2019年广安市中考数学模拟试题与答案
- 格式:doc
- 大小:314.00 KB
- 文档页数:11
邻水县2019中考数学模拟试卷(三)一、选择题,每小题给出的四个选项中.只有一个选项符合题意要求.请将符合要求的选项的代号填涂在机读卡上.(本大题共10个小题,每题3分,共30分)1.﹣3的绝对值是()A.B.﹣C.3 D.﹣32.下列各式计算正确的是()A.(x﹣2y)2=x2﹣4y2B.x3+x3=x6C.(﹣2x2)4=﹣8x6D.3x2•x3=3x53.2018年全市旅游收入294.6亿元,用科学记数法表示294.6亿元是()A.2.946亿元B.2.946×102亿元C.2.946×101亿元D.0.2946×103亿元4.在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A.平均数为160 B.中位数为158C.众数为158 D.方差为20.35.下列几何体的左视图为长方形的是()A.B.C.D.6.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm 7.若关于x的一元二次方程x2+2x﹣m=0有两个不相等的实数根,则m的取值是()A.m≥1 B.m≤1 C.m>﹣1 D.m<﹣18.下列说法正确的是()A.为了解全省中学生的心理健康状况,宜采用普查方式B.某彩票设“中奖概率为”,购买100张彩票就一定会中奖一次C.某地会发生地震是必然事件D.若甲组数据的方差S2甲=0.1,乙组数据的方差S2乙=0.2,则甲组数据比乙组稳定9.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个B.4个C.3个D.2个10.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A.1 B.2 C.3 D.4二、填空题,请把最简答案直接填写在题后的横线上.(每小题3分,共18分)11.因式分解:18﹣2x2=.12.在函数中,自变量x的取值范围是.13.将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为.14.用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.15.分式方程﹣=0的解为x=.16.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.三、解答题(本大题共4个小题,第17小题5分,第18、19、20小题各6分.共23分)17.π0+2cos30°﹣|2﹣|﹣()﹣218.先化简,再求值:(1﹣)÷,其中a=sin30°.19.如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.20.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.四、实践应用(本大题共4个小题,第21题6分,22、23、24题各8分,共30分)21.为迎接十二运,某校开设了A:篮球,B:毽球,C:跳绳,D:健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共查了名学生:(2)请补全两幅统计图:(3)若有3名最喜欢毽球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互活动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢毽球运动的学生的概率.22.如图是某路灯在铅垂面内的示意图,灯柱AC的高为11米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为18米,从D,E两处测得路灯B的仰角分别为α和β,且tanα=6,tanβ=,求灯杆AB的长度.23.2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?24.在一次课题学习中活动中,老师提出了如下一个问题:点P是正方形ABCD内的一点,过点P画直线l分别交正方形的两边于点M、N,使点P 是线段MN的三等分点,这样的直线能够画几条?经过思考,甲同学给出如下画法:如图1,过点P画PE⊥AB于E,在EB上取点M,使EM=2EA,画直线MP交AD于N,则直线MN就是符合条件的直线l.根据以上信息,解决下列问题:(1)甲同学的画法是否正确?请说明理由;(2)在图1中,能否画出符合题目条件的直线?如果能,请直接在图1中画出;(3)如图2,A1,C1分别是正方形ABCD的边AB、CD上的三等分点,且A1C1∥AD.当点P 在线段A1C1上时,能否画出符合题目条件的直线?如果能,可以画出几条?(4)如图3,正方形ABCD边界上的A1,A2,B1,B2,C1,C2,D1,D2都是所在边的三等分点.当点P在正方形ABCD内的不同位置时,试讨论,符合题目条件的直线l的条数的情况.五、推理论证题(本题9分)25.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC 于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.六、拓展探索题(本题10分)26.如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.参考答案与试题解析一.选择题(共10小题)1.﹣3的绝对值是()A.B.﹣C.3 D.﹣3【分析】根据绝对值的定义,即可解答.【解答】解:|﹣3|=3,故选:C.2.下列各式计算正确的是()A.(x﹣2y)2=x2﹣4y2B.x3+x3=x6C.(﹣2x2)4=﹣8x6D.3x2•x3=3x5【分析】根据完全平方公式、同底数幂的乘法、积的乘方,即可解答.【解答】解:A、(x﹣2y)2=x2﹣4xy+4y2,故错误;B、x3•x3=x6,故错误;C、(﹣2x2)4=16x8,故错误;D、正确;故选:D.3.2018年全市旅游收入294.6亿元,用科学记数法表示294.6亿元是()A.2.946亿元B.2.946×102亿元C.2.946×101亿元D.0.2946×103亿元【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:294.6亿元=2.946×102亿元.故选:B.4.在2016年龙岩市初中体育中考中,随意抽取某校5位同学一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是()A.平均数为160 B.中位数为158C.众数为158 D.方差为20.3【分析】分别利用平均数、中位数、众数及方差的定义求解后即可判断正误.【解答】解:A、平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B、按照从小到大的顺序排列为154,158,158,160,170,位于中间位置的数为158,故中位数为158,正确,故本选项不符合题意;C、数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D、这组数据的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,错误,故本选项符合题意.故选:D.5.下列几何体的左视图为长方形的是()A.B.C.D.【分析】找到各图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.6.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm 【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.7.若关于x的一元二次方程x2+2x﹣m=0有两个不相等的实数根,则m的取值是()A.m≥1 B.m≤1 C.m>﹣1 D.m<﹣1【分析】根据判别式的意义得到△=22+4m>0,然后解不等式即可.【解答】解:根据题意得△=22+4m>0,解得m>﹣1.故选:C.8.下列说法正确的是()A.为了解全省中学生的心理健康状况,宜采用普查方式B.某彩票设“中奖概率为”,购买100张彩票就一定会中奖一次C.某地会发生地震是必然事件D.若甲组数据的方差S2甲=0.1,乙组数据的方差S2乙=0.2,则甲组数据比乙组稳定【分析】根据用全面调查和抽样调查的条件,必然事件与随机事件的区别,方差的意义,分析判断即可.【解答】解:A、因为数量太大,不宜采用全面调查,应采用抽样调查,故选项错误;B、某彩票设“中奖概率为”,购买100张彩票中奖为随机事件,故选项错误;C、显然是随机事件,故选项错误;D、正确.故选:D.9.在平面直角坐标系xOy中,已知点P(2,2),点Q在y轴上,△PQO是等腰三角形,则满足条件的点Q共有()A.5个B.4个C.3个D.2个【分析】根据题意,画出图形,由等腰三角形的判定找出满足条件的Q点,选择正确答案.【解答】解:如上图:满足条件的点Q共有(0,2)(0,2)(0,﹣2)(0,4).故选:B.10.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x 轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3.其中正确的个数是()A.1 B.2 C.3 D.4【分析】直接利用二次函数的开口方向以及图象与x轴的交点,进而分别分析得出答案.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选:B.二.填空题(共6小题)11.因式分解:18﹣2x2=2(x+3)(3﹣x).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(9﹣x2)=2(x+3)(3﹣x),故答案为:2(x+3)(3﹣x)12.在函数中,自变量x的取值范围是x≥3且x≠4 .【分析】根据二次根式的意义可知:x﹣3≥0,根据分式的意义可知:x﹣4≠0,就可以求出x的范围.【解答】解:根据题意得:x﹣3≥0且x﹣4≠0,解得:x≥3且x≠4.13.将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为y=x2.【分析】根据“左加右减、上加下减”的原则进行解答即可.【解答】解:将y=(x﹣1)2+3向左平移1个单位所得直线解析式为:y=x2+3;再向下平移3个单位为:y=x2.故答案为y=x2.14.用半径为10cm,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.【分析】圆锥的底面圆半径为r,根据圆锥的底面圆周长=扇形的弧长,列方程求解.【解答】解:设圆锥的底面圆半径为r,依题意,得2πr=,解得r=cm.故选:.15.分式方程﹣=0的解为x=﹣1 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x﹣2﹣3x=0,解得:x=﹣1,经检验x=﹣1是分式方程的解.故答案为:﹣116.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=﹣x+4上.设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…,依据图形所反映的规律,S2018=.【分析】分别过点P1、P2、P3作x轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得【解答】解:如图,分别过点P1、P2、P3作x轴的垂线段,垂足分别为点C、D、E,∵P1(3,3),且△P1OA1是等腰直角三角形,∴OC=CA1=P1C=3,设A1D=a,则P2D=a,∴OD=6+a,∴点P2坐标为(6+a,a),将点P2坐标代入y=﹣x+4,得:﹣(6+a)+4=a,解得:a=,∴A1A2=2a=3,P2D=,同理求得P3E=、A2A3=,∵S1=×6×3=9、S2=×3×=、S3=××=、……∴S2018=,故答案为:.三.解答题(共4小题)17.π0+2cos30°﹣|2﹣|﹣()﹣2【分析】首先计算乘方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:π0+2cos30°﹣|2﹣|﹣()﹣2=1+2×﹣(2﹣)﹣4=1+﹣2+﹣418.先化简,再求值:(1﹣)÷,其中a=sin30°.【分析】根据分式的运算法则即可求出答案,【解答】解:当a=sin30°时,所以a=原式=•=•==﹣119.如图,点A,F,C,D在一条直线上,AB∥DE,AB=DE,AF=DC.求证:BC∥EF.【分析】由全等三角形的性质SAS判定△ABC≌△DEF,则对应角∠ACB=∠DFE,故证得结论.【解答】证明:∵AB∥DE,∴∠A=∠D,∵AF=DC,∴AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,20.如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数,且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=12.(1)求一次函数与反比例函数的解析式;(2)记两函数图象的另一个交点为E,求△CDE的面积;(3)直接写出不等式kx+b≤的解集.【分析】(1)根据三角形相似,可求出点C坐标,可得一次函数和反比例函数解析式;(2)联立解析式,可求交点坐标;(3)根据数形结合,将不等式转化为一次函数和反比例函数图象关系.【解答】解:(1)由已知,OA=6,OB=12,OD=4∵CD⊥x轴∴OB∥CD∴△ABO∽△ACD∴∴∴CD=20∴点C坐标为(﹣4,20)∴n=xy=﹣80∴反比例函数解析式为:y=﹣把点A(6,0),B(0,12)代入y=kx+b得:解得:∴一次函数解析式为:y=﹣2x+12(2)当﹣=﹣2x+12时,解得x1=10,x2=﹣4当x=10时,y=﹣8∴点E坐标为(10,﹣8)∴S△CDE=S△CDA+S△EDA=(3)不等式kx+b≤,从函数图象上看,表示一次函数图象不高于反比例函数图象∴由图象得,x≥10,或﹣4≤x<0四.解答题(共6小题)21.为迎接十二运,某校开设了A:篮球,B:毽球,C:跳绳,D:健美操四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校范围内随机抽取若干名学生,进行问卷调查(每个被调查的同学必须选择而且只能在4中体育活动中选择一种).将数据进行整理并绘制成以下两幅统计图(未画完整).(1)这次调查中,一共查了200 名学生:(2)请补全两幅统计图:(3)若有3名最喜欢毽球运动的学生,1名最喜欢跳绳运动的学生组队外出参加一次联谊互活动,欲从中选出2人担任组长(不分正副),求两人均是最喜欢毽球运动的学生的概率.【分析】(1)根据A类的人数和所占的百分比,即可求出总人数;(2)用整体1减去A、C、D类所占的百分比,即可求出B所占的百分比;用总人数乘以所占的百分比,求出C的人数,从而补全图形;(3)根据题意采用列举法,举出所有的可能,注意要做到不重不漏,再根据概率公式即可得出答案.【解答】解:(1)调查的总学生是=200(名);故答案为:200.(2)B所占的百分比是1﹣15%﹣20%﹣30%=35%,C的人数是:200×30%=60(名),补图如下:(3)用A1,A2,A3表示3名喜欢毽球运动的学生,B表示1名跳绳运动的学生,则从4人中选出2人的情况有:(A1,A2),(A1,A3),(A1,B),(A2,A3),(A2,B),(A3,B),共计6种,选出的2人都是最喜欢毽球运动的学生有(A1,A2),(A1,A3),(A2,A3)共计3种,则两人均是最喜欢毽球运动的学生的概率=.22.如图是某路灯在铅垂面内的示意图,灯柱AC的高为11米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为18米,从D,E两处测得路灯B的仰角分别为α和β,且tanα=6,tanβ=,求灯杆AB的长度.【分析】过点B作BF⊥CE,交CE于点F,过点A作AG⊥BF,交BF于点G,则FG=AC=11.设BF=3x知EF=4x、DF=,由DE=18求得x=4,据此知BG=BF﹣GF =1,再求得∠BAG=∠BAC﹣∠CAG=30°可得AB=2BG=2.【解答】解:过点B作BF⊥CE,交CE于点F,过点A作AG⊥BF,交BF于点G,则FG=AC=11.由题意得∠BDE=α,tan∠β=.设BF=3x,则EF=4x在Rt△BDF中,∵tan∠BDF=,∴DF===x,∵DE=18,∴x+4x=18.∴x=4.∴BF=12,∴BG=BF﹣GF=12﹣11=1,∵∠BAC=120°,∴∠BAG=∠BAC﹣∠CAG=120°﹣90°=30°.∴AB=2BG=2,答:灯杆AB的长度为2米.23.2013年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2014年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2014年处理的这两种垃圾数量与2013年相比没有变化,就要多支付垃圾处理费8800元.(1)该企业2013年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2014年将上述两种垃圾处理总量减少到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2014年该企业最少需要支付这两种垃圾处理费共多少元?【分析】(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.【解答】解:(1)设该企业2013年处理的餐厨垃圾x吨,建筑垃圾y吨,根据题意,得,解得.答:该企业2013年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2014年处理的餐厨垃圾x吨,建筑垃圾y吨,需要支付这两种垃圾处理费共a元,根据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2014年该企业最少需要支付这两种垃圾处理费共11400元.24.在一次课题学习中活动中,老师提出了如下一个问题:点P是正方形ABCD内的一点,过点P画直线l分别交正方形的两边于点M、N,使点P 是线段MN的三等分点,这样的直线能够画几条?经过思考,甲同学给出如下画法:如图1,过点P画PE⊥AB于E,在EB上取点M,使EM=2EA,画直线MP交AD于N,则直线MN就是符合条件的直线l.根据以上信息,解决下列问题:(1)甲同学的画法是否正确?请说明理由;(2)在图1中,能否画出符合题目条件的直线?如果能,请直接在图1中画出;(3)如图2,A1,C1分别是正方形ABCD的边AB、CD上的三等分点,且A1C1∥AD.当点P 在线段A1C1上时,能否画出符合题目条件的直线?如果能,可以画出几条?(4)如图3,正方形ABCD边界上的A1,A2,B1,B2,C1,C2,D1,D2都是所在边的三等分点.当点P在正方形ABCD内的不同位置时,试讨论,符合题目条件的直线l的条数的情况.【分析】(1)利用△MPE∽△MNA中的成比例线段可知EM=2EA,所以MP:MN=2:3,即点P是线段MN的一个三等分点;(2)由(1)中的证明过程可知,在EB上取M1,使EM1=AE,直线M1P就是满足条件的直线,所以能画出一条符合题目条件的直线;(3)当点P在线段A1C1上,根据正方形的性质可知能够画出符合题目条件的直线有无数条;(4)分情况讨论.【解答】解:(1)甲同学的画法正确;∵PE∥AD,∴△MPE∽△MNA,∴,∵EM=2EA,∴MP:MN=2:3,∴点P是线段MN的一个三等分点.(2)能画出一个符合题目条件的直线,在EB上取M1,使EM1=AE,直线M1P就是满足条件的直线,图2;(3)若点P在线段A1C1上,能够画出符合题目条件的直线无数条,图3;(4)若点P在A1C1,A2C2,B1D1,B2D2上时,可以画出无数条符合条件的直线l;当点P在正方形A0B0C0D0内部时,不存在这样的直线l,使得点P是线段MN的三等分点;当点P在矩形ABB1D1,CDD2B2,A0D0D2D1,B0B1B2C0内部时,过点P可画出两条符合条件的直线l,使得点P是线段MN的三等分点.25.如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC 于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.【分析】(1)连接OC,如图,利用圆周角定理得到∠ACB=90°,再根据斜边上的中线性质得MC=MG=ME,所以∠G=∠1,接着证明∠1+∠2=90°,从而得到∠OCM=90°,然后根据直线与圆的位置关系的判断方法可判断CM为⊙O的切线;(2)先证明∠G=∠A,再证明∠EMC=∠4,则可判定△EFC∽△ECM,利用相似比先计算出CE,再计算出EF,然后计算ME﹣EF即可.【解答】解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.26.如图,已知二次函数的图象过点O(0,0).A(8,4),与x轴交于另一点B,且对称轴是直线x=3.(1)求该二次函数的解析式;(2)若M是OB上的一点,作MN∥AB交OA于N,当△ANM面积最大时,求M的坐标;(3)P是x轴上的点,过P作PQ⊥x轴与抛物线交于Q.过A作AC⊥x轴于C,当以O,P,Q为顶点的三角形与以O,A,C为顶点的三角形相似时,求P点的坐标.【分析】(1)先利用抛物线的对称性确定B(6,0),然后设交点式求抛物线解析式;(2)设M(t,0),先其求出直线OA的解析式为y=x,直线AB的解析式为y=2x﹣12,直线MN的解析式为y=2x﹣2t,再通过解方程组得N(t,t),接着利用三角形面积公式,利用S△AMN=S△AOM﹣S△NOM得到S△AMN=•4•t﹣•t•t,然后根据二次函数的性质解决问题;(3)设Q(m,m2﹣m),根据相似三角形的判定方法,当=时,△PQO∽△COA,则|m2﹣m|=2|m|;当=时,△PQO∽△CAO,则|m2﹣m|=|m|,然后分别解关于m的绝对值方程可得到对应的P点坐标.【解答】解:(1)∵抛物线过原点,对称轴是直线x=3,∴B点坐标为(6,0),设抛物线解析式为y=ax(x﹣6),把A(8,4)代入得a•8•2=4,解得a=,∴抛物线解析式为y=x(x﹣6),即y=x2﹣x;(2)设M(t,0),易得直线OA的解析式为y=x,设直线AB的解析式为y=kx+b,把B(6,0),A(8,4)代入得,解得,∴直线AB的解析式为y=2x﹣12,∵MN∥AB,∴设直线MN的解析式为y=2x+n,把M(t,0)代入得2t+n=0,解得n=﹣2t,∴直线MN的解析式为y=2x﹣2t,解方程组得,则N(t,t),∴S△AMN=S△AOM﹣S△NOM=•4•t﹣•t•t=﹣t2+2t=﹣(t﹣3)2+3,当t=3时,S△AMN有最大值3,此时M点坐标为(3,0);(3)设Q(m,m2﹣m),∵∠OPQ=∠ACO,∴当=时,△PQO∽△COA,即=,∴PQ=2PO,即|m2﹣m|=2|m|,解方程m2﹣m=2m得m1=0(舍去),m2=14,此时P点坐标为(14,0);解方程m2﹣m=﹣2m得m1=0(舍去),m2=﹣2,此时P点坐标为(﹣2,0);∴当=时,△PQO∽△CAO,即=,∴PQ=PO,即|m2﹣m|=|m|,解方程m2﹣m=m得m1=0(舍去),m2=8,此时P点坐标为(8,0);解方程m2﹣m=﹣m得m1=0(舍去),m2=4,此时P点坐标为(4,0);综上所述,P点坐标为(14,0)或(﹣2,0)或(4,0)或(8,0).。
四川省广安市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为( )A .8.1×106B .8.1×105C .81×105D .81×1042.下列分式中,最简分式是( )A .2211x x -+B .211x x +-C .2222x xy y x xy -+-D .236212x x -+ 3.如图,在△ABC 中,DE ∥BC ,∠ADE =∠EFC ,AD ∶BD =5∶3,CF =6,则DE 的长为( )A .6B .8C .10D .12 4.不等式组1351x x -<⎧⎨-≤⎩的解集是( ) A .x >﹣1 B .x≤2 C .﹣1<x <2 D .﹣1<x≤25.如图1,点E 为矩形ABCD 的边AD 上一点,点P 从点B 出发沿BE→ED→DC 运动到点C 停止,点Q 从点B 出发沿BC 运动到点C 停止,它们运动的速度都是1cm/s .若点P 、Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2),已知y 与t 之间的函数图象如图2所示.给出下列结论:①当0<t≤10时,△BPQ 是等腰三角形;②S △ABE =48cm 2;③14<t <22时,y=110﹣1t ;④在运动过程中,使得△ABP 是等腰三角形的P 点一共有3个;⑤当△BPQ 与△BEA 相似时,t=14.1.其中正确结论的序号是( )A .①④⑤B .①②④C .①③④D .①③⑤6.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如,,,若x 4510+⎡⎤=⎢⎥⎣⎦,则x 的取值可以是( ) A .40 B .45 C .51 D .567.对于反比例函数2y x =,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小 8.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A .能中奖一次B .能中奖两次C .至少能中奖一次D .中奖次数不能确定 9.如图,从正方形纸片的顶点沿虚线剪开,则∠1的度数可能是( )A .44B .45C .46D .4710.如图,A(4,0),B (1,3),以OA 、OB 为边作□OACB ,反比例函数k y x=(k≠0)的图象经过点C .则下列结论不正确的是( )A .□OACB 的面积为12B .若y<3,则x>5C .将□OACB 向上平移12个单位长度,点B 落在反比例函数的图象上.D .将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上.11.如图,已知抛物线21y x 4x =-+和直线2y 2x =.我们约定:当x 任取一值时,x 对应的函数值分别为y 1、y 2,若y 1≠y 2,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M= y 1=y 2.下列判断: ①当x >2时,M=y 2;②当x <0时,x 值越大,M 值越大;③使得M 大于4的x 值不存在;④若M=2,则x=" 1" .其中正确的有A.1个B.2个C.3个D.4个12.下列计算正确的是()A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心,EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为,则BC的长是_____.14.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=35,则BC的长为_____.15.如图,已知AB∥CD,若14ABCD,则OAOC=_____.16.如图,在△ABC中,DM垂直平分AC,交BC于点D,连接AD,若∠C=28°,AB=BD,则∠B的度数为_____度.17.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.18.若﹣4x a y+x2y b=﹣3x2y,则a+b=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)甲班有45人,乙班有39人.现在需要从甲、乙班各抽调一些同学去参加歌咏比赛.如果从甲班抽调的人数比乙班多1人,那么甲班剩余人数恰好是乙班剩余人数的2倍.请问从甲、乙两班各抽调了多少参加歌咏比赛?20.(6分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p=14t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y与时间t的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?21.(6分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程有一个根的平方等于4,求m的值.22.(8分)请你仅用无刻度的直尺在下面的图中作出△ABC 的边AB 上的高CD.如图①,以等边三角形ABC 的边AB 为直径的圆,与另两边BC、AC 分别交于点E、F.如图②,以钝角三角形ABC 的一短边AB 为直径的圆,与最长的边AC 相交于点E.23.(8分)关于x 的一元二次方程230x m x m-++=有两个实数根,则m 的取值范围是( ) A .m≤1 B .m <1 C .﹣3≤m≤1 D .﹣3<m <124.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.1()求甲、乙两种商品的每件进价;2()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?25.(10分)先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数. 26.(12分)如图,已知二次函数24y x 49=-的图象与x 轴交于A ,B 两点,与y 轴交于点C ,C e 的半径为5,P 为C e 上一动点. ()1点B ,C 的坐标分别为B(______),C(______);()2是否存在点P ,使得PBC V 为直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由; ()3连接PB ,若E 为PB 的中点,连接OE ,则OE 的最大值=______.27.(12分)解不等式组:1(1)1213x x ⎧-≤⎪⎨⎪-<⎩,并求出该不等式组所有整数解的和.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】810 000=8.1×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.3.C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,DE AD FC EF,∴四边形BFED是平行四边形,∴BD=EF , ∴563DE AD BD ==,解得:DE=10. 故选C.4.D【解析】由﹣x <1得,∴x >﹣1,由3x ﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D 5.D【解析】【分析】根据题意,得到P 、Q 分别同时到达D 、C 可判断①②,分段讨论PQ 位置后可以判断③,再由等腰三角形的分类讨论方法确定④,根据两个点的相对位置判断点P 在DC 上时,存在△BPQ 与△BEA 相似的可能性,分类讨论计算即可.【详解】解:由图象可知,点Q 到达C 时,点P 到E 则BE=BC=10,ED=4故①正确则AE=10﹣4=6t=10时,△BPQ 的面积等于111040,22BC DC DC ⋅=⨯⋅= ∴AB=DC=8 故124,2ABE S AB AE =⋅=V 故②错误当14<t <22时,()1110221105,22y BC PC x t =⋅=⨯⨯-=- 故③正确;分别以A 、B 为圆心,AB 为半径画圆,将两圆交点连接即为AB 垂直平分线则⊙A 、⊙B 及AB 垂直平分线与点P 运行路径的交点是P ,满足△ABP 是等腰三角形此时,满足条件的点有4个,故④错误.∵△BEA 为直角三角形∴只有点P 在DC 边上时,有△BPQ 与△BEA 相似由已知,PQ=22﹣t ∴当AB PQ AE BC=或AB BC AE PQ =时,△BPQ 与△BEA 相似 分别将数值代入822 610t-=或810 622t =-,解得t=13214(舍去)或t=14.1故⑤正确故选:D.【点睛】本题是动点问题的函数图象探究题,考查了三角形相似判定、等腰三角形判定,应用了分类讨论和数形结合的数学思想.6.C【解析】【分析】【详解】解:根据定义,得x45<5110+≤+∴50x4<60≤+解得:46x<56≤.故选C.7.C【解析】【详解】由题意分析可知,一个点在函数图像上则代入该点必定满足该函数解析式,点(-2,-1)代入可得,x=-2时,y=-1,所以该点在函数图象上,A正确;因为2大于0所以该函数图象在第一,三象限,所以B正确;C中,因为2大于0,所以该函数在x>0时,y随x的增大而减小,所以C错误;D中,当x<0时,y 随x的增大而减小,正确,故选C.考点:反比例函数【点睛】本题属于对反比例函数的基本性质以及反比例函数的在各个象限单调性的变化8.D【解析】【分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D .【点睛】解答此题要明确概率和事件的关系:()P A 0=①,为不可能事件;()P A 1=②为必然事件;()0P A 1③<<为随机事件.9.A【解析】【分析】连接正方形的对角线,然后依据正方形的性质进行判断即可.【详解】解:如图所示:∵四边形为正方形,∴∠1=45°.∵∠1<∠1.∴∠1<45°.故选:A .【点睛】本题主要考查的是正方形的性质,熟练掌握正方形的性质是解题的关键.10.B【解析】【分析】先根据平行四边形的性质得到点C 的坐标,再代入反比例函数k y x=(k≠0)求出其解析式,再根据反比例函数的图象与性质对选项进行判断.【详解】解:Q A(4,0),B (1,3),4BC OA ==, ∴ ()5,3C ,Q 反比例函数k y x=(k≠0)的图象经过点C , ∴5315k =⨯=,∴反比例函数解析式为15y x=. □OACB 的面积为4312b OA y ⨯=⨯=,正确;当0y <时,0x <,故错误;将□OACB 向上平移12个单位长度,点B 的坐标变为()1,15,在反比例函数图象上,故正确;因为反比例函数的图象关于原点中心对称,故将□OACB 绕点O 旋转180°,点C 的对应点落在反比例函数图象的另一分支上,正确.故选:B.【点睛】本题综合考查了平行四边形的性质和反比例函数的图象与性质,结合图形,熟练掌握和运用相关性质定理是解答关键.11.B【解析】试题分析:∵当y 1=y 2时,即2x 4x 2x -+=时,解得:x=0或x=2,∴由函数图象可以得出当x >2时, y 2>y 1;当0<x <2时,y 1>y 2;当x <0时, y 2>y 1.∴①错误.∵当x <0时, -21y x 4x =-+直线2y 2x =的值都随x 的增大而增大,∴当x <0时,x 值越大,M 值越大.∴②正确.∵抛物线()221y x 4x x 24=-+=--+的最大值为4,∴M 大于4的x 值不存在.∴③正确; ∵当0<x <2时,y 1>y 2,∴当M=2时,2x=2,x=1;∵当x >2时,y 2>y 1,∴当M=2时,2x 4x 2-+=,解得12x 2x 2==.∴使得M=2的x 值是1或2+综上所述,正确的有②③2个.故选B .12.D【解析】【分析】A .根据同底数幂乘法法则判断;B .根据积的乘方法则判断即可;C .根据平方差公式计算并判断;D .根据同底数幂除法法则判断.【详解】A.-2x -2y 3⋅2x 3y=-4xy 4,故本选项错误;B. (−2a2)3=−8a6,故本项错误;C. (2a+1)(2a−1)=4a2−1,故本项错误;D.35x3y2÷5x2y=7xy,故本选项正确.故答案选D.【点睛】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】分析:设∠AEF=n°,由题意,解得n=120,推出∠AEF=120°,在Rt△EFD中,求出DE即可解决问题.详解:设∠AEF=n°,由题意,解得n=120,∴∠AEF=120°,∴∠FED=60°,∵四边形ABCD是矩形,∴BC=AD,∠D=90°,∴∠EFD=10°,∴DE=EF=1,∴BC=AD=2+1=1,故答案为1.点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14.4【解析】试题解析:∵3 cos5BDC∠=,可∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,4. BC==故答案为:4cm.15.1 4【解析】【分析】利用相似三角形的性质即可解决问题;【详解】∵AB∥CD,∴△AOB∽△COD,∴14 OA ABOC CD==,故答案为14.【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.16.1【解析】【分析】根据线段垂直平分线上的点到两端点的距离相等可得AD=CD,等边对等角可得∠DAC=∠C,三角形的一个外角等于与它不相邻的两个内角的和求出∠ADB=∠C+∠DAC,再次根据等边对等角可得可得∠ADB=∠BAD,然后利用三角形的内角和等于180°列式计算即可得解.【详解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°−∠BAD−∠ADB=180°−56°−56°=1°.故答案为1.【点睛】本题考查了等腰三角形的性质,线段垂直平分线上的点到两端点的距离相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记各性质与定理是解题的关键.17.109 5【解析】【分析】由勾股定理可先求得AM,利用条件可证得△ABM∽△EMA,则可求得AE的长,进一步可求得DE.【详解】详解:∵正方形ABCD,∴∠B=90°.∵AB=12,BM=5,∴AM=1.∵ME⊥AM,∴∠AME=90°=∠B.∵∠BAE=90°,∴∠BAM+∠MAE=∠MAE+∠E,∴∠BAM=∠E,∴△ABM∽△EMA,∴BMAM=AMAE,即513=13AE,∴AE=1695,∴DE=AE﹣AD=1695﹣12=1095.故答案为1095.【点睛】本题主要考查相似三角形的判定和性质,利用条件证得△ABM∽△EMA是解题的关键.18.1【解析】【分析】两个单项式合并成一个单项式,说明这两个单项式为同类项.【详解】解:由同类项的定义可知,a=2,b=1,∴a+b=1.故答案为:1.【点睛】本题考查的知识点为:同类项中相同字母的指数是相同的.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.从甲班抽调了35人,从乙班抽调了1人【解析】分析:首先设从甲班抽调了x 人,那么从乙班抽调了(x ﹣1)人,根据题意列出一元一次方程,从而得出答案.详解:设从甲班抽调了x 人,那么从乙班抽调了(x ﹣1)人,由题意得,45﹣x=2[39﹣(x ﹣1)], 解得:x=35, 则x ﹣1=35﹣1=1. 答:从甲班抽调了35人,从乙班抽调了1人.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.理解题目的含义,找出等量关系是解题的关键.20. (1)y=﹣2t+200(1≤t≤80,t 为整数); (2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.【解析】【分析】(1)根据函数图象,设解析式为y=kt+b ,将(1,198)、(80,40)代入,利用待定系数法求解可得;(2)设日销售利润为w ,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时t 的值,结合函数图象即可得出答案;【详解】(1)设解析式为y=kt+b ,将(1,198)、(80,40)代入,得:1988040k b k b +=⎧⎨+=⎩ ,解得:2200k b =-⎧⎨=⎩,∴y=﹣2t+200(1≤t≤80,t 为整数); (2)设日销售利润为w ,则w=(p ﹣6)y ,当1≤t≤80时,w=(14t+16﹣6)(﹣2t+200)=﹣12(t ﹣30)2+2450, ∴当t=30时,w 最大=2450;∴第30天的日销售利润最大,最大利润为2450元.(3)由(2)得:当1≤t≤80时,w=﹣12(t﹣30)2+2450,令w=2400,即﹣12(t﹣30)2+2450=2400,解得:t1=20、t2=40,∴t的取值范围是20≤t≤40,∴共有21天符合条件.【点睛】本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.21.(1)证明见解析;(2)m 的值为1或﹣2.【解析】【分析】(1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到x=±2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可.【详解】(1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,∴无论实数m 取何值,方程总有两个实数根;(2)解:∵方程有一个根的平方等于2,∴x=±2 是原方程的根,当x=2 时,2﹣2(m+3)+m+2=1.解得m=1;当x=﹣2 时,2+2(m+3)+m+2=1,解得m=﹣2.综上所述,m 的值为 1 或﹣2.【点睛】本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.22.(1)详见解析;(2)详见解析.【解析】【分析】(1)连接AE 、BF ,找到△ABC 的高线的交点,据此可得CD ;(2)延长CB 交圆于点F ,延长AF 、EB 交于点G ,连接CG ,延长AB 交CG 于点D ,据此可得.【详解】(1)如图所示,CD 即为所求;(2)如图,CD 即为所求.【点睛】本题主要考查作图-基本作图,解题的关键熟练掌握圆周角定理和三角形的三条高线交于一点的性质. 23.C【解析】【分析】 利用二次根式有意义的条件和判别式的意义得到230(3)40m m m +≥⎧⎪⎨+-≥⎪⎩V=,然后解不等式组即可. 【详解】 根据题意得230(3)40m m m +≥⎧⎪⎨+-≥⎪⎩V=, 解得-3≤m≤1.故选C .【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.24.()1 甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲种商品按原销售单价至少销售20件.【解析】【分析】()1设甲种商品的每件进价为x 元,乙种商品的每件进价为(x+8))元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程进行求解即可;()2设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】()1设甲种商品的每件进价为x 元,则乙种商品的每件进价为()x 8+元, 根据题意得,20002400x x 8=+, 解得x 40=,经检验,x 40=是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲乙两种商品的销售量为20005040=, 设甲种商品按原销售单价销售a 件,则()()()()6040a 600.74050a 8848502460-+⨯--+-⨯≥,解得a 20≥,答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.25.-5【解析】【分析】根据分式的运算法则即可求出答案.【详解】原式=[2(1)(1)x x x --+(2)(2)(2)x x x x -++]÷1x =(1x x -+2x x-)•x=x ﹣1+x ﹣2=2x ﹣3 由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.26.(1)B (1,0),C (0,﹣4);(2)点P 的坐标为:(﹣1,﹣2)或(115,225-﹣4﹣4);(1【解析】试题分析:(1)在抛物线解析式中令y=0可求得B 点坐标,令x=0可求得C 点坐标;(2)①当PB 与⊙相切时,△PBC 为直角三角形,如图1,连接BC ,根据勾股定理得到BC=5,BP 2的值,过P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F ,根据相似三角形的性质得到2222P F CP P E BP = =2,设OC=P 2E=2x ,CP 2=OE=x ,得到BE=1﹣x ,CF=2x ﹣4,于是得到FP 2,EP 2的值,求得P 2的坐标,过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(﹣1,﹣2),②当BC ⊥PC 时,△PBC 为直角三角形,根据相似三角形的判定和性质即可得到结论;(1)如图1中,连接AP ,由OB=OA ,BE=EP ,推出OE=12AP ,可知当AP 最大时,OE 的值最大. 试题解析:(1)在2449y x =-中,令y=0,则x=±1,令x=0,则y=﹣4,∴B (1,0),C (0,﹣4); 故答案为1,0;0,﹣4;(2)存在点P ,使得△PBC 为直角三角形,分两种情况:①当PB 与⊙相切时,△PBC 为直角三角形,如图(2)a ,连接BC ,∵OB=1.OC=4,∴BC=5,∵CP 2⊥BP 2,CP 2BP 2=P 2作P 2E ⊥x 轴于E ,P 2F ⊥y 轴于F ,则△CP 2F ∽△BP 2E ,四边形OCP 2B 是矩形,∴2222P F CP P E BP ==2,设OC=P 2E=2x ,CP 2=OE=x ,∴BE=1﹣x ,CF=2x ﹣4,∴324BE x CF x -=- =2,∴x=115,2x=225,∴FP 2=115,EP 2=225,∴P 2(115,﹣225),过P 1作P 1G ⊥x 轴于G ,P 1H ⊥y 轴于H ,同理求得P 1(﹣1,﹣2);②当BC ⊥PC 时,△PBC 为直角三角形,过P 4作P 4H ⊥y 轴于H ,则△BOC ∽△CHP 4,∴44P H P C CH OB OC BC ==,∴,P 4H=5,∴P 4(5﹣4); 同理P 1﹣4); 综上所述:点P 的坐标为:(﹣1,﹣2)或(115,225-﹣4﹣4); (1)如图(1),连接AP ,∵OB=OA ,BE=EP ,∴OE=12AP ,∴当AP 最大时,OE 的值最大,∵当P 在AC 的延长线上时,AP 的值最大,最大值=5+,∴OE27.1【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:()111213xx⎧-≤⎪⎨⎪-<⎩①②,解不等式①得:x≤3,解不等式②得:x>﹣2,所以不等式组的解集为:﹣2<x≤3,所以所有整数解的和为:﹣1+0+1+2+3=1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
四川省广安市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=︒,在C 点测得60BCD ∠=︒,又测得50AC =米,则小岛B 到公路l 的距离为( )米.A .25B .253C .10033D .25253+2.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA =6,则△PCD 的周长为( )A .8B .6C .12D .103.点P (1,﹣2)关于y 轴对称的点的坐标是( )A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)4.如图是几何体的三视图,该几何体是( )A .圆锥B .圆柱C .三棱柱D .三棱锥5.下列图形中,可以看作中心对称图形的是( )A .B .C .D .6.如图钓鱼竿AC 长6m ,露在水面上的鱼线BC 长2m ,钓者想看看鱼钓上的情况,把鱼竿AC 逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是( )A.3m B.33m C.23m D.4m7.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人米折返跑.在整个过程中,跑步者距起跑线的距离y(单8.小苏和小林在如图①所示的跑道上进行450位:m)与跑步时间t(单位:s)的对应关系如图②所示.下列叙述正确的是().A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.小林在跑最后100m的过程中,与小苏相遇2次9.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查10.某微生物的直径为0.000 005 035m,用科学记数法表示该数为()A.5.035×10﹣6B.50.35×10﹣5C.5.035×106D.5.035×10﹣511.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A.30°B.40°C.50°D.60°12.已知数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣b|的结果是( )A .a+bB .﹣a ﹣cC .a+cD .a+2b ﹣c二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数1x y x =-的自变量x 的取值范围是_____. 14.如图,△ABC 中,过重心G 的直线平行于BC ,且交边AB 于点D ,交边AC 于点E ,如果设AB u u u r =a r ,AC uuu r =b r ,用a r ,br 表示GE uuu r ,那么GE uuu r =___.15.用一直径为10cm 的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如图所示,圆锥的母线AB 与⊙O 相切于点B ,不倒翁的顶点A 到桌面L 的最大距离是18cm .若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为 cm 2(精确到1cm 2).16.如图,在△ABC 中,∠ABC=90°,AB=CB ,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠CAE=32°,则∠ACF 的度数为__________°.17.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,且AC=CD ,∠ACD=120°,CD 是⊙O 的切线:若⊙O 的半径为2,则图中阴影部分的面积为_____.18.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.(1)求甲种树和乙种树的单价;(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的12,请设计出最省钱的购买方案,并说明理由.20.(6分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?21.(6分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm 0 1 2 3 4 5 6y/cm 6.9 5.3 4.0 3.3 4.5 6(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.22.(8分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400 200250x(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?23.(8分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A作BC的平行线交CE的延长线与F,且AF=BD,连接BF。
四川省广安市2019-2020学年中考数学最后模拟卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,点A是反比例函数y=kx的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是()A.3 B.﹣3 C.6 D.﹣62.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了3.把6800000,用科学记数法表示为()A.6.8×105B.6.8×106C.6.8×107D.6.8×1084.如图,等边△ABC内接于⊙O,已知⊙O的半径为2,则图中的阴影部分面积为()A.8233π-B.433π-C.8333π-D.9344π-5.港珠澳大桥目前是全世界最长的跨海大桥,其主体工程“海中桥隧”全长35578米,数据35578用科学记数法表示为()A.35.578×103B.3.5578×104C.3.5578×105D.0.35578×1056.下列实数中是无理数的是()A.227B.2﹣2C.5.15&&D.sin45°7.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高8.如图所示的四张扑克牌背面完全相同,洗匀后背面朝上,则从中任意翻开一张,牌面数字是3 的倍数的概率为()A.14B.13C.12D.349.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°10.若函数2yx=与y=﹣2x﹣4的图象的交点坐标为(a,b),则12a b+的值是()A.﹣4 B.﹣2 C.1 D.211.下列关于x的方程中,属于一元二次方程的是()A.x﹣1=0 B.x2+3x﹣5=0 C.x3+x=3 D.ax2+bx+c=012.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A.0.9米B.1.3米C.1.5米D.2米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.太阳半径约为696000千米,数字696000用科学记数法表示为千米.143a-_____.15.点A到⊙O的最小距离为1,最大距离为3,则⊙O的半径长为_____.16.函数y3x-中自变量x的取值范围是________,若x=4,则函数值y=________.17.函数123y xx=-+-中自变量x的取值范围是___________.18.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,则第n个图案中正三角形的个数为(用含n 的代数式表示).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.20.(6分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知83x=乙,2465s=乙.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.21.(6分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台.求甲、乙两种品牌空调的进货价;该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.22.(8分)新定义:如图1(图2,图3),在△ABC中,把AB边绕点A顺时针旋转,把AC边绕点A 逆时针旋转,得到△AB′C′,若∠BAC+∠B′AC′=180°,我们称△ABC是△AB′C′的“旋补三角形”,△AB'C′的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”(特例感知)(1)①若△ABC是等边三角形(如图2),BC=1,则AD=;②若∠BAC=90°(如图3),BC=6,AD=;(猜想论证)(2)在图1中,当△ABC是任意三角形时,猜想AD与BC的数量关系,并证明你的猜想;(拓展应用)(3)如图1.点A,B,C,D都在半径为5的圆上,且AB与CD不平行,AD=6,点P是四边形ABCD内一点,且△APD是△BPC的“旋补三角形”,点P是“旋补中心”,请确定点P的位置(要求尺规作图,不写作法,保留作图痕迹),并求BC的长.23.(8分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A(﹣2,1),B(1,n)两点.求反比例函数和一次函数的解析式;根据图象写出一次函数的值大于反比例函数的值的x的取值范围.24.(10分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为“完美抛物线”.已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac≠0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=-1,该二次函数图象与y轴交于点C,且S△ABC=1.①求a的值;②当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围.25.(10分)在正方形ABCD 中,M 是BC 边上一点,且点M 不与B、C 重合,点P 在射线AM 上,将线段AP 绕点 A 顺时针旋转90°得到线段AQ,连接BP,DQ.(1)依题意补全图1;(2)①连接DP,若点P,Q,D 恰好在同一条直线上,求证:DP2+DQ2=2AB2;②若点P,Q,C 恰好在同一条直线上,则BP 与AB 的数量关系为:.26.(12分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.27.(12分)如图所示,小王在校园上的A处正面观测一座教学楼墙上的大型标牌,测得标牌下端D处的仰角为30°,然后他正对大楼方向前进5m到达B处,又测得该标牌上端C处的仰角为45°.若该楼高为16.65m,小王的眼睛离地面1.65m,大型标牌的上端与楼房的顶端平齐.求此标牌上端与下端之间的距离(3≈1.732,结果精确到0.1m).参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.考点:反比例函数系数k的几何意义.2.A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.3.B【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:把6800000用科学记数法表示为6.8×1.故选B.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.A【解析】解:连接OB、OC,连接AO并延长交BC于H,则AH⊥BC.∵△ABC 是等边三角形,∴BH=32AB=3,OH=1,∴△OBC 的面积= 12×BC×OH=3,则△OBA 的面积=△OAC 的面积=△OBC 的面积=3,由圆周角定理得,∠BOC=120°,∴图中的阴影部分面积=2240223360π⨯-=8233π-.故选A . 点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键. 5.B 【解析】 【分析】科学计数法是a×10n ,且110a ≤<,n 为原数的整数位数减一.【详解】解:35578= 3.5578×410, 故选B . 【点睛】本题主要考查的是利用科学计数法表示较大的数,属于基础题型.理解科学计数法的表示方法是解题的关键. 6.D 【解析】A 、是有理数,故A 选项错误;B 、是有理数,故B 选项错误;C 、是有理数,故C 选项错误;D 、是无限不循环小数,是无理数,故D 选项正确; 故选:D . 7.B 【解析】试题分析:根据线段垂直平分线上的点到两端点的距离相等解答. 解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.点评:本题考查了线段垂直平分线上的点到两端点的距离相等的性质,熟记性质是解题的关键. 8.C 【解析】 【分析】根据题意确定所有情况的数目,再确定符合条件的数目,根据概率的计算公式即可. 【详解】解:由题意可知,共有4种情况,其中是 3 的倍数的有6和9, ∴是 3 的倍数的概率2142=, 故答案为:C . 【点睛】本题考查了概率的计算,解题的关键是熟知概率的计算公式. 9.B 【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC ∥AB ,则∠4=30°+50°=80°.故选B .点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键. 10.B 【解析】 【分析】求出两函数组成的方程组的解,即可得出a 、b 的值,再代入12a b+求值即可. 【详解】解方程组224y xy x ⎧=⎪⎨⎪=--⎩①②, 把①代入②得:2x=﹣2x ﹣4, 整理得:x 2+2x+1=0, 解得:x=﹣1,交点坐标是(﹣1,﹣2),∴a=﹣1,b=﹣2,∴12a b=﹣1﹣1=﹣2,故选B.【点睛】本题考查了一次函数与反比例函数的交点问题和解方程组等知识点,关键是求出a、b的值.11.B【解析】【分析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2进行分析即可.【详解】A. 未知数的最高次数不是2 ,不是一元二次方程,故此选项错误;B. 是一元二次方程,故此选项正确;C. 未知数的最高次数是3,不是一元二次方程,故此选项错误;D. a=0时,不是一元二次方程,故此选项错误;故选B.【点睛】本题考查一元二次方程的定义,解题的关键是明白:一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.12.B【解析】试题分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC和CE的长即可.解:在Rt△ACB中,AC2=AB2﹣BC2=2.52﹣1.52=1,∴AC=2,∵BD=0.9,在Rt △ECD 中,EC 2=ED 2﹣CD 2=2.52﹣2.12=0.19, ∴EC=0.7,∴AE=AC ﹣EC=2﹣0.7=1.2. 故选B .考点:勾股定理的应用.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.56.9610⨯ . 【解析】试题分析:696000=6.96×1,故答案为6.96×1. 考点:科学记数法—表示较大的数.14.﹣【解析】30a -≥Q ,0a ∴≤ .== .15.1或2 【解析】 【分析】分类讨论:点在圆内,点在圆外,根据线段的和差,可得直径,根据圆的性质,可得答案. 【详解】点在圆内,圆的直径为1+3=4,圆的半径为2; 点在圆外,圆的直径为3−1=2,圆的半径为1, 故答案为1或2. 【点睛】本题考查点与圆的位置关系,关键是分类讨论:点在圆内,点在圆外. 16.x≥3 y =1 【解析】根据二次根式有意义的条件求解即可.即被开方数是非负数,结果是x≥3,y =1. 17.x≤2 【解析】试题解析:根据题意得:20{x 30x -≥-≠x .解得:218.4n+1【解析】【分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.【详解】解:第一个图案正三角形个数为6=1+4;第二个图案正三角形个数为1+4+4=1+1×4;第三个图案正三角形个数为1+1×4+4=1+3×4;…;第n个图案正三角形个数为1+(n﹣1)×4+4=1+4n=4n+1.故答案为4n+1.考点:规律型:图形的变化类.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)①110°②DE=EF;(1)①90°②AE1+DB1=DE1【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=110°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(1)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS证明△ACF≌△BCD,得出∠CAF=∠B=45°,AF=DB,求出∠EAF=∠BAC+∠CAF=90°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF;在Rt△AEF中,由勾股定理得出AE1+AF1=EF1,即可得出结论.试题解析:解:(1)①∵△ABC是等边三角形,∴AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=110°;②DE=EF.理由如下:∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCE.在△DCE和△FCE中,∵CD=CF,∠DCE=∠FCE,CE=CE,∴△DCE≌△FCE(SAS),∴DE=EF;(1)①∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCD.在△ACF和△BCD中,∵AC=BC,∠ACF=∠BCD,CF=CD,∴△ACF≌△BCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;②AE1+DB1=DE1,理由如下:∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCE .在△DCE 和△FCE 中,∵CD=CF ,∠DCE=∠FCE ,CE=CE ,∴△DCE ≌△FCE (SAS ),∴DE=EF .在Rt △AEF 中,AE 1+AF 1=EF 1,又∵AF=DB ,∴AE 1+DB 1=DE 1.20.(1)83,81;(2)26=甲s ,推荐甲去参加比赛.【解析】【分析】(1)根据中位数和众数分别求解可得;(2)先计算出甲的平均数和方差,再根据方差的意义判别即可得.【详解】(1)甲成绩的中位数是83分,乙成绩的众数是81分,故答案为:83分、81分;(2)()17982838586835=⨯++++=甲x , ∴()()22222214312065⎡⎤=⨯-++-++=⎣⎦甲s . ∵x x =甲乙,22s s <甲乙,∴推荐甲去参加比赛.【点睛】此题主要考查了方差、平均数、众数、中位数等统计量,其中方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.21.(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解析】【分析】(1)设甲种品牌空调的进货价为x 元/台,则乙种品牌空调的进货价为1.2x 元/台,根据数量=总价÷单价可得出关于x 的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a 台,所获得的利润为y 元,则购进乙种品牌空调(10-a )台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再由总利润=单台利润×购进数量即可得出y 关于a 的函数关系式,利用一次函数的性质即可解决最值问题.【详解】(1)由(1)设甲种品牌的进价为x 元,则乙种品牌空调的进价为(1+20%)x 元,由题意,得 ()720030002120%xx =++,解得x=1500,经检验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20%)×1500=1800(元).答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)设购进甲种品牌空调a台,则购进乙种品牌空调(10-a)台,由题意,得1500a+1800(10-a)≤16000,解得203≤a,设利润为w,则w=(2500-1500)a+(3500-1800)(10-a)=-700a+17000,因为-700<0,则w随a的增大而减少,当a=7时,w最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.【点睛】本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程;(2)根据总利润=单台利润×购进数量找出y关于a的函数关系式.22.(1)①2;②3;(2)AD=BC;(3)作图见解析;BC=4;【解析】【分析】(1)①根据等边三角形的性质可得出AB=AC=1、∠BAC=60,结合“旋补三角形”的定义可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三线合一可得出∠ADC′=90°,通过解直角三角形可求出AD的长度;②由“旋补三角形”的定义可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,进而可得出△ABC≌△AB′C′(SAS),根据全等三角形的性质可得出B′C′=BC=6,再利用直角三角形斜边上的中线等于斜边的一半即可求出AD的长度;(2)AD=BC,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形,根据平行四边形的性质结合“旋补三角形”的定义可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,进而可证出△BAC≌△AB′E(SAS),根据全等三角形的性质可得出BC=AE,由平行四边形的对角线互相平分即可证出AD=BC;(3)作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外角圆圆心,过点P作PF⊥BC于点F,由(2)的结论可求出PF的长度,在Rt△BPF中,利用勾股定理可求出BF的长度,进而可求出BC的长度.【详解】(1)①∵△ABC是等边三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD为等腰△AB′C′的中线,∴AD⊥B′C′,∠C′=30°,∴∠A DC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=AC′=2.②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,,∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=B′C′=3.故答案为:①2;②3.(2)AD=BC.证明:在图1中,过点B′作B′E∥AC′,且B′E=AC′,连接C′E、DE,则四边形ACC′B′为平行四边形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,,∴△BAC≌△AB′E(SAS),∴BC=AE.∵AD=AE,∴AD=BC.(3)在图1中,作AB、CD的垂直平分线,交于点P,则点P为四边形ABCD的外接圆圆心,过点P作PF ⊥BC 于点F .∵PB=PC ,PF ⊥BC ,∴PF 为△PBC 的中位线,∴PF=AD=3.在Rt △BPF 中,∠BFP=90°,PB=5,PF=3,∴BF==1,∴BC=2BF=4.【点睛】本题考查了等边三角形的性质、等腰三角形的判定与性质、平行四边形的性质、解直角三角形、勾股定理以及全等三角形的判定与性质,解题的关键是:(1)①利用解含30°角的直角三角形求出AD=AC′;②牢记直角三角形斜边上的中线等于斜边的一半;(2)构造平行四边形,利用平行四边形对角线互相平分找出AD=AE=BC ;(3)利用(2)的结论结合勾股定理求出BF 的长度.23. (1)y=2x-,y=−x−1;(2)x<−2或0<x<1 【解析】【分析】 (1)利用点A 的坐标可求出反比例函数解析式,再把B (1,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A,B 两点的坐标即可写出一次函数的值大于反比例函数的值的x 的取值范围.【详解】(1)∵A(−2,1)在反比例函数y=m x 的图象上, ∴1=2m -,解得m=−2. ∴反比例函数解析式为y=2x-, ∵B(1,n)在反比例函数上,∴n=−2,∴B 的坐标(1,−2),把A(−2,1),B(1,−2)代入y=kx+b 得122k b k b =-+⎧⎨-=+⎩解得:11k b =-⎧⎨=-⎩∴一次函数的解析式为y=−x−1;(2)由图像知:当x<−2或0<x<1时,一次函数的值大于反比例函数的值.【点睛】本题考查了反比例函数与一次函数的交点问题,属于简单题,熟悉函数图像的性质是解题关键.24. (1) ac <3;(3)①a=1;②m >23或m <12. 【解析】【分析】(1)设A (p ,q ).则B (-p ,-q ),把A 、B 坐标代入解析式可得方程组即可得到结论;(3)由c=-1,得到p 3=1a ,a >3,且C (3,-1),求得p =得到结果;②由①可知:抛物线解析式为y=x 3-3mx-1,根据M (-1,1)、N (3,4).得到这些MN 的解析式y =34x+74(-1≤x≤3),联立方程组得到x 3-3mx-1=34x+74,故问题转化为:方程x 3-(3m+34)x-114=3在-1≤x≤3内只有一个解,建立新的二次函数:y=x 3-(3m+34)x-114,根据题意得到(Ⅰ)若-1≤x 1<3且x 3>3,(Ⅱ)若x 1<-1且-1<x 3≤3:列方程组即可得到结论.【详解】(1)设A (p ,q ).则B (-p ,-q ),把A 、B 坐标代入解析式可得:22 22ap mp c q ap mp c q ⎧-+⎨++-⎩==, ∴3ap 3+3c=3.即p 3=−c a , ∴−c a≥3, ∵ac≠3, ∴−c a >3, ∴ac <3;(3)∵c=-1,∴p 3=1a,a >3,且C (3,-1), ∴p =, ①S △ABC =12××1=1, ∴a=1; ②由①可知:抛物线解析式为y=x 3-3mx-1,∵M (-1,1)、N (3,4).∴MN :y =34x+74(-1≤x≤3), 依题,只需联立2213744y x mx y x ⎧--⎪⎨+⎪⎩==在-1≤x≤3内只有一个解即可, ∴x 3-3mx-1=34x+74, 故问题转化为:方程x 3-(3m+34)x-114=3在-1≤x≤3内只有一个解, 建立新的二次函数:y=x 3-(3m+34)x-114, ∵△=(3m+34)3+11>3且c=-114<3, ∴抛物线y =x 3−(3m+34)x−114与x 轴有两个交点,且交y 轴于负半轴. 不妨设方程x 3−(3m+34)x−114=3的两根分别为x 1,x 3.(x 1<x 3) 则x 1+x 3=3m+34,x 1x 3=−114 ∵方程x 3−(3m+34)x−114=3在-1≤x≤3内只有一个解. 故分两种情况讨论:(Ⅰ)若-1≤x 1<3且x 3>3:则()()()()1212330110x x x x ⎧--⎪⎨++≥⎪⎩<.即:()1212121239010x x x x x x x x ⎧-++⎨+++≥⎩<,可得:m >23.(Ⅱ)若x 1<-1且-1<x 3≤3:则()()()()1212330110x x x x ⎧--≥⎪⎨++⎪⎩<.即:()1212121239010x x x x x x x x ⎧-++≥⎨+++⎩<, 可得:m <12, 综上所述,m >23或m <12. 【点睛】本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键.25.(1)详见解析;(1)①详见解析;②BP=AB .【解析】【分析】(1)根据要求画出图形即可;(1)①连接BD ,如图1,只要证明△ADQ ≌△ABP ,∠DPB=90°即可解决问题;②结论:BP=AB ,如图3中,连接AC ,延长CD 到N ,使得DN=CD ,连接AN ,QN .由△ADQ ≌△ABP ,△ANQ ≌△ACP ,推出DQ=PB ,∠AQN=∠APC=45°,由∠AQP=45°,推出∠NQC=90°,由CD=DN ,可得DQ=CD=DN=AB ;【详解】(1)解:补全图形如图 1:(1)①证明:连接 BD ,如图 1,∵线段 AP 绕点 A 顺时针旋转 90°得到线段 AQ ,∴AQ=AP ,∠QAP=90°,∵四边形ABCD 是正方形,∴AD=AB,∠DAB=90°,∴∠1=∠1.∴△ADQ≌△ABP,∴DQ=BP,∠Q=∠3,∵在Rt△QAP 中,∠Q+∠QPA=90°,∴∠BPD=∠3+∠QPA=90°,∵在Rt△BPD 中,DP1+BP1=BD1,又∵DQ=BP,BD1=1AB1,∴DP1+DQ1=1AB1.②解:结论:BP=AB.理由:如图 3 中,连接AC,延长CD 到N,使得DN=CD,连接AN,QN.∵△ADQ≌△ABP,△ANQ≌△ACP,∴DQ=PB,∠AQN=∠APC=45°,∵∠AQP=45°,∴∠NQC=90°,∵CD=DN,∴DQ=CD=DN=AB,∴PB=AB.【点睛】本题考查正方形的性质,旋转变换、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴26.(1)y=﹣x﹣2;(2)C(﹣2,0),△AOB=6,,(3)﹣4<x<0或x>2.【解析】【分析】(1)先把B点坐标代入代入y=mx,求出m得到反比例函数解析式,再利用反比例函数解析式确定A点坐标,然后利用待定系数法求一次函数解析式;(2)根据x轴上点的坐标特征确定C点坐标,然后根据三角形面积公式和△AOB的面积=S△AOC+S△BOC进行计算;(3)观察函数图象得到当﹣4<x<0或x>2时,一次函数图象都在反比例函数图象下方.【详解】解:∵B(2,﹣4)在反比例函数y=mx的图象上,∴m=2×(﹣4)=﹣8,∴反比例函数解析式为:y=﹣8x,把A(﹣4,n)代入y=﹣8x,得﹣4n=﹣8,解得n=2,则A点坐标为(﹣4,2).把A(﹣4,2),B(2,﹣4)分别代入y=kx+b,得4224k bk b-+=⎧⎨+=-⎩,解得12kb=-⎧⎨=-⎩,∴一次函数的解析式为y=﹣x﹣2;(2)∵y=﹣x﹣2,∴当﹣x﹣2=0时,x=﹣2,∴点C的坐标为:(﹣2,0),△AOB的面积=△AOC的面积+△COB的面积=12×2×2+12×2×4=6;(3)由图象可知,当﹣4<x<0或x>2时,一次函数的值小于反比例函数的值.【点睛】本题考查的是一次函数与反比例函数的交点问题以及待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.27.大型标牌上端与下端之间的距离约为3.5m.【解析】试题分析:将题目中的仰俯角转化为直角三角形的内角的度数,分别求得CE和BE的长,然后求得DE 的长,用CE的长减去DE的长即可得到上端和下端之间的距离.试题解析:设AB,CD 的延长线相交于点E,∵∠CBE=45°,CE⊥AE,∴CE=BE,∵CE=16.65﹣1.65=15,∴BE=15,而AE=AB+BE=1.∵∠DAE=30°,∴DE=3tan3020oAE⋅=⨯=11.54,∴CD=CE﹣DE=15﹣11.54≈3.5 (m ),答:大型标牌上端与下端之间的距离约为3.5m.。
四川省广安市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.2.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是()A.5 B.9 C.15 D.22中,BC边上的高是()3.如图,在ABCA.EC B.BH C.CD D.AF4.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10πC.11πD.12π5.下列运算正确的是()A.a•a2=a2B.(ab)2=ab C.3﹣1=13D.5510+=6.在4-,12-,1-,83-这四个数中,比2-小的数有()个.A.1B.2C.3D.47.某班 30名学生的身高情况如下表:身高()m 1.55 1.58 1.60 1.62 1.66 1.70人数 1 3 4 7 8 7则这 30 名学生身高的众数和中位数分别是()A.1.66m,1.64m B.1.66m,1.66mC.1.62m,1.64m D.1.66m,1.62m8.在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其中正确的个数为()A.1个B.2个C.3个D.4个9.不等式3x<2(x+2)的解是()A.x>2 B.x<2 C.x>4 D.x<410.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O411.中国在第二十三届冬奥会闭幕式上奉献了《2022相约北京》的文艺表演,会后表演视频在网络上推出,即刻转发量就超过810000这个数用科学记数法表示为()A.8.1×106B.8.1×105C.81×105D.81×10412.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A .B .C ..D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.因式分解:9a3b﹣ab=_____.14.方程22310x x+-=的两个根为1x、2x,则1211+x x的值等于______.15.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=42,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.16.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.17.反比例函数y =2kx-的图像经过点(2,4),则k的值等于__________.18.写出一个经过点(1,2)的函数表达式_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求A、B两种钢笔每支各多少元?(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?20.(6分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC 所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,3 1.732≈,2 1.414≈)21.(6分)如图,一次函数y =kx+b 与反比例函数y =6x(x >0)的图象交于A (m ,6), B (3,n )两点.求一次函数关系式;根据图象直接写出kx+b ﹣6x>0的x 的取值范围;求△AOB 的面积.22.(8分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A )、白鹿原(记为B )、兴庆公园(记为C )、秦岭国家植物园(记为D )中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.23.(8分)如图,∠BAC 的平分线交△ABC 的外接圆于点D ,交BC 于点F ,∠ABC 的平分线交AD 于点E .(1)求证:DE =DB :(2)若∠BAC =90°,BD =4,求△ABC 外接圆的半径; (3)若BD =6,DF =4,求AD 的长 24.(10分)计算:25.(10分)解不等式组:()3x12x x1x132⎧-<⎪⎨+-<⎪⎩26.(12分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.27.(12分)“六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)该校有_____个班级,补全条形统计图;(2)求该校各班留守儿童人数数据的平均数,众数与中位数;(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】画出从正面看到的图形即可得到它的主视图.【详解】这个几何体的主视图为:故选:A.【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.2.B【解析】【分析】条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】课外书总人数:6÷25%=24(人),看5册的人数:24﹣5﹣6﹣4=9(人),故选B.【点睛】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.3.D【解析】【分析】根据三角形的高线的定义解答.【详解】根据高的定义,AF为△ABC中BC边上的高.故选D.【点睛】本题考查了三角形的高的定义,熟记概念是解题的关键.4.B【解析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B.【点睛】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.5.C【解析】【分析】根据同底数幂的乘法法则对A进行判断;根据积的乘方对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断.【详解】解:A、原式=a3,所以A选项错误;B、原式=a2b2,所以B选项错误;C、原式=13,所以C选项正确;D、原式=D选项错误.故选:C.【点睛】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.6.B【解析】【分析】比较这些负数的绝对值,绝对值大的反而小.【详解】在﹣4、﹣12、﹣1、﹣83这四个数中,比﹣2小的数是是﹣4和﹣83.故选B.【点睛】本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小.7.A【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【详解】解:这组数据中,1.66出现的次数最多,故众数为1.66,Q 共有30人,∴第15和16人身高的平均数为中位数,即中位数为:()11.62 1.66 1.642+=, 故选:A . 【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 8.C 【解析】 【分析】根据直线的性质公理,相交线的定义,垂线的性质,平行公理对各小题分析判断后即可得解. 【详解】解:在同一平面内,①过两点有且只有一条直线,故①正确;②两条不相同的直线相交有且只有一个公共点,平行没有公共点,故②错误; ③在同一平面内,经过直线外一点有且只有一条直线与已知直线垂直,故③正确; ④经过直线外一点有且只有一条直线与已知直线平行,故④正确, 综上所述,正确的有①③④共3个, 故选C . 【点睛】本题考查了平行公理,直线的性质,垂线的性质,以及相交线的定义,是基础概念题,熟记概念是解题的关键. 9.D 【解析】 【分析】不等式先展开再移项即可解答. 【详解】解:不等式3x <2(x+2), 展开得:3x <2x+4, 移项得:3x-2x <4, 解之得:x <4.故答案选D.【点睛】本题考查了解一元一次不等式,解题的关键是熟练的掌握解一元一次不等式的步骤.10.A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B 来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.11.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】810 000=8.1×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.B【解析】试题分析:根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,因此:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、是轴对称图形,也是中心对称图形,符合题意;C 、不是轴对称图形,也不是中心对称图形,不符合题意;D 、是轴对称图形,不是中心对称图形,不符合题意. 故选B .考点:轴对称图形和中心对称图形二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.ab (3a+1)(3a-1). 【解析】试题分析:原式提取公因式后,利用平方差公式分解即可. 试题解析:原式=ab (9a 2-1)=ab (3a+1)(3a-1). 考点: 提公因式法与公式法的综合运用. 14.1. 【解析】 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:根据题意得1232x x +=-,1212x x =-, 所以1211+x x =1212x x x x +=3212--=1. 故答案为1. 【点睛】本题考查了根与系数的关系:若1x 、2x 是一元二次方程20ax bx c ++=(a≠0)的两根时,12b x x a+=-,12c x x a=. 15. 2 【解析】 【分析】连结AE ,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD 为直径得到∠AED=90°,接着由∠AEB=90°得到点E 在以AB 为直径的 O 上,于是当点O 、E 、C 共线时,CE 最小,如图2,在Rt △AOC 中利用勾股定理计算出CE 的最小值为2. 【详解】连结AE,如图1,∵∠BAC=90°,AB=AC,BC=42,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的O上,∵O的半径为2,∴当点O、E. C共线时,CE最小,如图2在Rt△AOC中,∵OA=2,AC=4,∴OC=2225+,AC OA=∴CE=OC−OE=25﹣2,即线段CE长度的最小值为25﹣2.故答案为:25﹣2.【点睛】此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质. 16.3【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为△ABC的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质17.1【解析】解:∵点(2,4)在反比例函数2kyx-=的图象上,∴242k-=,即k=1.故答案为1.点睛:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.18.y=x+1(答案不唯一)【解析】【分析】本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式.答案不唯一.【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1,…答案不唯一.故答案可以是:y=x+1(答案不唯一).【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)A种钢笔每只15元B种钢笔每只20元;(2)方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3)定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得2390 35145x yx y+=⎧⎨+=⎩,解得:1520xy=⎧⎨=⎩,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:() 152090158890z zz z⎧+-≤⎨<-⎩,∴42.4≤z<45,∵z是整数z=43,44,∴90-z=47,或46;∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-72)²+729,∵-4<0,∴W有最大值,∵a为正整数,∴当a=3,或a=4时,W最大,∴W最大==-4×(3-72)²+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.20.3.05米.【解析】【分析】延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【详解】延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=AB BC,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHD=60°,sin∠FAG=FG AF,∴sin60°=3 2.52 FG,∴FG=2.165,∴DM=FG+GM﹣DF≈3.05米.答:篮框D到地面的距离是3.05米.考点:解直角三角形的应用.21.(1)y=-2x+1 ;(2)1<x<2 ;(2)△AOB的面积为1 . 【解析】试题分析:(1)首先根据A(m,6),B(2,n)两点在反比例函数y=6x(x>0)的图象上,求出m,n的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x的取值范围即可.(2)由-2x+1-6x<0,求出x的取值范围即可.(2)首先分别求出C点、D点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出△AOB的面积是多少即可.试题解析:(1)∵A(m,6),B(2,n)两点在反比例函数y=6x(x>0)的图象上,∴6=6m,63n=,解得m=1,n=2,∴A(1,6),B(2,2),∵A(1,6),B(2,2)在一次函数y=kx+b的图象上,∴6{32 k bk b++==,解得2 {8kb-==,∴y=-2x+1.(2)由-2x+1-6x<0,解得0<x<1或x>2.(2)当x=0时,y=-2×0+1=1,∴C点的坐标是(0,1);当y=0时,0=-2x+1,解得x=4,∴D点的坐标是(4,0);∴S△AOB=12×4×1-12×1×1-12×4×2=16-4-4=1.22.(1)14;(2)116【解析】【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23.(1)见解析;(2)22(3)1【解析】【分析】(1)通过证明∠BED=∠DBE得到DB=DE;(2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=2BD=42,从而得到△ABC外接圆的半径;(3)证明△DBF∽△ADB,然后利用相似比求AD的长.【详解】(1)证明:∵AD平分∠BAC,BE平分∠ABD,∴∠1=∠2,∠3=∠4,∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,∴DB=DE;(2)解:连接CD,如图,∵∠BAC=10°,∴BC为直径,∴∠BDC=10°,∵∠1=∠2,∴DB=BC,∴△DBC为等腰直角三角形,∴BC=BD=4,∴△ABC外接圆的半径为2;(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,∴△DBF∽△ADB,∴=,即=,∴AD=1.【点睛】本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.24.-1【解析】【分析】先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.【详解】原式=1﹣4﹣+1﹣=﹣1.【点睛】本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.25.﹣9<x<1.【解析】【分析】先求每一个不等式的解集,然后找出它们的公共部分,即可得出答案.【详解】解不等式1(x﹣1)<2x,得:x<1,解不等式﹣<1,得:x>﹣9,则原不等式组的解集为﹣9<x<1.【点睛】此题考查了解一元一次不等式组,用到的知识点是解一元一次不等式组的步骤,关键是找出两个不等式解集的公共部分.26.(1)不可能;(2)1 6 .【解析】【分析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.27.(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.【解析】【分析】(1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;(2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;(3)利用班级数60乘以(2)中求得的平均数即可.【详解】解:(1)该校的班级数是:2÷2.5%=16(个).则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).条形统计图补充如下图所示:故答案为16;(2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.故这组数据的众数是10,中位数是(8+10)÷2=3.即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;(3)该镇小学生中,共有留守儿童60×3=1(名).答:该镇小学生中共有留守儿童1名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.2019-2020学年中考数学模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜边AB=4,CD =1.把三角板DCE绕着点C顺时针旋转11°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.13B.5C.22D.42.如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣2x(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=kx(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A.53B.34C.43D.233.如图,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A.10 B.9 C.8 D.74.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()A.15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩B.15022503y yx x⎧+=⎪⎪⎨⎪+=⎪⎩C.15022503x yy x⎧-=⎪⎪⎨⎪-=⎪⎩D.15022503y yx x⎧-=⎪⎪⎨⎪-=⎪⎩5.人的大脑每天能记录大约8 600万条信息,数据8 600用科学记数法表示为()A.0.86×104B.8.6×102C.8.6×103D.86×1026.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB.添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.BE⊥DC C.∠ADB=90°D.CE⊥DE7.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米8.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元9.下列图形中,哪一个是圆锥的侧面展开图?()A .B .C .D .10.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .911.下列计算或化简正确的是( ) A .234265+= B .842= C .2(3)3-=-D .2733÷=12.下列事件中必然发生的事件是( ) A .一个图形平移后所得的图形与原来的图形不全等 B .不等式的两边同时乘以一个数,结果仍是不等式C .200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D .随意翻到一本书的某页,这页的页码一定是偶数 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在平面直角坐标系中,点A 的坐标为(a ,3),点B 的坐标是(4,b ),若点A 与点B 关于原点O 对称,则ab=_____.14.如图,在△ABC 中,AB=AC ,以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD ,若∠A=32°,则∠CDB 的大小为_____度.15.计算()22133x y xy ⎛⎫-⋅=⎪⎝⎭_______. 16.关于x 的分式方程3111m x x+=--的解为正数,则m 的取值范围是___________. 17.抛物线y=﹣x 2+4x ﹣1的顶点坐标为 .18.设△ABC 的面积为1,如图①,将边BC 、AC 分别2等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 1;如图②将边BC 、AC 分别3等分,BE 1、AD 1相交于点O ,△AOB 的面积记为S 2;…,依此类推,则S n 可表示为________.(用含n 的代数式表示,其中n 为正整数)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD . 求证:PD =AB .如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E ,当BECE的值是多少时,△PDE 的周长最小?如图(3),点 Q 是边 AB 上的定点,且 BQ =BC .已知 AD =1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F ,连接 CF ,G 为 CF 的中点,M 、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM =CN ,MN 与 DF 相交于点 H ,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.20.(6分)如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC .求证:CD 是⊙O 的切线;若∠D=30°,BD=2,求图中阴影部分的面积.21.(6分)如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.22.(8分)解方程组4311,213.x y x y -=⎧⎨+=⎩①②23.(8分)先化简2211a a a a⎛⎫-÷⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 24.(10分)如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线.求证:△ADE ≌△CBF ;若∠ADB 是直角,则四边形BEDF 是什么四边形?证明你的结论.25.(10分)解方程:3x2﹣2x﹣2=1.26.(12分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.对雾霾了解程度的统计表对雾霾的了解程度百分比A.非常了解5%B.比较了解mC.基本了解45%D.不了解n请结合统计图表,回答下列问题:统计表中:m=,n=;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?27.(12分)解不等式组:3(1)72323x xxx x--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A。
2019届四川省广安市阶段教育学校招生模拟考试数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、单选题1. 的倒数是()A. ﹣B.C. ﹣D.2. 下列运算中正确的是()A. B. · C. D.二、选择题3. 我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()A. 0.21×108B. 2.1×106C. 2.1×107 D.21×1064. 我市5月的某一周每天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是()A.23,24 B.24,22 C.24,24 D.22,245. 若关于x的一元二次方程ax2+x﹣1=0有实数根,则a的取值范围是()A.a≥-且a≠0 B.a≤- C.a≥- D.a≤-且a≠06. 如图,在平行四边形ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为()A. B.8 C.10 D.167. 一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有()①A、B两地相距60千米;②出发1小时,货车与小汽车相遇;③小汽车的速度是货车速度的2倍;④出发1.5小时,小汽车比货车多行驶了60千米.A.1个 B.2个 C.3个 D.4个8. 以下命题:①同位角相等;②长度相等弧是等弧;③对角线相等的平行四边形是矩形;④抛物线y=(x+2)2+1的对称轴是直线x=﹣2.其中真命题的个数是()A.1 B.2 C.3 D.49. 如图,AB与⊙O相切于点A,BO与⊙O相交于点C,点D是优弧AC上一点,∠CDA=27°,则∠B的大小是().A.27° B.34° C.36° D.54°10. 如图,是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac ②2a+b=0 ③c﹣a<0 ④若点B(﹣4,y1)、C(1,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④ B.②③ C.①③ D.①④三、填空题11. 分解因式:x3-6x2+9x= .12. 已知关于x的方程的解是负数,则m的取值范围是______.13. 若12xm-1y2与3xyn+1是同类项,点P(m,n)在双曲线上,则a的值为__________.14. 若一元二次方程ax2-bx-2016=0,其中一根为x=-1,则a+b=_______.15. 在正方形ABCD中,E在BC上,BE=2,CE=1,P在BD上,则PE和PC的长度之和最小可达到______16. 如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,…Mn分别为边B1B2,B2B3,B3B4,…,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△BnCnMn的面积为Sn,则Sn= .(用含n的式子表示)四、计算题17. 计算:.五、解答题18. 先化简,再求值:÷(2+1),其中=-1.19. 如图,正方形ABCD中,点E在对角线AC上,连接EB、ED.(1)求证:△BCE≌△DCE;(2)延长BE交AD于点F,若∠DEB=140º,求∠AFE的度数.20. 已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P (,n),Q(4,m)两点,且tan∠BOP=:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.21. 为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有人,将条形图补充完整;(2)扇形图中m= ,n= ;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.22. 某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完,两商店销售这两种产品每件的利润(元)如下表:23. A型利润B型利润甲店200170乙店160150td24. 如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同学在大堤上A点处用高1.5m的测量仪测出高压电线杆CD顶端D的仰角为30°,己知地面BC宽30m,求高压电线杆CD的高度(结果保留一位小数,≈1.732)25. (本题8分)如图所示的3×3的方格中,画出4个面积小于9的不同的正方形,而且所画正方形的顶点都在方格的顶点上,并写出你所画的正方形的边长.26. 如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.27. 如图,二次函数y=ax2﹣x+2(a≠0)的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).(1)求抛物线与直线AC的函数解析式;(2)若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系;(3)若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E的坐标.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】。
四川省广安市2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算()15-3÷的结果等于( )A .-5B .5C .1-5D .152.二次函数y=ax 2+bx ﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a ﹣b ﹣2,则t 值的变化范围是( )A .﹣2<t <0B .﹣3<t <0C .﹣4<t <﹣2D .﹣4<t <03.下列命题正确的是( )A .内错角相等B .-1是无理数C .1的立方根是±1D .两角及一边对应相等的两个三角形全等4.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x -1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x -1)=135.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别是(x 1,0),(x 2,0),且12x x <.图象上有一点()00M x y ,在x 轴下方,则下列判断正确的是( )A .0a >B .240b ac -≥C .102x x x <<D .()()01020a x x x x --< 6.下列各式计算正确的是( )A .a+3a=3a 2B .(–a 2)3=–a 6C .a 3·a 4=a 7D .(a+b)2=a 2–2ab+b 27.如图,将Rt ∆ABC 绕直角项点C 顺时针旋转90°,得到∆A' B'C ,连接AA',若∠1=20°,则∠B 的度数是( )A .70°B .65°C .60°D .55°8.如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( )A .∠AOD =∠BOCB .∠AOE +∠BOD =90°C .∠AOC =∠AOED .∠AOD +∠BOD =180°9.已知一元二次方程2x2+2x﹣1=0的两个根为x1,x2,且x1<x2,下列结论正确的是()A.x1+x2=1 B.x1•x2=﹣1 C.|x1|<|x2| D.x12+x1=1 210.如图,▱ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则▱ABCD的周长为()A.20 B.16 C.12 D.811.如图是某零件的示意图,它的俯视图是()A.B.C.D.12.下列计算中,错误的是()A.020181=;B.224-=;C.1242=;D.1133 -=.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x的分式方程2122x ax-=-的解为非负数,则a的取值范围是_____.14.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼_____条.15.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是_____.16.如图,AC、BD为圆O的两条垂直的直径,动点P从圆心O出发,沿线段线段DO的路线作匀速运动.设运动时间为t秒,∠APB的度数为y度,则下列图象中表示y与t的函数关系最恰当的是( )A .B .C .D . 17.如图,折叠矩形ABCD 的一边AD ,使点D 落在BC 边的点F 处,已知折痕AE =5cm , 且tan ∠EFC =,那么矩形ABCD 的周长_____________cm .18.如图,Y ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知点A 、O 在直线l 上,且6AO =,OD l ⊥于O 点,且6OD =,以OD 为直径在OD 的左侧作半圆E ,AB AC ⊥于A ,且60CAO ∠=︒.若半圆E 上有一点F ,则AF 的最大值为________;向右沿直线l 平移BAC ∠得到'''B A C ∠;①如图,若''A C 截半圆E 的GH u u u r 的长为π,求'A GO ∠的度数;②当半圆E 与'''B A C ∠的边相切时,求平移距离.20.(6分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?21.(6分)如图,反比例函数y=k x (x >0)的图象与一次函数y=2x 的图象相交于点A ,其横坐标为1. (1)求k 的值;(1)点B 为此反比例函数图象上一点,其纵坐标为2.过点B 作CB ∥OA ,交x 轴于点C ,求点C 的坐标.22.(8分)先化简2211a a a a⎛⎫-÷ ⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 23.(8分)如图,水渠边有一棵大木瓜树,树干DO (不计粗细)上有两个木瓜A 、B (不计大小),树干垂直于地面,量得AB=2米,在水渠的对面与O 处于同一水平面的C 处测得木瓜A 的仰角为45°、木瓜B 的仰角为30°.求C 处到树干DO 的距离CO .(结果精确到1米)(参考数据:3 1.73≈,2 1.41≈)24.(10分)在平面直角坐标系中,已知点A (2,0),点B (0,3,点O (0,0).△AOB 绕着O 顺时针旋转,得△A′OB′,点A 、B 旋转后的对应点为A′、B′,记旋转角为α.(I )如图1,若α=30°,求点B′的坐标;(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P ,求证:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P 纵坐标的最小值(直接写出结果即可).25.(10分)如图,在△ABC中,AB=AC,∠BAC=120°,EF为AB的垂直平分线,交BC于点F,交AB于点E.求证:FC=2BF.26.(12分)如图,二次函数232(0) 2y ax x a=-+≠的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.27.(12分)已知y是x的函数,自变量x的取值范围是0x≠的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;x=时所对应的点,并写出m=.(3)在画出的函数图象上标出2(4)结合函数的图象,写出该函数的一条性质:.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据有理数的除法法则计算可得.【详解】解:15÷(-3)=-(15÷3)=-5,故选:A.【点睛】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2.D【解析】【分析】由二次函数的解析式可知,当x=1时,所对应的函数值y=a+b-2,把点(1,0)代入y=ax2+bx-2,a+b-2=0,然后根据顶点在第三象限,可以判断出a与b的符号,进而求出t=a-b-2的变化范围.【详解】解:∵二次函数y=ax2+bx-2的顶点在第三象限,且经过点(1,0)∴该函数是开口向上的,a>0∵y=ax 2+bx ﹣2过点(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵顶点在第三象限,∴-2b a<0. ∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t <0.【点睛】本题考查大小二次函数的图像,熟练掌握图像的性质是解题的关键.3.D【解析】解:A .两直线平行,内错角相等,故A 错误;B .-1是有理数,故B 错误;C .1的立方根是1,故C 错误;D .两角及一边对应相等的两个三角形全等,正确.故选D .4.A【解析】【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A 饮料的钱+买B 饮料的钱=总印数1元,明确了等量关系再列方程就不那么难了.【详解】设B 种饮料单价为x 元/瓶,则A 种饮料单价为(x-1)元/瓶,根据小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了1元,可得方程为:2(x-1)+3x=1.故选A .【点睛】列方程题的关键是找出题中存在的等量关系,此题的等量关系为买A 中饮料的钱+买B 中饮料的钱=一共花的钱1元.5.D【解析】【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.6.C【解析】【分析】根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.【详解】A. a+3a=4a,故不正确;B. (–a2)3=(-a)6,故不正确;C. a3·a4=a7,故正确;D. (a+b)2=a2+2ab+b2,故不正确;故选C.【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.7.B【解析】【分析】根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.【详解】∵将Rt∆ABC绕直角项点C顺时针旋转90°,得到∆A' B'C,∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,∴∠AA′C=45°,∵∠1=20°,∴∠B′A′C=45°-20°=25°,∴∠A′B′C=90°-25°=65°,∴∠B=65°.故选B.【点睛】本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.8.C【解析】【分析】根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.【详解】A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选C.【点睛】本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.9.D【解析】【分析】直接利用根与系数的关系对A、B进行判断;由于x1+x2<0,x1x2<0,则利用有理数的性质得到x1、x2异号,且负数的绝对值大,则可对C进行判断;利用一元二次方程解的定义对D进行判断.【详解】根据题意得x1+x2=﹣22=﹣1,x1x2=﹣12,故A、B选项错误;∵x1+x2<0,x1x2<0,∴x1、x2异号,且负数的绝对值大,故C选项错误;∵x1为一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=12,故D选项正确,故选D.【点睛】本题考查了一元二次方程的解、一元二次方程根与系数的关系,熟练掌握相关内容是解题的关键. 10.B【解析】【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.11.C【解析】【分析】物体的俯视图,即是从上面看物体得到的结果;根据三视图的定义,从上面看物体可以看到是一个正六边形,里面是一个没有圆心的圆,由此可以确定答案.【详解】从上面看是一个正六边形,里面是一个没有圆心的圆.故答案选C.【点睛】本题考查了几何体的三视图,解题的关键是熟练的掌握几何体三视图的定义.12.B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确;B .224-=-,故B 错误;C .1242=.故C 正确;D .1133-=,故D 正确; 故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1a ≥-且2a ≠【解析】分式方程去分母得:2(2x-a )=x-2,去括号移项合并得:3x=2a-2, 解得:223a x -=, ∵分式方程的解为非负数,∴ 2203a -≥且 22203a --≠, 解得:a≥1 且a≠4 .14.20000【解析】试题分析:1000÷10200=20000(条). 考点:用样本估计总体.15.﹣1.【解析】【分析】由题意得:当顶点在M 处,点A 横坐标为-3,可以求出抛物线的a 值;当顶点在N 处时,y=a-b+c 取得最小值,即可求解.解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1.【点睛】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a 值始终不变.16.C.【解析】分析:根据动点P在OC上运动时,∠APB逐渐减小,当P在上运动时,∠APB不变,当P在DO 上运动时,∠APB逐渐增大,即可得出答案.解答:解:当动点P在OC上运动时,∠APB逐渐减小;当P在上运动时,∠APB不变;当P在DO上运动时,∠APB逐渐增大.故选C.17.36.【解析】试题分析:∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可设EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC =8x.∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周长=8×2+10×2=36.考点:折叠的性质;矩形的性质;锐角三角函数;勾股定理.【解析】 ∵ABCD 的周长为33,∴2(BC+CD )=33,则BC+CD=2.∵四边形ABCD 是平行四边形,对角线AC ,BD 相交于点O ,BD=12,∴OD=OB=BD=3.又∵点E 是CD 的中点,∴OE 是△BCD 的中位线,DE=CD .∴OE=BC .∴△DOE 的周长="OD+OE+DE=" OD +12(BC+CD )=3+9=1,即△DOE 的周长为1. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)2(2)①75︒;②33【解析】【分析】(1)由图可知当点F 与点D 重合时,AF 最大,根据勾股定理即可求出此时AF 的长; (2)①连接EG 、EH .根据¼GH 的长为π可求得∠GEH=60°,可得△GEH 是等边三角形,根据等边三角形的三个角都等于60°得出∠HGE=60°,可得EG//A'O ,求得∠GEO=90°,得出△GEO 是等腰直角三角形,求得∠EGO=45°,根据平角的定义即可求出∠A'GO 的度数;②分C'A'与半圆相切和B'A'与半圆相切两种情况进行讨论,利用切线的性质、勾股定理、切斜长定理等知识进行解答即可得出答案.【详解】解:(1)当点F 与点D 重合时,AF 最大,AF 最大22OA OD +2 故答案为:62(2)①连接EG 、EH .∵¼3180GEH GH ππ∠=⨯⨯=, ∴60GEH ∠=︒.∵GE GH =,∴GEH ∆是等边三角形,∴60HGE EHG ∠=∠=︒.∵''60C A O HGE ∠=︒=∠,∴//'EG A O ,∴'180GEO EOA ∠+∠=︒,∵'90EOA ∠=︒,∴90GEO ∠=︒,∵GE EO =,∴45EGO EOG ∠=∠=︒,∴'75A GO ∠=︒.②当''C A 切半圆E 于Q 时,连接EQ ,则'90EQA ∠=︒.∵'90EOA ∠=︒,∴'A O 切半圆E 于O 点,∴''30EA O EA Q ∠=∠=︒.∵3OE =, ∴'33A O =, ∴平移距离为'633AA =-当''B A 切半圆E 于N 时,连接EN 并延长l 于P 点,∵''150OA B ∠=︒,'90ENA ∠=︒,'90EOA ∠=︒,∴30PEO ∠=︒,∵3OE =, ∴23EP =∵3EN =, ∴33NP =,∵'30NA P ∠=︒, ∴'633A N =-∵''633A O A N ==- ∴'33A A =【点睛】本题主要考查了弧长公式、勾股定理、切线的性质,作出过切点的半径构造出直角三角形是解决此题的关键.20.这项工程的规定时间是83天【解析】【分析】依据题意列分式方程即可.【详解】设这项工程的规定时间为x天,根据题意得.解得x=83.检验:当x=83时,3x≠0.所以x=83是原分式方程的解.答:这项工程的规定时间是83天.【点睛】正确理解题意是解题的关键,注意检验.21.(1)k=11;(1)C(2,0).【解析】试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=kx即可求出k的值;(1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.试题解析:(1)∵点A在直线y=2x上,其横坐标为1.∴y=2×1=6,∴A(1,6),把点A(1,6)代入kyx=,得62k=,解得:k=11;(1)由(1)得:12yx =,∵点B为此反比例函数图象上一点,其纵坐标为2,∴123y x==,解得x= 4,∴B (4,2), ∵CB ∥OA ,∴设直线BC 的解析式为y=2x+b ,把点B (4,2)代入y=2x+b ,得2×4+b=2,解得:b=﹣9, ∴直线BC 的解析式为y=2x ﹣9,当y=0时,2x ﹣9=0,解得:x=2,∴C (2,0).22.-1【解析】【分析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】 解:2211a a a a⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•- 1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【点睛】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.23.解:设OC=x ,在Rt △AOC 中,∵∠ACO=45°,∴OA=OC=x .在Rt △BOC 中,∵∠BCO=30°,∴OB OC ?tan30=︒=.∵AB=OA ﹣OB=x x=23-,解得1+1.73=4.735≈≈. ∴OC=5米. 答:C 处到树干DO 的距离CO 为5米.【解析】解直角三角形的应用(仰角俯角问题),锐角三角函数定义,特殊角的三角函数值.【分析】设OC=x ,在Rt △AOC 中,由于∠ACO=45°,故OA=x ,在Rt △BOC 中,由于∠BCO=30°,故3OB OC?tan30x3=︒=,再根据AB=OA-OB=2即可得出结论.24.(1)B'的坐标为(3,3);(1)见解析;(3)3﹣1.【解析】【分析】(1)设A'B'与x轴交于点H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)证明∠BPA'=90︒即可;(3)作AB的中点M(1,),连接MP,由∠APB=90°,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM⊥x轴时,点P纵坐标的最小值为3﹣1.【详解】(Ⅰ)如图1,设A'B'与x轴交于点H,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴点B'的坐标为(3,3);(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)点P纵坐标的最小值为.如图,作AB的中点M(1,),连接MP,∵∠APB=90°,∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).∴当PM⊥x轴时,点P31.【点睛】本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.25.见解析【解析】【分析】连接AF,结合条件可得到∠B=∠C=30°,∠AFC=60°,再利用含30°直角三角形的性质可得到AF=BF=12CF,可证得结论.【详解】证明:连接AF,∵EF为AB的垂直平分线,∴AF=BF,又AB=AC,∠BAC=120°,∴∠B=∠C=∠BAF=30°,∴∠FAC=90°,∴AF=FC,∴FC=2BF.【点睛】本题主要考查垂直平分线的性质及等腰三角形的性质,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.26.(1)122y x=+(1)S=﹣m1﹣4m+4(﹣4<m<0)(3)(﹣3,1)、(3412-,﹣1)、(3412-+,﹣1)【解析】【分析】(1)把点A的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A,C两点的坐标,可求得直线AC的函数解析式;(1)先过点D作DH⊥x轴于点H,运用割补法即可得到:四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,据此列式计算化简就可求得S关于m的函数关系;(3)由于AC确定,可分AC是平行四边形的边和对角线两种情况讨论,得到点E与点C的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E的坐标.【详解】(1)∵A(﹣4,0)在二次函数y=ax1﹣32x+1(a≠0)的图象上,∴0=16a+6+1,解得a=﹣12,∴抛物线的函数解析式为y=﹣12x1﹣32x+1;∴点C的坐标为(0,1),设直线AC 的解析式为y=kx+b ,则04{2k b b=-+=, 解得1{22k b ==,∴直线AC 的函数解析式为:122y x =+; (1)∵点D (m ,n )是抛物线在第二象限的部分上的一动点, ∴D (m ,﹣12m 1﹣32m+1), 过点D 作DH ⊥x 轴于点H ,则DH=﹣12m 1﹣32m+1,AH=m+4,HO=﹣m , ∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积, ∴S=12(m+4)×(﹣12m 1﹣32m+1)+12(﹣12m 1﹣32m+1+1)×(﹣m ), 化简,得S=﹣m 1﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等, ∴|y E |=|y C |=1,∴y E =±1.当y E =1时,解方程﹣12x 1﹣32x+1=1得, x 1=0,x 1=﹣3,∴点E 的坐标为(﹣3,1);当y E =﹣1时,解方程﹣12x 1﹣32x+1=﹣1得, x 1,x 1, ∴点E的坐标为(32--,﹣1)或(32-+,﹣1); ②若AC 为平行四边形的一条对角线,则CE ∥AF ,∴y E =y C =1,∴点E 的坐标为(﹣3,1).综上所述,满足条件的点E 的坐标为(﹣3,1)、(3412--,﹣1)、(3412-+,﹣1).27.(1)32;(2)见解析;(3)72;(4)当01x <<时,y 随x 的增大而减小. 【解析】【分析】 (1)根据表中x ,y 的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(3)在所画的函数图象上找出自变量为7所对应的函数值即可;(4)利用函数图象的图象求解.【详解】解:(1)当自变量是﹣2时,函数值是32; 故答案为:32. (2)该函数的图象如图所示;(3)当2x =时所对应的点 如图所示,且72m =; 故答案为:72; (4)函数的性质:当01x <<时,y 随x 的增大而减小.故答案为:当01x <<时,y 随x 的增大而减小.【点睛】本题考查了函数值,函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.。
2019年广安市中考数学模拟试题与答案考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。
每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
) 1. 用科学记数法表85000为A.0.85×105B.8.5×104C.85×10-3D.8.5×10-42. 7的相反数是A. 7B. -7C.71 D. 71- 3.下列图案属于轴对称图形的是4. 不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是5.下列计算中,正确的是A .532632a b a =⨯B .()2242a a -=- C .()725a a= D .221x x =- 6. 一次函数y=x-2的图象不经过A .第一象限B .第二象限C .第三象限D .第四象限7.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为A .120元B .100元C .80元D .60元 8.如图,△ABC 中,∠C=70°,若沿图中虚线截去∠C ,则∠1+∠2=A .360°B .250°C .180°D .140°9. 世界因爱而美好,在今年我校的“献爱心”捐款活动中,九年级三班50名学生积极参加“献爱心”捐款活动,班长将捐款情况进行了统计,并绘制成了统计图,根据图中提供的信息,捐款金额的众数和中位数分别是A.20,20B.30,20C.30,30D.20,3010.如图,四边形ABCD 中,∠BAD =∠ACB=90°,AB =AD ,AC =4BC ,设CD 的长为x ,四边形ABCD 的面积为y ,则y 与x 之间的函数关系式是A .y =225x 2B .y =425x 2C .y =25x 2D .y =45x 2第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分) 11. 因式分解:()233x x x -+-= .12.若31=+x x ,则=+xx 221 ▲ . 13.若正多边形的一个外角是45°,则该正多边形的边数是 ▲ .14. 如图,反比例函数)0( x xky = 与一次函数y=x+4的图象交于A 、B 两点的横坐标分别为 -3,-1,则关于x 的不等式)0(4<+<x kx xk的解集为_______.15.如图,线段AC 与BD 相交于点O ,CD AB ∥,若OA ∶OC =4∶3,ABO △的面积是2,则CDO△的面积等于 ▲ .16.如图,边长为1的正方形OABC 的顶点A 在x 轴的正半轴上,将正方形OABC 绕顶点O 顺时针旋转75°,使点B 落在抛物线y =ax 2(a <0)的图象上,则该抛物线的解析式为 .三、解答题(共7小题,计72分) 17.(本题8分)计算:()()()︒⨯---+-+⎪⎭⎫ ⎝⎛-30tan 3312120172018311001218.(本题8分)化简aa a a a a --+-÷-2123422,并求值,其中a 与2,3构成△ABC 的三边,且a 为整数.19.(本题10分)如图,在▱ABCD 中,∠BAD 的平分线交CD 于点E ,交BC 的延长线于 点F ,连接BE ,∠F=45°. (1)求证:四边形ABCD 是矩形;(2)若AB =14,DE =8,求sin ∠AEB 的值。
20.(本题满分10分)在四张背面完全相同的纸牌A 、B ,C 、D ,其中正面分别画有四个不同的几何图形(如图),小明将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用画树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A 、B 、C 、D 表示); (2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.21.(本题12分)如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,过D 点作PF ∥AC 交⊙O 于F ,交AB 于点E ,∠BPF=∠ADC .(1)求证:BP 是⊙O 的切线; (2)求证:AE•EB=DE•EF;(3)当⊙O 的半径为5,AC=2,BE=1时, 求BP 的长. 22.(本题12分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元. (1)商场第一次购入的空调每台进价是多少元?(第20题图)(2)商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打23.(本题12分)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?参考答案第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。
每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
)1.A2.D3.A4.A5.D6.B7.C8.B9.C 10.C第Ⅱ卷 非选择题(共90分)二、填空题(本大共6小题,每小题3分,满分18分)11. (x-1)(x+1) 12. 7 13. 8 14. -3<x<-1 15. 8916. y =-23x 2三、解答题(共7小题,计72分) 17.解:原式=()333332119⨯---+ ……………………………………4分 =()3339⨯-- ……………………………………6分 =19+=10 …………………………………8分 18.原式=……………………………4分∵a 与2,3构成△ABC 的三边…∴1< a <5,且a 为整数,∴a =2,3,4,又∵a ≠2且a ≠3,∴a =4, ………………………………7分当a =4时,原式= . ………………………………8分19.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC.1341=-.31)3)(2(2)3)(2(3)3)(2(121)3(22)(2(-=---=---+--=-+-+⨯-+a a a a a a a a a a a a a a a a∴∠DAF=∠F. ∵∠F=45º, ∴∠DAE=45º.∵AF 是∠BAD 的平分线, ∴∠EAB=∠DAE=45º. ∴∠DAB=90º.又∵四边形ABCD 是平行四边形, ∴四边形ABCD 是矩形。
(2)如图,过点B 作BH ⊥AE 于点H.∵四边形ABCD 是矩形, ∴AB=CD,AD=BC,∠DCB=∠D=90º. ∵AB=14,DE=8, ∴CE=6.在Rt △ADE 中,∠DAE =45º, ∴∠DEA=∠DAE=45º. ∴AD=DE=8. ∴BC=8.在Rt △BCE 中,由勾股定理得BE=22CE BC =10. 在Rt △AHB 中,∠HAB=45º, ∴BH=AB ⋅sin45º=72 ∵在Rt △BHE 中,∠BHE=90º, ∴sin ∠AEB=BE BH =1027.20.(本题满分8分)解:(1)画出树状图如下:…………………4分由图可知,共有16种等可能的结果. ……………………………………………………5分 (或列表法)(2)∵既是中心对称又是轴对称图形的只有B 、C ,∴16种等可能的结果既是轴对称图形又是中心对称图形的有4种情况.………………7分 ∴P (既是轴对称图形又是中心对称图形的概率为)=41164 . 即既是轴对称图形又是中心对称图形的概率为14. ……………………………………8分 21.(1)证明:连结BC , ∵AB 是ʘO 的直径, ∴∠ACB=90°, ∴∠CAB+∠ABC=90°,又∵∠ABC=∠ADC ,∠ADC=∠BPF , ∵PF ∥AC , ∴∠CAB=∠PEB , ∴∠PEB+∠BPF=90°, ∴PB ⊥AB , ∴PB 是ʘO 的切线; (2)连结AF 、BD . 在△AEF 和△DEB 中, ∠AEF=∠DEB .∠AFE=∠DBE ,∴△AEF∽△DEB,∴AE DEEF BE=,即AE•EB=DE•EF;(3)在Rt△ABC中,BC2=(25)2-22=16 ∴BC=4,在Rt△ABC和Rt△EPB中,∠ABC=∠ADC=∠BPF,∴△ABC∽△EPB,∴BP BE CB CA=,∴BP=412⨯=2.22.(1)设商场第一次购入的空调每台进价是x元,由题意列方程得:=,解得:x=2400,经检验x=2400是原方程的根,答:商场第一次购入的空调每台进价是2400元;(2)设将y台空调打折出售,根据题意,得:3000×+(3000+200)×0.95y+(3000+200)×(﹣y)≥(24000+52000)×(1+22%),解得:y≤8,答:最多将8台空调打折出售.23.解:(1)①∵A(1,0),B(3,1)由定义可知:点A,B的“相关矩形”的底与高分别为2和1,∴点A,B的“相关矩形”的面积为2×1=2;②由定义可知:AC是点A,C的“相关矩形”的对角线,又∵点A,C的“相关矩形”为正方形∴直线AC与x轴的夹角为45°,设直线AC的解析为:y=x+m或y=﹣x+n把(1,0)分别y=x+m,∴m=﹣1,∴直线AC的解析为:y=x﹣1,把(1,0)代入y=﹣x+n,∴n=1,∴y=﹣x+1,综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1;(2)设直线MN的解析式为y=kx+b,∵点M,N的“相关矩形”为正方形,∴由定义可知:直线MN与x轴的夹角为45°,∴k=±1,∵点N在⊙O上,∴当直线MN与⊙O有交点时,点M,N的“相关矩形”为正方形,当k=1时,作⊙O的切线AD和BC,且与直线MN平行,其中A、C为⊙O的切点,直线AD与y轴交于点D,直线BC与y轴交于点B,连接OA,OC,把M(m,3)代入y=x+b,∴b=3﹣m,∴直线MN的解析式为:y=x+3﹣m∵∠ADO=45°,∠OAD=90°,∴OD=OA=2,∴D(0,2)同理可得:B(0,﹣2),∴令x=0代入y=x+3﹣m,∴y=3﹣m,∴﹣2≤3﹣m≤2,∴1≤m≤5,当k=﹣1时,把M(m,3)代入y=﹣x+b,∴b=3+m,∴直线MN的解析式为:y=﹣x+3+m,同理可得:﹣2≤3+m≤2,∴﹣5≤m≤﹣1;综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是:1≤m≤5或﹣5≤m≤﹣111。