戴红伟老师课件IDE介绍-本部
- 格式:ppt
- 大小:549.50 KB
- 文档页数:22
2024年高级中学高中信息技术浙教版选修1课件一、教学内容本节课将围绕浙教版高中信息技术选修1的第三章“数据与信息处理”展开,详细内容包括:3.1数据收集与表达,3.2数据整理与处理,3.3数据分析与应用。
通过本章节的学习,使学生掌握数据的基本处理方法和分析技巧,为实际生活中的问题解决奠定基础。
二、教学目标1. 理解并掌握数据收集、整理、处理和分析的基本方法;2. 能够运用所学知识解决实际问题,提高信息素养;3. 培养学生的团队协作能力和创新思维。
三、教学难点与重点重点:数据收集与表达、数据整理与处理、数据分析与应用的基本方法。
难点:如何将所学知识运用到实际问题中,进行有效分析和解决。
四、教具与学具准备教师准备:多媒体教学设备、课件、示例数据表格等。
学生准备:笔记本电脑、教材、学习笔记等。
五、教学过程1. 导入:通过展示现实生活中的数据案例,引发学生对数据处理的兴趣,导入新课;2. 知识讲解:a. 讲解数据收集与表达的方法,举例说明;b. 讲解数据整理与处理的方法,结合例题进行演示;c. 讲解数据分析与应用的方法,提供实际案例进行分析;3. 随堂练习:布置相关练习题,让学生巩固所学知识,并及时给予反馈;4. 小组讨论:将学生分为小组,针对实际问题进行讨论,提出解决方案;六、板书设计1. 数据与信息处理2. 内容:a. 数据收集与表达b. 数据整理与处理c. 数据分析与应用3. 示例:相关案例和例题七、作业设计1. 作业题目:a. 收集并整理一组数据,进行基本的描述性统计分析;b. 针对某一实际问题,设计一个数据收集方案,并简述数据整理、处理和分析的过程;2. 答案:待学生提交作业后,教师进行批改并给出答案。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生在课后关注生活中的数据处理问题,学会运用所学知识解决实际问题,提高信息素养。
同时,推荐相关学习资源,供学生进一步学习。
重点和难点解析1. 教学目标的设定;2. 教学难点与重点的确定;3. 教学过程中的实践情景引入、例题讲解和随堂练习;4. 板书设计;5. 作业设计;6. 课后反思及拓展延伸。
Spyder 4 ... the python IDE for sciencePost 2020-05-24 by Dan Patterson (retired) Original Post by Dan Patterson 12-Dec-2019SpyderContentsSpyder (1)Version (1)Theme choices (2)Preference options (3)Graphics options (4)File/project and script navigation (5)Help documentation and presentation (6)Editing tips (7)Finding stuff (8)Details as I go. Everything is there to assist you from initial project thought to final application.Right now... just the pics and a few tips.An attachment of the first image, as well, if you want to explore in more detail.VersionSpyder 4's current version and changelog can be tracked at...Spyder changelog on GitHubTheme choicesThere are a variety of ways to layout and style the IDE. A full dark theme is above. Or you can split the themes and have different ones for the editor and console.The image below shows a lighter theme for the Variable explorer and the file explorer. Separate (floating) or in-pane graphics available using direct access to Matplotlib.Preference optionsGraphics optionsThere is a new Plots window, or you can set your graphics to automatic to get a separate matplotlib graph window. From there you can interactively alter the graphic to suit your needs.You will also note, that svg inline graphics are supported. I wrote a function to display numpy arrays representing geometry objects to get a quick preview without the need to create a featureclass.File/project and script navigationHelp documentation and presentationHelp is everywhere.The example to the right shows what a function docstring looks link in the console and in the help tab. You can choose between coding styles within the preferences.The numpydoc style used by packages like scipy, matplotlib, pandas to name a few, is shown below for comparison.I hate scrolling, so when you get an error, click on the line number.If it is in an imported script, you can even click on the script name to go there.The object explorer can be used to retrieve information for objects. This is useful for documentation purposes.When your package gets large and you are trying to locate something... Find is your friend.A quick click and you are there to make edits, copy or just read.Kite can be installed as wellKite - AI Autocomplete and Docs for Python•spyder_4.png 561.2 KBDan Patterson (both )。