中的曲线上任取一点,将与切向量垂直的平面定义为法平面。
法平面与曲线相交于该点。
计算法平面的方法主要有以下几种:2.1利用切向量和法向量计算法平面对于曲线的切向量V=(a,b,c)和另一向量N=(l,m,n),如果V与N垂直,则可以利用该向量求解法平面。
设过曲线上点P(x₀, y₀, z₀)的法平面方程为ax + by + cz + d = 0,其中d为常数。
由于V=(a, b, c)与N=(l, m, n)垂直,因此d的值可以通过以下公式计算:d = -(ax₀ + by₀ + cz₀)则法平面方程为:ax + by + cz - (ax₀ + by₀ + cz₀) = 02.2利用曲线上两点计算法平面除了利用切向量和法向量计算法平面,我们还可以通过曲线经过的两点求解法平面。
法平面和切平面公式
法平面和切平面是在微积分和向量分析中常用的概念。
它们在研
究曲面的性质和方程、求解曲面上的曲线积分和曲面积分等许多问题
中起着关键的作用。
本文将介绍法平面和切平面的具体定义、公式和
应用。
首先,我们来定义一下什么是曲面。
在三维空间中,若一个点的
坐标与某个函数的值有关,则这个点就位于一个曲面上。
例如,一个
球体的坐标可以由方程$x^2+y^2+z^2=R^2$表示,其中$R$是球体的半径。
曲面可以是解析表达式、参数式或者隐式函数形式。
接下来,我们定义法平面和切平面。
对于曲面上的某一点,法平
面是与该点法向量相切的平面。
法向量是该点切平面的法向量,与该
点的曲面法向量相同。
切平面是与该点切向量相切的平面。
切向量是
该点曲面上的一个切向量。
对于一个三元函数$f(x, y, z)$,若曲面$S$是$f(x, y, z)=0$的
图像,则它的法向量可以通过求函数的梯度向量来获得。
这个梯度向
量的方向与$f$变化最快的方向相同,而在曲面上它的长度等于曲面在$x,y,z$坐标轴上的偏导数之和的平方根。
现在我们来看看法平面和切平面的公式。
设曲面$S$在点$P_0(x_0, y_0, z_0)$处的法向量为$\vec{n}$,则法平面的方程为
$$\vec{n}\cdot(\vec{r}-\vec{r_0})=0$$其中$\vec{r_0}(x_0, y_0, z_0)$是曲面$S$上的一点,$\vec{r}(x, y, z)$是一般的向量。
这个
方程的意思是,对于法平面上的任意一点$\vec{r}$,它到$P_0$的向
量$\vec{r}-\vec{r_0}$与法向量$\vec{n}$垂直。
切平面的方程可以通过求曲面上的一个点的切向量得到。
设曲面
上的一个点$P_0(x_0, y_0, z_0)$在曲面上沿着曲线$C$方向的切向量
为$\vec{T}$,则切平面的方程为$$\vec{T}\cdot(\vec{r}-
\vec{r_0})=0$$其中$\vec{r_0}(x_0, y_0, z_0)$是曲面$S$上的一点,$\vec{r}(x, y, z)$是一般的向量。
这个方程的意思是,对于切平面
上的任意一点$\vec{r}$,它到$P_0$的向量$\vec{r}-\vec{r_0}$与切
向量$\vec{T}$垂直。
最后,我们来看看法平面和切平面的应用。
在曲面积分和曲线积
分中,法平面和切平面是重要的工具。
例如,在曲面积分中,每一块
面积的大小由切平面与坐标轴的截面积决定;在曲线积分中,切向量
给出了曲线的方向和速率。
此外,在拓扑学、微分几何、流体力学和
地理信息系统等领域中,法平面和切平面也有着重要的应用。
综上所述,法平面和切平面是学习微积分和向量分析中必须掌握
的概念。
掌握法平面和切平面的定义、公式和应用,可以使我们更好
地理解和运用曲面积分、曲线积分以及其他相关领域的知识。