9量子力学练习九+答案
- 格式:pdf
- 大小:469.87 KB
- 文档页数:2
量子力学答案陈鄂生【篇一:考研理论物理:备考复习的重难点与轻易面】ss=txt>易面虽然各高校的考试科目不同,但复习方法是相同的。
物理作为一门基础学科,无论是基础物理还是四大力学,都需要掌握最基本的原理和公式,复习主要侧重课本、习题集、往年真题三方面。
2014考研理论物理:考复习的重难点与轻易面经典物理:很多院校都是把经典物理作为必考科目,但不会涉及力、热、光、电、原子物理的所有部分。
每一院校都会给出参考书目和考试范围,如果没有参考书目,可以用该校的本科教材。
复习是最关键的部分是吃透课本,对基本概念、基本原理熟练掌握,这个过程要通过看课本、推导公式与结论以及做课后习题来实现。
然后是认真做历年真题,建议考生准备一个习题集,把自己推导过的公式和做过的题目整理出来,这样有利于厘清薄弱环节。
最后就是根据自己的薄弱点找几本参考书目浏览,推荐中国科学技术大学出版的《物理学大题典》和陈秉乾的《物理学难题集萃》,这些书题量大,最好是根据自己的薄弱环节先挑出几个章节扫一下题目,如果觉得有思路,大概算一下,如果思路不清晰,则直接看解答。
考试之前最好再把课本浏览一遍,可以只看目录,通过目录检查自己对课本里的基本概念、基本公式是否都掌握了,如果不清楚,再翻开去详读。
高等数学:建议考生每天保证至少三个小时的复习时间。
数学题目做不完,但如果不经过大量的习题训练,成绩很难得到提高。
高等数学的考试不会出现太多的偏题、怪题,考生要从基础学起,先把教材中的概念、公式复习好,然后在此基础上选择一些题目进行强化,尤其是综合性试题和应用题。
解应用题一般是在理解题意的基础上建立数学模型,这种题目现在每年都考,考生需要平时进行强化训练。
最后是重视历年试卷,高等数学部分试题重复率比较高。
推荐复习书目有中国科学技术大学数学系的《高等数学导论习题集》、同济大学的《高等数学习题集》。
量子力学:和复习经典物理一样,吃透课本和课后习题是量子力学复习的第一步。
量子力学例题第二章一.求解一位定态薛定谔方程1.试求在不对称势井中的粒子能级和波函数[解]薛定谔方程:当,故有利用波函数在处的连续条件由处连续条件:由处连续条件:给定一个n值,可解一个,为分离能级.2.粒子在一维势井中的运动求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为当时对束缚态解为在处连续性要求将代入得又相应归一化波函数为:归一化波函数为:3分子间的范得瓦耳斯力所产生的势能可近似地表示为求束缚态的能级所满足的方程[解]束缚态下粒子能量的取值范围为当时当时薛定谔方程为令解为当时令解为当时薛定谔方程为令薛定谔方程为解为由波函数满足的连续性要求,有要使有非零解不能同时为零则其系数组成的行列式必须为零计算行列式,得方程例题主要类型:1.算符运算;2.力学量的平均值;3.力学量几率分布.一.有关算符的运算1.证明如下对易关系(1)(2)(3)(4)(5)[证](1)(2)(3)一般地,若算符是任一标量算符,有(4)一般地,若算符是任一矢量算符,可证明有(5)=0同理:。
2.证明哈密顿算符为厄密算符[解]考虑一维情况为厄密算符,为厄密算符,为实数为厄密算符为厄密算符3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,取:试证明:也是和共同本征函数,对应本征值分别为:。
[证]。
是的对应本征值为的本征函数是的对应本征值为的本征函数又:可求出:二.有关力学量平均值与几率分布方面1.(1)证明是的一个本征函数并求出相应的本征值;(2)求R在态中的平均值[解]即是的本征函数。
本征值2.设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数描写。
求粒子能量的可能值相应的概率及平均值【解】宽度为a的一维无限深势井的能量本征函数注意:是否归一化波函数能量本征值出现的几率,出现的几率能量平均值另一做法3.一维谐振子在时的归一化波函数为所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值[解](1),归一化,,,(2),,;,;,;(3)时,所以:时,能量的可能值、相应的概率、平均值同(2)。
第9章 电稳感应和电磁场 习题及答案1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:23(65)10t t Wb -Φ=++⨯。
求2t s =时,回路中感应电动势的大小和方向。
解:310)62(-⨯+-=Φ-=t dtd ε 当s t 2=时,V 01.0-=ε由楞次定律知,感应电动势方向为逆时针方向2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。
已知导轨处于均匀磁场B 中,B 的方向与回路的法线成60°角,如图所示,B的大小为B =kt (k 为正常数)。
设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。
解:任意时刻通过通过回路面积的磁通量为202160cos t kl t Bl S d B m υυ==⋅=Φ导线回路中感应电动势为 t kl tmυε-=Φ-=d d 方向沿abcda 方向。
3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。
求: (1)穿过正方形线框的磁通量;(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。
解:(1)通过正方形线框的磁通量为⎰⎰=⋅=Φa S Badx S d B 0 ⎰+=a dx x ak 0)1()211(2a k a +=(2)当t k k 0=时,通过正方形线框的磁通量为)211(02a t k a +=Φ 正方形线框中感应电动势的大小为dt d Φ=ε)211(02a k a +=正方形线框线框中电流大小为)211(02a R k a R I +==ε,方向:顺时针方向4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。
设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υ垂直离开导线。
量子力学练习题1、若?F 、?G均为厄米算符,则??F G 也为厄米算符() 2、不同定态的线性叠加还是定态() 3、若?A 与?B 对易,且?B 与?C 对易,则必有?A 与?C 对易() 4、若两力学量算符?F 与?G 对易,则在任意态中,它们都有确定的值()5、所谓全同粒子就是指所有性质均相同的粒子()6、归一化波函数的模方2|(,)|r t ψ 表示时刻,r处粒子出现的概率() 7. 设为()n x ψ一维线性谐振子的归一化波函数,则有*?()()nn x p x dx ∞-∞ψψ=?;*1?()()n n x px dx ∞+-∞ψψ=?8、称为隧道效应; 9、在2?L 和?z L 的共同本征态lmY 中,22??x y L L = 10、氢原子处于03232020(,)ra A r e Y θ?-ψ=态,则其最可几半径r =11、Planck 的量子假说揭示了微观粒子能量的特性。
12. 两个角动量11j =、212j =耦合的总角动量J = 和13. 量子力学几率守恒定律的微分形式和积分形式分别为14. 本征值方程的特点是什么?15. 全同性原理是16. 已知?d F x dx+=+,?d F x dx-=-,求??[,]?F F +-= 17. 求??[,()]?xf p = 18. 如果电子的质量、电荷和加速电压分别为m 、-e 、U ,则其德布罗意波长。
19.若Ψ1 ,Ψ2 ,..., Ψn ,...是体系的一系列可能的状态,则这些态的线性叠加Ψ= C 1Ψ1 + C 2Ψ2 + ...+ C n Ψn + ... (其中 C 1 , C 2 ,...,C n ,...为复常数)也是体系的一个可能状态。
() 20.设氢原子处于态求氢原子的能量、角动量平方、角动量z 分量取值的情况和相应的概率P 以及各力学量的平均值。
()()()()()1101111,,,,22r R r Y R r Y ψθ?θ?θ?-=-221、简述量子力学的主要基本假定。
第4篇电磁学第9章静电场9.1 基本要求1 掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。
掌 握电势与电场强度的积分关系。
能计算一些简单问题中的电场强度和电势。
了解电场强度 与电势的微分关系。
2 理解静电场的规律:高斯定理和环路定理。
理解用高斯定理计算电场强度的条件和 方法。
3 了解导体的静电平衡条件,了解介质的极化现象及其微观解释。
了解各向同性介质 中D和E之间的关系。
了解介质中的高斯定理。
4 了解电容和电能密度的概念。
9.2 基本概念1 电场强度E :试验电荷0q 所受到的电场力F 与0q 之比,即0q =F E 2 电位移D :电位移矢量是描述电场性质的辅助量。
在各向同性介质中,它与场强成正比,即ε=D E 3 电场强度通量e Φ:e Sd Φ=⎰E S电位移通量:D Sd Φ=⎰D S4 电势能pa E :0pa aE q d ∞=⎰E l (设0p E ∞=)5 电势a V :0pa a aE V d q ∞==⎰ E l (设0V ∞=)电势差ab U :ab a b U V V =- 6 场强与电势的关系(1)积分关系 a aV d ∞=⎰E l(2)微分关系 = -V ∇=-E gradV7 电容C:描述导体或导体组(电容器)容纳电荷能力的物理量。
孤立导体的电容:Q C V =;电容器的电容:Q C U= 8 静电场的能量:静电场中所贮存的能量。
电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3 基本规律 1 库仑定律:12204rq q rπε=F e 2 叠加原理(1)电场强度叠加原理:在点电荷系产生的电场中任一点的场强等于每个点电荷单独 存在时在该点产生的场强的矢量和。
(2)电势叠加原理:在点电荷系产生的电场中,某点的电势等于每个点电荷单独存在时 在该点产生的电势的代数和。
量子力学复习题导致量子论产生的物理现象主要有哪些?p2量子的概念是如何引进的?p5为什么说爱因斯坦是量子论的主要创始人之一?p6写出德布罗意公式并说明其中各量的含义和该公式的意义。
P12什么是波函数的几率解释?p18态的迭加原理。
P22动量算符的定义。
P27写出单粒子薛定谔方程。
P27写出多粒子薛定谔方程。
P28写出单粒子哈密顿算符及其本征值方程。
P33什么条件下可以得到定态薛定谔方程?p32什么是束缚态?p37什么情况下量子系统具有分立能级?p37什么是基态?p37写出线性谐振子的定态薛定谔方程。
P39写出线性谐振子的能级表达式。
P40写出波函数应满足的三个基本条件。
P51写出算符的本征值方程并说明其中各量的含义。
P54量子力学中的力学量算符如何由经典力学中相应的力学量得出?p55写出厄米算符的定义,并解释为什么量子力学中的力学量要用厄米算符来表示。
P56写出轨道角动量算符的各分量表达式。
P60什么是角量子数、磁量子数?写出相应的本征值表达式及其数值关系。
P63解:),()1(),(ˆ22ϕθϕθlm lm Y l l Y L += ),(),(ˆϕθϕθlmlm z Y m Y L = 其中l 表征角动量的大小,称为角量子数,m 称为磁量子数。
对应于一个l 的值,m 可以取(2l +1)个值,从-l 到+l 。
写出波尔半径的值和氢原子的电离能,可见光能否导致氢原子电离?00.52A a =( 3分) 113.6e V E =( 3分)可见光的能量不超过3.26eV , 这个值小于氢原子的电离能,所以不能引起氢原子电离。
( 4分)写出类氢原子体系的定态薛定谔方程。
P65 写出氢原子能级的表达式及其简并度。
P68 s, p, d, f 态粒子是什么含义?p63关于力学量与算符的关系的基本假定。
P83 写出力学量平均值的积分表达式。
P84 两个算符可对易的充要条件是什么?p89 写出X 方向坐标与动量的不确定关系。