飞鸿教育七年级计算大赛试卷(A)(分享)
- 格式:pdf
- 大小:380.94 KB
- 文档页数:8
七年级数学竞赛试题精选一、拆分法及应用例1、 计算:99163135115131++++。
(第三届华杯赛) 练习:(1)2081130170128141++++。
(2))2(1641531421311+⨯+⋅⋅⋅⋅⋅⋅+⨯+⨯+⨯+⨯n n 。
(60年上海) (3)2003减去它的21,再减去(第一次)余下的31,再减去(第二次)余下的41,、、、、、、,依次类推,一直到减去(第2001次)余下的20031,问最后余下的是多少?(第六届华杯赛) (4)计算20022002200320003200032002⨯-⨯。
(第四届迎春杯) 二、错位相减法例2、比较1234248162n n n S =++++⋅⋅⋅⋅⋅⋅+(n 为任意自然数)与2的大小。
练习:(1)12310011213110012222----+++⋅⋅⋅⋅⋅⋅+。
(2)21512412562561451212102411++⋅⋅⋅⋅⋅⋅+++。
三、观察归纳法 例3 计算:⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+⨯⎪⎭⎫ ⎝⎛+9115113111011611411211 (第六届华杯赛)例4 计算:355133111111111-----O 练习:901177211556113421113019201712156131++++++++。
(第四届华杯赛) 五、放缩法例5、已知19911198311982119811198011+⋅⋅⋅++++=S ,求 S 的整数部分。
例6、已知下式,求a 的整数部分: 1006915681467136612651170156914681367126611⨯⨯+⨯+⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯=a ,问a 的整数部分是多少? (第二届华杯赛)六、换元法例7、计算:111121113114314119581958++++++++++O O 练习:已知2000199920011998,2001199920001998,2001200019991998⨯⨯-=⨯⨯-=⨯⨯-=C B A 试比较C B A ,,的大小。
中学2019——2020学年度上学期七年级数学竞赛考试题亲爱的同学们,这是你们中学阶段第一次数学竞赛,只要你认真、细心、精心、耐心,一定会做好的。
来吧,迎接你的挑战吧!请认真审题,看清要求,仔细答题,要相信我能行。
一、选择题(每小题3分,共30分)1. 已知代数式的值是4,则代数式的值是( )A 、9B 、-9C 、-8D 、-7 2. 、、在数轴上的位置如图所示,则化简的结果是( )A 、B 、C 、D 、以上都不对 3. x 是任意有理数,则2|x |+x 的值( ).A 、大于零B 、 不大于零C 、小于零D 、不小于零4. 一台电视机成本价为a 元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售。
那么每台实际售价为( ).A 、(1+25%)(1+70%)a 元B 、70%(1+25%)a 元C 、(1+25%)(1-70%)a 元D 、(1+25%+70%)a 元5. 现定义两种运算“”,“”。
对于任意两个整数,,,则(-68)(-53)的结果是( )A 、-4B 、-3C 、-5D 、-66. 如图,三个天平的托盘中相同的物体质量相等。
图⑴、⑵所示的两个天平处于平衡状态要使第三个天平也保持平衡,则需在它的右盘中放置( )A 、 3个球B 、 4个球C 、 5个球D 、 6个球 7. 已知是整数,则以下四个代数式中,不可能得整数值的是( ).A 、B 、C 、D 、8. 若有理数a 、b 满足ab >0,且a + b <0,则下列说法正确的是( )A 、 a 、b 可能一正一负B 、a 、b 都是正数C 、a 、b 都是负数D 、a 、b 中可能有一个为09. 为了节约用水,某市规定:每户居民每月用水不超过15立方米,按每立方米1.6元收费,超过15立方米,则超过部分按每立方米2.4元收费。
小明家六月份交水费33. 6元,则小明家六月份实际用水( )立方米A 18B 19C 20D 2110.小婷问王老师今年多大了,王老师说:“我象你现在这么大时,你才6岁;等你象我现在这么大时,我33岁了。
银鹰文昌中学2021-2021学年七年级数学上学期飞检测验试题一如图是一个正方体展开图,把展开图折叠成正方体后,“你〞字一面相对面上的字是()两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,那么6条直线最多有多少个交点?请画图表示。
并写出n条直线最多有多少个交点?3、小明在阅览时发现这样一个问题“在某次聚会中,一共有6人参加,假如每两人都握一次手,一共握几次手?〞,小明通过努力得出了答案.为理解决更一般的问题,小明设计了以下图表进展探究:请你在图表右下角的横线上填上你归纳出的一般结论.参加人数 2 3 4 5 …n握手示意图握手次数 1 2+1=3 3+2+1=6 4+3+2+1=10 …______4、某公司员工分别住在 A、B、C三个住宅区,A区有 30人,B区有 15人,C区有10人,三个区在同一条直线上,位置如下图,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在〔〕5、B ,C 是线段AD 上的两点,M 是线段AB 的中点,N 是线段CD 的中点,假设MN =10,BC =4,求线段在AD 的长。
N M A D B C6、线段AB =8,在直线AB 上有一点C ,且BC =4,M 是线段AC 的中点,求线段AM 的长。
励志赠言经典语录精选句;挥动**,放飞梦想。
厚积薄发,一鸣惊人。
关于努力学习的语录。
自古以来就有许多文人留下如头悬梁锥刺股的经典的,而近代又有哪些经典的高中励志赠言出现呢?小编筛选了高中励志赠言句经典语录,看看是否有些帮助吧。
好男儿踌躇满志,你将如愿;真巾帼灿烂扬眉,我要成功。
含泪播种的人一定能含笑收获。
贵在坚持、难在坚持、成在坚持。
功崇惟志,业广为勤。
耕耘今天,收获明天。
成功,要靠辛勤与汗水,也要靠技巧与方法。
常说口里顺,常做手不笨。
不要自卑,你不比别人笨。
不要自满,别人不比你笨。
高三某班,青春无限,超越梦想,勇于争先。
2024-2025学年七年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第二章(人教版2024)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单项选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.12024-的相反数是( )A .2024-B .12024C .12024-D .以上都不是2.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没·逆转时空》《第二十条》在网络上持续 引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为( )A .880.1610´B .98.01610´C .100.801610´D .1080.1610´3.有下列说法:①一个有理数不是正数就是负数;②整数和分数统称为有理数;③零是最小的有理数;④正分数一定是有理数;⑤a -一定是负数,其中正确的个数是( )A .1B .2C .3D .44.两江新区正加快打造智能网联新能源汽车产业集群,集聚了长安、长安福特、赛力斯、吉利、理想等10家整车企业,200余家核心零部件企业.小虎所在的生产车间需要加工标准尺寸为4.5mm 的零部件,其中()4.50.2mm ±范围内的尺寸为合格,则下列尺寸的零部件不合格的是( )A .4.4mmB .4.5mmC .4.6mmD .4.8mm5.下列各组数相等的有( )A .()22-与22-B .()31-与()21--C .0.3--与 0.3D .a 与a 6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“0cm ”和“3cm ”分别对应数轴上的3和0,那么刻度尺上“5.6cm ”对应数轴上的数为( )A . 1.4-B . 1.6-C . 2.6-D .1.67.观察下图,它的计算过程可以解释( )这一运算规律A .加法交换律B .乘法结合律C .乘法交换律D .乘法分配律8.如图,A 、B 两点在数轴上表示的数分别为a ,b ,有下列结论:①0a b -<;②0a b +>;③()()110b a -+>;④101b a ->-.其中正确的有( )个.A .4个B .3个C .2个D .1个9. 定义运算:()1a b a b Ä=-.下面给出了关于这种运算的几种结论:①()226Ä-=,②a b b a Ä=Ä,③若0a b +=,则()()2a a b b ab Ä+Ä=,④若0a b Ä=,则0a =或1b =,其中结论正确的序号是( )A .①④B .①③C .②③④D .①②④10.下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32´方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66´方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A .160B .128C .80D .48第II 卷二、填空题(本题共6小题,每小题3分,共18分.)11.甲地海拔高度为50-米,乙地海拔高度为65-米,那么甲地比乙地 .(填“高”或者“低”).12.绝对值大于1且不大于5的负整数有 .13.若2(21)a -与23b -互为相反数,则b a = .14.电影《哈利•波特》中,小哈利波特穿越墙进入“394站台”的镜头(如示意图的Q 站台),构思奇妙,能给观众留下深刻的印象.若A 、B 站台分别位于23-,83处,2AP PB =,则P 站台用类似电影的方法可称为“ 站台”.15.若2a b c d a b c d +++=,则abcd abcd 的值为 .16.如图,圆的周长为4个单位长度,在该圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示1-的点重合,再将圆沿着数轴向右滚动,则圆周上表示数字 的点与数轴上表示2023的点重合.三、解答题(本题共8小题,共72分.第17-18题每题6分,第19-20题每题8分,第21-22题每题10分,第23-24题每题12分,解答应写出文字说明、证明过程或演算步骤.)17.计算.(1)()()()()59463473---+--+(2)3112(3)(2)(4)(5)14263---+----18.计算:(1)134 2.5624æö´--+--ç÷èø;(2)()()241110.5233éù---´---ëû.19.如图,数轴上每个刻度为1个单位长度上点A 表示的数是3-.(1)在数轴上标出原点,并指出点B 所表示的数是 ;(2)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示的数为 ;(3)在数轴上表示下列各数,并用“<”号把这些数按从小到大连接起来.2.5,4-,152,122-,| 1.5|-,( 1.6)-+.20.(1)已知5a =,3b =,且a b b a -=-,求a b -的值.(2)已知a 和b 互为相反数,c 和d 互为倒数,x 的绝对值等于2,求式子: ()a b x a b cd cd+-+++的值.21.某风筝加工厂计划一周生产某种型号的风筝700只,平均每天生产100只,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(增产记为正、减产记为负);星期一二三四五六日增减5+2-4-13+6-6+3-(1)根据记录的数据,该厂生产风筝最多的一天是星期______;(2)产量最多的一天比产量最少的一天多生产多少只风筝?(3)该厂实行每周计件工资制,每生产一只风筝可得20元,若超额完成任务,则超过部分每只另奖5元;少生产一只扣4元,那么该厂工人这一周的工资总额是多少元?22.阅读下面材料:点A、B在数轴上分别表示数a、b.A、B两点之间的距离表示为|AB|.则数轴上A、B两点之间的距离|AB|=|a﹣b|.回答下列问题:(1)数轴上表示1和﹣3的两点之间的距离是 ;数轴上表示﹣2和﹣5的两点之间的距离是 ;(2)数轴上表示x和﹣1的两点A和B之间的距离是 ,如果|AB|=2,那么x为 ;(3)当|x+1|+|x﹣2|取最小值时,符合条件的整数x有 ;(4)令y=|x+1|+|x﹣2|+|x﹣3|,问当x取何值时,y最小,最小值为多少?请求解.23.观察下列三列数:1-、3+、5-、7+、9-、11+、……①3-、1+、7-、5+、11-、9+、……②3+、9-、15+、-、……③+、21-、27(1)第①行第10个数是,第②行第10个数是;(2)在②行中,是否存在三个连续数,其和为83?若存在,求这三个数;若不存在,说明理由;-,求k的值.(3)若在每行取第k个数,这三个数的和正好为10124.如图,数轴上有A ,B ,C 三个点,分别表示数208--,,16,有两条动线段PQ 和MN (点Q 与点A 重合,点N 与点B 重合,且点P 在点Q 的左边,点M 在点N 的左边),24PQ MN ==,,线段MN 以每秒1个单位的速度从点B 开始向右匀速运动,同时线段PQ 以每秒3个单位的速度从点A 开始向右匀速运动.当点Q 运动到点C 时,线段PQ 立即以相同的速度返回;当点Q 回到点A 时,线段PQ 、MN 同时停止运动.设运动时间为t 秒(整个运动过程中,线段PQ 和MN 保持长度不变).(1)当20t =时,点M 表示的数为 ,点Q 表示的数为 .(2)在整个运动过程中,当CQ PM =时,求出点M 表示的数.(3)在整个运动过程中,当两条线段有重合部分时,速度均变为原来的一半,当重合部分消失后,速度恢复,请直接写出当线段PQ 和MN 重合部分长度为1.5时所对应的t 的值.。
初一数学计算能力测试题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初一数学计算能力测试题(word 版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初一数学计算能力测试题(word版可编辑修改)的全部内容。
初一数学计算能力测试题班级_________ 姓名_____________ 成绩_________1、直接写出得数。
(20分)6÷1% = 65×0÷65= 1÷3×1÷3 = 10 +43×98= 10.8÷0。
9= 1。
5×0。
25= 50%×3.2= 143273⨯⨯= 2。
8÷0。
25= 1332-199= 2÷23131÷-= 11.25-41= 453+198= 10-0.03= 0.1÷0。
01= 9。
3×7.9≈ 4×0.025= 13÷1513= 4.5-0。
75-41= 5×4÷5×4=2、脱式计算(共27分)(1)181141714÷+⨯(2)72)8391125(⨯++ (3)420.5 - 294÷2。
8×2。
1(4)68÷[0.5×(7.5-0。
7)] (5).2.31567+-- (6))311()4381(-÷+(7)9.6-(4。
8+6.9)÷1.3 (8)⎪⎭⎫ ⎝⎛++⨯+⨯÷4131211223322 (9) ⎪⎭⎫⎝⎛-÷5465653、简便计算。
第十二届“五羊杯”初中数学竞赛试题初一试题 (1)第十二届“五羊杯”初中数学竞赛试题初二试题 (4)第十二届“五羊杯”初中数学竞赛试题初三试题 (8)第十三届“五羊杯”初中数学竞赛试题初一试题 (13)第十三届“五羊杯”初中数学竞赛试题初二试题 (17)第十三届“五羊杯”初中数学竞赛试题初三试题 (21)2002年第1 4届“五羊杯”数学竞赛初一试题 (27)2002年第1 4届“五羊杯”数学竞赛初二试题 (33)2002年第1 4届“五羊杯”数学竞赛初三试题 (39)2003年第15届“五羊杯”初中数学竞赛初一试题 (43)2003年第15届“五羊杯”初中数学竞赛初二试题 (47)2003年第15届“五羊杯”初中数学竞赛初三试题 (51)2004年第16届“五羊杯”初中数学竞赛初三试题 (57)第十二届“五羊杯”初中数学竞赛试题初一试题(考试时间:90分钟满分:100分)一、选择题(4选l型,选对得5分,否则得0分,本大题满分50分,)1,已知68 9□□□20 312≈690亿(四舍五入),那么其中的三位数□□□有( )种填写的方法.(A)1 000 (B)999 (C)500 (D)4992,8 642 097 53l,6 420 875 319,4 208 653 197,2 086 43l 975,864 219 753的平均数是( ).(A)4 444 455 555 (B)5 555 544 444(C)4 999 999 995 (D)5 999 999 9943.图中一共能数出( )个长方形(正方形也算作长方形)。
(A)64 (B)63 (C)60 (D)484.五羊牌电视机连续两次降价20%后,又再降价10%,或者连续两次降价25%,则前者的售价比后者的售价( ),(A)少2% (B)不多也不少 (C)多5% (D)多2.4%5.甲、乙两人在长400米的直路上来回慢跑,速度分别为3米/秒和2.5米/秒。
七年级数学第一章检测题(A卷)[原创]北师大-初中一年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载---------------------------------------七年级数学第一章检测题(A卷)(丰富的图形世界命题人:刘代荣)一、填空题1.圆柱的侧面展开图是__________ ,圆锥的侧面展开图是__________2.如果一个几何体的视图之一是三角形,这个几何体可能是___________(写出两个即可)3.用平行于圆锥的底面的平面去截圆锥,则得到的截面是________形4.假如我们把笔尖看作一个点,当笔尖在纸上移动时,就能画出线,说明了_________,时钟秒针旋转时,形成一个圆面,这说明了_______________,三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了___________________.5.如图5所示,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_______(填编号)6.能展开成如图6所示的几何体可能是____________7.在同一平面内用游戏棒搭4个大小一样的等边三角形,至少要________根游戏棒;在空间搭4个一样大小的等边三角形,至少要________根游戏棒8.要把一个长方体剪开展成平面图形,需要剪开________条棱。
9.如图,截去正方体一角变成一个多面体,这个多面体有____个面,____条棱,___个顶点。
10.在图中,三角形共有个。
二、选择题:1.下列说法中,正确的是()A、棱柱的侧面可以是三角形B、由六个大小一样的正方形所组成的图形是正方体的展开图C、正方体的各条棱都相等D、棱柱的各条棱都相等2.用一个平面去截一个正方体,截面不可能是()A、梯形B、五边形C、六边形D、圆3.下列立体图形中,有五个面的是()A、四棱锥B、五棱锥C、四棱柱D、五棱柱4.右边的正方形,六个面上分别写着六个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为7、10、11,则六个整数的和为()A、51B、52C、57D、585.从多边形的同一个顶点出发,分别连接其余各个顶点得到2003个三角形,则这个多边形的边数为()A、2001B、2005C、2004D、20066.如果你按照下面的步骤做,当你完成到第五步的时候,将纸展开,会得到图形()7. 右边的立体图形是由()图绕虚线旋转一而周形成的ABCD8.在图中,四个三角形均为等边三角形,将图形折叠,得到的立体图形是()A.三棱锥B.圆锥体C.棱锥体D.六面体9.下面的图形中,是三棱柱的侧面展开图的为()A.B.C.D.10.下列平面图形中不能围成正方体的是()A、B、C、D、三、画图题1.画出下列几何体的三种视图2.如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数。
绝密★启用前浙教版2018-2019学年初一数学竞赛试卷1题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共8小题,4*8=32)1.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()输入…12345…输出……A.B.C.D.2.在方格中,每个方格中除9、7外其余字母各表示一个数,已知其中任何3个连续方格中的数之和为19,则A+H+M+O等于()A.21 B.23 C.25 D.263.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣24.在代数式xy2z中,若x与y的值各减少25%,z的值增加25%,则代数式的值()A.减少B.减少C.减少D.减少5.如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点C.C点D.D点6.一种“拍7”的游戏规定:把从1起的自然数中含7的数称作“明7”,把7的倍数称作“暗7”,那么在1﹣100的自然数中,“明7”和“暗7”共有()A.22个B.29个C.30个D.31个7.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6 B.5 C.4 D.38.把四张大小相同的长方形卡片(如图①按图②、图③两种放在一个底面为长方形(长比宽多6cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长C2,图③中阴影部分的周长为C3,则()A.C2=C3B.C2比C3大12cmC.C2比C3小6cm D.C2比C3大3cm第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,4*8=32)9.在右图所示的4×4的方格中,记∠ABD=α,∠DEF=β,∠CGH=γ,则α,β,γ从小到大的排列顺序是.10.已知分式,当a、b扩大相同倍数时值不变,请你写出一个符合这一要求且与分母不同、只含字母a、b的分子来:.11.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是分钟.12.已知方程组有正整数解,则整数m的值为.13.一个盖着瓶盖的瓶子里面装着一些水(如图所示),请你根据图中标明的数据,则瓶子的容积为cm3.14.若x>1,y>0且满足xy=x y,,则x+y的值为.15.已知甲、乙、丙三个科技攻关小组各有人数若干.现根据不同阶段的工作需要对其人员进行调整,第一次,丙组不动,从剩下两组的一组中调8人到另一组;第二次,乙组不动,从剩下两组的一组中调8人到另一组;第三次,甲组不动,从剩下两组的一组中调7人到另一组.最后甲组有5人,乙组有14人,丙组有6人,那么原来人数最多一组是组,这组原来有人.16.由自然数组成的一列数:a1,a2,a3,…,满足a1<a2<a3<…<a n<…,当n≥1时,有a n+2=a n+1+a n,如果a6=74,则a7的值为.评卷人得分三.解答题(共6小题,56分)17.(8分)已知a+b+c=0,a2+b2+c2=1,求ab+bc+ca和a4+b4+c4的值.18.(8分)甲、乙、丙、丁四人的年龄的和是108岁,甲50岁时,乙38岁,甲34时,丙的年龄是丁的3倍,求丁现在的年龄.19.(10分)在平面上有9条直线,无任何3条交于一点,则这9条直线的位置关系如何?才能使它们的交点恰好是26个,画出所有可能的情况(要求用直尺画正确).20.(10分)一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?21.(10分)某出租汽车停车站已停有6辆出租汽车,第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆出租汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆,问:第一辆出租汽车开出后,经过最少多少时间,车站不能正点发车?22.(10分)有一堆糖果平均分给若干个小朋友,规定按下面的规则取,第一个小朋友取10颗,再取余下的;接着第二个小朋友取20颗,再取余下的;如此继续下去,最后糖果被全部取光,问原来有多少颗糖果?小朋友有多少人?参考答案与试题解析一.选择题(共8小题)1.小华利用计算机设计了一个计算程序,输入和输出的数据如下表:那么当输入数据是8时,输出的数据是()输入…12345…输出……A.B.C.D.【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【解答】解:输出数据的规律为,当输入数据为8时,输出的数据为=,故选:C.【点评】此题主要考查数字的规律性问题,根据已有输入输出数据找出它们的规律,进而求解.2.在方格中,每个方格中除9、7外其余字母各表示一个数,已知其中任何3个连续方格中的数之和为19,则A+H+M+O等于()A.21 B.23 C.25 D.26【分析】由于任何相邻三个数字的和都是19,可由O+X+7=19倒推,即可求解.【解答】解:由题意可得:因为O+X+7=19且M+O+X=19,所以M=7;因为A+9+H=19且9+H+M=19,所以A=7;因为H+M+O=19.所以求A+H+M+O的值为19+7=26.故选:D.【点评】本题主要考查了数字变化类的一些简单的问题,关键要熟练掌握此类问题的解法.3.如果a、b、c是非零实数,且a+b+c=0,那么的所有可能的值为()A.0 B.1或﹣1 C.2或﹣2 D.0或﹣2【分析】根据a、b、c是非零实数,且a+b+c=0可知a,b,c为两正一负或两负一正,按两种情况分别讨论代数式的可能的取值,再求所有可能的值即可.【解答】解:由已知可得:a,b,c为两正一负或两负一正.①当a,b,c为两正一负时:;②当a,b,c为两负一正时:.由①②知所有可能的值为0.应选A.【点评】本题考查了分式的化简求值,涉及到绝对值、非零实数的性质等知识点,注意分情况讨论未知数的取值,不要漏解.4.在代数式xy2z中,若x与y的值各减少25%,z的值增加25%,则代数式的值()A.减少B.减少C.减少D.减少【分析】根据题意得出x与y的值都变为原来的75%,即为原来的,z的值变为原来的125%即,然后把它们代入代数式xy2z中即可.【解答】解:由已知条件得:x与y的值都变为原来的75%,即为原来的,z的值变为原来的125%即,∴=,∴1﹣=,∴代数式的值减小.故选:D.【点评】本题考查了代数式的求值,解题的关键是找出x、y、z的变化,然后代入代数式再求值.5.如图,数轴上每个刻度为1个单位长度,点A对应的数为a,B对应的数为b,且b﹣2a=7,那么数轴上原点的位置在()A.A点B.B点C.C点D.D点【分析】本题可根据数轴,设出B点坐标,则A点坐标可表示出,然后再与b﹣2a=7联立,即可求得结果.【解答】解:根据数轴,设出B点坐标(b,0),则表示出A点(b﹣3,0),因此可得b﹣3=a,联立b﹣2a=7,解得b=﹣1,∴原点在C处.故选:C.【点评】本题考查数轴的基本概念,结合题中条件,进行分析,得出a,b之间的关系即可.6.一种“拍7”的游戏规定:把从1起的自然数中含7的数称作“明7”,把7的倍数称作“暗7”,那么在1﹣100的自然数中,“明7”和“暗7”共有()A.22个B.29个C.30个D.31个【分析】由题意得“明7”和“暗7”各有19个,14个,但既是明7,又是暗7,有3个,7,70,77,即可得出答案.【解答】解:明7一共有10+9=19个,7,17,27,37,47,57,67,77,87,97,70,71,72,73,74,75,76,78,79;暗7一共有14个,7,14,21,28,35,42,49,56,63,70,77,84,91,98,既是明7,又是暗7,3个,即7,70,77,∴共有19+14﹣3=30个.故选:C.【点评】本题考查的是有理数,是基础知识比较简单.7.李红与王英用两颗骰子玩游戏,但是她们别开生面,不用骰子上的数字.这两颗骰子的一些面涂上了红色,而其余的面则涂上了蓝色.两人轮流掷骰子,游戏规则如下:两颗骰子朝上的面颜色相同时,李红是赢家;两颗骰子朝上的面颜色相异时,王英是赢家.已知第一颗骰子各面的颜色为5红1蓝,如果要使两人获胜机会相等,那么第2颗骰子上蓝色的面数是()A.6 B.5 C.4 D.3【分析】据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:根据题意列表可得当第2颗骰子上蓝色的面数是3时,两人获胜的机会相等.故选D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.用到的知识点为:概率=所求情况数与总情况数之比.8.把四张大小相同的长方形卡片(如图①按图②、图③两种放在一个底面为长方形(长比宽多6cm)的盒底上,底面未被卡片覆盖的部分用阴影表示,若记图②中阴影部分的周长C2,图③中阴影部分的周长为C3,则()A.C2=C3B.C2比C3大12cmC.C2比C3小6cm D.C2比C3大3cm【分析】本题需先设小长方形的长为acm,宽为bcm,再结合图形分别得出图形②的阴影周长和图形③的阴影周长,比较后即可求出答案.【解答】解:设小长方形的长为acm,宽为bcm,大长方形的宽为xcm,长为(x+6)cm,∴②阴影周长为:2(x+6+x)=4x+12;∴③上面的阴影周长为:2(x﹣a+x+6﹣a),下面的阴影周长为:2(x+6﹣2b+x﹣2b),∴总周长为:2(x﹣a+x+6﹣a)+2(x+6﹣2b+x﹣2b)=4(x+6)+4x﹣4(a+2b),又∵a+2b=x+6,∴4(x+6)+4x﹣4(a+2b)=4x.∴C2比C3大12cm.故选:B.【点评】本题主要考查了整式的加减运算,在解题时要根据题意结合图形得出答案是解题的关键.二.填空题(共8小题)9.在右图所示的4×4的方格中,记∠ABD=α,∠DEF=β,∠CGH=γ,则α,β,γ从小到大的排列顺序是β<α<γ.【分析】根据网格,分别把α,β,γ分成两个角,然后与45°角的大小进行比较,从而即可得解.【解答】解:根据网格结构,∵∠DBM>45°,∠DFN=45°,∠ABM>∠FEN,∴∠DBM+∠ABM>∠DFN+∠FEN,即β<α,又∵∠CGH=90°,α<90°,∴α<γ,∴β<α<γ.故答案为:β<α<γ.【点评】本题利用网格考查了三角形的角的关系,把分成的角与45°角相比较是解题的关键.10.已知分式,当a、b扩大相同倍数时值不变,请你写出一个符合这一要求且与分母不同、只含字母a、b的分子来:ab.【分析】观察分式的分母,若a、b扩大相同倍数时,则分母扩大了这一倍数的平方,要使该分式的值不变,只需保证其分子也能扩大这一倍数的平方即可.【解答】解:根据分式的基本性质,则分子可以是ab.故答案为ab等.【点评】此题考查了分式的基本性质,要看已知的分母实际扩大的倍数.11.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是4分钟.【分析】根据路程=速度×时间,则此题中需要用到三个未知量:设车的速度是a,人的速度是b,每隔t分发一班车.然后根据追及问题和相遇问题分别得到关于a,b,t的方程,联立解方程组,利用约分的方法即可求得t.【解答】解:设车的速度是a,人的速度是b,每隔t分发一班车.二辆车之间的距离是:at车从背后超过是一个追及问题,人与车之间的距离也是:at那么:at=6(a﹣b)①车从前面来是相遇问题,那么:at=3(a+b)②①﹣②,得:a=3b所以:at=4at=4即车是每隔4分钟发一班.【点评】注意:此题中涉及了路程问题中的追及问题和相遇问题.考查了对方程的应用,解方程组的时候注意技巧.12.已知方程组有正整数解,则整数m的值为﹣1或0或5.【分析】先解方程组,用m表示出方程组的解,根据方程组有正整数解得出m的值.【解答】解:方程组,∴x+my﹣x﹣3=11﹣2y,解得:(m+2)y=14,y=,∵方程组有正整数解,∴m+2>0,m>﹣2,又x=,故22﹣3m>0,解得:m<,故﹣2<m<,整数m只能取﹣1,0,1,2,3,4,5,6,7.又x,y均为正整数,∴只有m=﹣1或0或5符合题意.故答案为:﹣1或0或5.【点评】本题考查了二元一次方程组的解,难度较大,关键是根据已知条件列出关于m的不等式.13.一个盖着瓶盖的瓶子里面装着一些水(如图所示),请你根据图中标明的数据,则瓶子的容积为60cm3.【分析】结合图形,知水的体积不变,从而根据第二个图空着的部分的高度是2cm,可以求得水与空着的部分的体积比为4:2=2:1.结合第一个图中水的体积,即可求得总容积.【解答】解:由已知条件知,第二个图上部空白部分的高为7﹣5=2cm,从而水与空着的部分的体积比为4:2=2:1.由第一个图知水的体积为10×4=40,所以总的容积为40÷2×(2+1)=60立方厘米.故答案为:60.【点评】此题的关键是解决不同底的问题,能够有机地把两个图形结合起来,求得水与空着的部分的体积比.14.若x>1,y>0且满足xy=x y,,则x+y的值为.【分析】首先将xy=x y变形,得y=x y﹣1,然后将其代入,利用幂的性质,即可求得y的值,则可得x的值,代入x+y求得答案.【解答】解:由题设可知y=x y﹣1,∴x=yx3y=x4y﹣1,∴4y﹣1=1,故y=,∴x=,解得x=4,于是x+y=4+=.故答案为:.【点评】此题考查了同底数幂的性质:如果两个幂相等,则当底数相同时,指数也相同,根据将xy =x y变形,得y=x y﹣1是解题关键.15.已知甲、乙、丙三个科技攻关小组各有人数若干.现根据不同阶段的工作需要对其人员进行调整,第一次,丙组不动,从剩下两组的一组中调8人到另一组;第二次,乙组不动,从剩下两组的一组中调8人到另一组;第三次,甲组不动,从剩下两组的一组中调7人到另一组.最后甲组有5人,乙组有14人,丙组有6人,那么原来人数最多一组是乙组,这组原来有15人.【分析】每个组调整了两次,可以发现最后的3个数字都比14小,所以不可能出现一个组增加14人,或者减少14人,根据丙组最后有6人,所以甲组不动时,只能是从丙组调7人到乙组,乙组不动时,只能是从甲组调8人到丙组,丙组不动时,只能是从乙组调8人到甲组,根据此调动方法分别求出甲、乙、丙三组原来的人数即可判断.【解答】解:∵8+8=16,8+7=15,而最后最多的乙组只有14人,∴每个组只能调出一次,掉进一次,又∵丙组最后有6人,∴甲组不动时,从丙组调7人到乙组,乙组不动时,从甲组调8人到丙组,丙组不动时,从乙组调8人到甲组,甲组调进8人,调出8人,人数不变,原来有5人,乙组调进7人,调出8人,人数减少1,原来有14+1=15人,丙组调进8人,调出7人,人数增加1,原来有6﹣1=5人,∴原来人数最多一组是乙组,这组原来有15人.故答案为:乙,15.【点评】本题考查了三元一次方程组的应用,正确分析理解题意,找出调整人数的顺序,得到各小组最后的人数与原来人数的变化关系是解题的关键.16.由自然数组成的一列数:a1,a2,a3,…,满足a1<a2<a3<…<a n<…,当n≥1时,有a n+2=a n+1+a n,如果a6=74,则a7的值为119或120.【分析】设a1=a,a2=b,然后根据规律表示出a6与a7,再根据a6=74求出二元一次方程的解a、b 的值,然后代入a7的表达式计算即可.【解答】解:设a1=a,a2=b,则:a3=a2+a1=a+b,a4=a3+a2=(a+b)+b=a+2b,a5=a4+a3=(a+2b)+(a+b)=2a+3b,a6=a5+a4=(2a+3b)+(a+2b)=3a+5b=74,a7=a6+a5=(3a+5b)+(2a+3b)=5a+8b,由3a+5b=74与a1<a2,解得a=3,b=13或a=8,b=10,∴a7=5a+8b=5×3+8×13=119,或a7=5a+8b=5×8+8×10=120.故答案为:119或120.【点评】本题考查了数字变化规律的问题,设出a1与a2是解题的突破口,根据规律表示出a6与a7并求解关于a、b的二元一次方程是解题的难点.三.解答题(共6小题)17.已知a+b+c=0,a2+b2+c2=1,求ab+bc+ca和a4+b4+c4的值.【分析】把a+b+c=0两边平方,根据多项式乘多项式的法则进行计算,然后再把a2+b2+c2=1代入即可求出ab+bc+ca=﹣;把ab+bc+ca=﹣两边平方并整理求出a2b2+b2c2+c2a2的值,再把a2+b2+c2=1两边平方并代入计算即可求解.【解答】解:a+b+c=0,两边平方得:a2+b2+c2+2ab+2bc+2ca=0,∵a2+b2+c2=1,∴1+2ab+2bc+2ca=0,∴ab+bc+ca=﹣;ab+bc+ca=﹣两边平方得:a2b2+b2c2+c2a2+2ab2c+2abc2+2a2bc=,即a2b2+b2c2+c2a2+2abc(a+b+c)=,∴a2b2+b2c2+c2a2=,∵a2+b2+c2=1,∴两边平方得:a4+b4+c4+2a2b2+2b2c2+2c2a2=1,∴a4+b4+c4=1﹣2(a2b2+b2c2+c2a2)=1﹣=.故答案为:﹣,.【点评】本题考查了完全平方公式的拓广,运用多项式的乘法法则进行计算即可,因运算量较大,要小心仔细运算,以避免出错.18.甲、乙、丙、丁四人的年龄的和是108岁,甲50岁时,乙38岁,甲34时,丙的年龄是丁的3倍,求丁现在的年龄.【分析】设甲、乙、丙、丁的现在年龄分别为a,b,c,d岁,根据甲、乙、丙、丁四人的年龄的和是108岁可得a+b+c+d=108,根据甲50岁时,乙38岁,可得a﹣b=12,根据甲34时,丙的年龄是丁的3倍,可得c﹣(a﹣34)=3[d﹣(a﹣34)],三式联立,逐步消元分离出d后即可得出答案.【解答】解:设甲、乙、丙、丁的现在年龄分别为a,b,c,d岁,由题意得:,由③得:2a+c﹣3d=68④,①+②得:2a+c+d=120⑤,⑤﹣④得:4d=52,故可得d=13,答:丁现在13岁.【点评】本题考查了多元一次方程组的知识,年龄问题是此类题目经常涉及的,像这样的含有四个未知元素,只有三个方程时,难点一般不在列方程,而在于通过消元,在消元前要仔细观察,有目的为之.19.在平面上有9条直线,无任何3条交于一点,则这9条直线的位置关系如何?才能使它们的交点恰好是26个,画出所有可能的情况(要求用直尺画正确).【分析】从平行线的角度考虑,先考虑二条直线都平行,再考虑三条、四条、五条平行,作出草图即可看出.【解答】解:这9条直线的位置关系为:两两相交或平行,有两种情况,分别如下:【点评】本题考查平行线与相交线的综合运用.注意运用分类讨论思想.20.一个盒子里装有不多于200颗糖,如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,如果每次11颗地取出,那么正好取完,求盒子里共有多少颗糖?【分析】根据题意可知盒内糖的颗数是11的倍数,因为如果每次2颗,3颗,4颗或6颗地取出,最终盒内都只剩一颗糖,所以盒内糖的颗数是奇数,分情况讨论是,只讨论11的奇数倍即可,确定最后结果是还要注意要不能被2、3、4、6整除.【解答】解:因为每次取11颗正好取完,所以盒内的糖果数必是11的倍数,而11的偶数倍,都能被2整除,所以不合题意,倍数列表如下:5倍7倍9倍11倍13倍15倍17倍19倍原数11557799121143165187209因为121﹣1=120,而120都能被2、3、4、6整除,所以盒子里共有121颗糖.【点评】此题主要考查了数的整除性在实际生活中的应用,体现了数学与生活的密切联系,应用了分类讨论思想.21.某出租汽车停车站已停有6辆出租汽车,第一辆出租车出发后,每隔4分钟就有一辆出租汽车开出,在第一辆汽车开出2分钟后,有一辆出租汽车进站,以后每隔6分钟就有一辆出租汽车回站,回站的出租汽车,在原有的出租汽车依次开出之后又依次每隔4分钟开出一辆,问:第一辆出租汽车开出后,经过最少多少时间,车站不能正点发车?【分析】易得6辆车全部开出需要20分钟的时间,进而得到从第五辆汽车回站就不能正点发车,依此可得最少时间.【解答】解:∵站内原有的6辆车全部开出用时为4×(6﹣1)=20分钟.此时站内又有出租车(20﹣2)÷6+1=4(辆)设再经过x分钟站内无车.+4=x=4848+20+4=72(分钟)答:经过至少72分钟站内无车.就不能正点发车.【点评】考查推理与论证;得到从第五辆汽车回站就不能正点发车,是解决本题的突破点.22.有一堆糖果平均分给若干个小朋友,规定按下面的规则取,第一个小朋友取10颗,再取余下的;接着第二个小朋友取20颗,再取余下的;如此继续下去,最后糖果被全部取光,问原来有多少颗糖果?小朋友有多少人?【分析】分别表示出2个小朋友所取走的糖果数,让其相等列式求得糖果数,进而算出每个小朋友获得的糖果数,让490除以每个小朋友获得的糖果数即为小朋友的个数.【解答】解:设共有y颗糖果,则第1个小朋友取走的糖果为10+颗,第二个小朋友取走的糖果为20+[y﹣10﹣()﹣20]×=20+颗;(3分)因为糖果是平均分配的,因此可得10+=20+(7分)解得y=490,(10分)每个小朋友分得10+60=70个糖果,有小朋友490÷70=7个.答:有490个糖果,7个小朋友.【点评】考查一元一次方程的应用;得到两个小朋友所取走的糖果数的关系式是解决本题的关键.。
卜人入州八九几市潮王学校银鹰文昌二零二零—二零二壹七年级数学上学期飞检测验试题一如图是一个正方体展开图,把展开图折叠成正方体后,“你〞字一面相对面上的字是()
两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,那么6条直线最多有多少个交点?请画图表示。
并写出n条直线最多有多少个交点?
3、小明在阅览时发现这样一个问题“在某次聚会中,一共有6人参加,假设每两人都握一次手,一共握几次手?〞,小明通过努力得出了答案.为理解决更一般的问题,小明设计了以下列图表进展探究:请你在图表右下角的横线上填上你归纳出的一般结论.
参加人数 2 3 4 5 …n
握手示意图
握手次数 1 2+1=3 3+2+1=6 4+3+2+1=10 …______
4、某公司员工分别住在A、B、C三个住宅区,A区有30人,B区有15人,C区有10人,三个区在同一条直线上,位置如下列图,该公司的接送车打算在此间只设一个停靠点,为使所有员工步行到停靠点的路程之和最小,那么停靠点的位置应设在〔〕
5、B,C是线段AD上的两点,M是线段AB的中点,N是线段CD的中点,假设MN=10,BC=4,求线段在AD的长。
6、线段AB=8,在直线AB上有一点C,且BC=4,M是线段AC的中点,求线段AM的长。
第五章一元一次方程(A 卷中档卷)注意事项:本试卷满分100分,试题共23题,选择10道.填空6道、解答7道 .答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 答题时间:60分钟一、选择题(本大题共10小题,每小题2分,共20分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·广东·东莞市虎门外语学校七年级期中)下列方程中,是一元一次方程的是( ) A .1x = B .21x y += C .221x x += D .120x-= 2.(2022·山东·德州市第五中学北校区七年级期中)下列说法中正确的是( )A .4y =是方程40y +=的解B .0.0001x =是方程2002x =的解C .3t =是方程30t -=的解D .1x =是方程212x x =-+的解 3.(2022·广东·测试·编辑教研五七年级期中)下列运用等式的性质,变形不正确的是( ) A .若x y =,则55x y +=+B .若a b =,则ac bc =C .若a b c c =,则a b =D .若x y =,则x y a a= 4.(2022·湖北武汉·七年级期中)在目前的疫情环境下,口罩成了人们生活中的必需品,现某口罩厂共有30名员工,每名员工每天可以生产150个罩面或600个耳绳.已知一个罩面需要配两个耳绳,为使每天生产的罩面和耳绳刚好配套,设安排x 名员工生产耳绳,则下面所列方程正确的是( )A .()150260030x x =⨯-B .()215060030x x ⨯=-C .()150302600x x -=⨯D .()215030600x x ⨯-=5.(2022·全国·七年级专题练习)方程21m x +=和3121x x -=+有相同的解,则m 的值为( ) A .0 B .1 C .2- D .12- 6.(2022·广东·丰顺县三友中学七年级阶段练习)如图,按此规律,第6行最后一个数字是16,第( )行最后一个数是2020.12343456745678910A .673B .674C .1008D .10107.(2022·广东·惠州市惠阳区凤凰山学校七年级阶段练习)方程2410.20.4x x -+-= 的解为( ) A .25x = B .425x = C .415x = D .10x = 8.(2022·全国·七年级专题练习)已知关于x 的一元一次方程126xax -=的解为偶数,则整数a 的值不可能是( )A .4B .2C .1D .09.(2022·浙江台州·七年级期末)习题:甲地到乙地全程是3.3km ,一段上坡、一段平路、一段下坡.如果保持上坡每小时走3km ,平路每小时走4km ,下坡每小时走5km ,那么从甲地到乙地需51min ,从乙地到甲地需53min .从甲地到乙地时,上坡、平路、下坡的路程各是多少?小红将这个实际问题转化为二元一次方程组问题,设未知数x ,y ,已经列出一个方程 3.35134560x y x y --++=,则另一个方程正确的是( ) A . 3.35334560x y x y --++= B . 3.35343560x y x y --++= C . 3.35354360x y x y --++= D . 3.35353460x y x y --++= 10.(2022·全国·七年级课时练习)在数轴上,点A 对应的数为a ,点B 对应的数为b ,且a ,b 满足2|5|(3)0a b ++-=.点P 为直线AB 上点B 右边的一点,且3AP PB ,点Q 为PB 中点,则线段AQ 的长为( )A .6B .8C .10D .15二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022·山东·宁津县张宅中学七年级期中)已知关于x 的方程(m +3)x |m +4|+18=0是一元一次方程,则m 的值是___________.12.(2022·广东·测试·编辑教研五七年级期中)解方程435x +=,则x =_______.13.(2022·江苏无锡·七年级期中)已知代数式3231ax bx x -+-,当2x =时,代数式的值为7,则2a b -的值为____________.14.(2022·山东·临沂实验中学七年级期中)下列各式中:①由34x =-系数化为1得34x =-;①由52x =-移项得52x =-;①由213132x x --=+去分母得()()221133x x -=+-;①由()()221331x x --+=去括号得42391x x ---=. 其中正确的有________.15.(2022·黑龙江·哈尔滨德强学校七年级期中)中国CBA 篮球常规赛比赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1-分,今年某队在全部38场比赛中得到67分,那么这个队今年胜______场.16.(2022·全国·七年级专题练习)如图,已知::3:2:4AB BC CD =,E 、F 分别是AB 和CD 中点,且 5.5cm EF =,则AD =________.三、解答题(本大题共7小题,共62分.解答时应写出文字说明、证明过程或演算步骤) 17.(2022·全国·七年级课时练习)若32132b a a b +-=+,利用等式的性质,比较a 与b 的大小.18.(2022·江苏扬州·七年级期中)下面是小明同学解方程的过程,请认真阅读并完成相应任务.任务: ①以上求解步骤中,第一步进行的是___________,这一步的依据是___________;①以上求解步骤中,第___________步开始出现错误,具体的错误是___________﹔①请直接写出该方程正确的解为___________.19.(2022·广东·测试·编辑教研五七年级期中)解方程:(1)242x x +=+;(2)223146x x +--=. 20.(2022·江西·赣州市厚德外国语学校七年级期中)计算:()32623⎛⎫-⨯-- ⎪⎝⎭■.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是12,请计算()3216232⎛⎫-⨯-- ⎪⎝⎭. (2)如果计算结果等于6,求被污染的数字.21.(2022·福建福州·七年级期中)定义一种新运算“”,其运算方式如下:3123313=⨯-⨯=,(4)(3)2(4)3(3)1--=⨯--⨯-=,1(2)213(2)8-=⨯-⨯-=,(5)42(5)3422-=⨯--⨯=-,⋅⋅⋅.观察式子的运算方式,请解决下列问题:(1)这种运算方式是:ab =______;(用含a ,b 的式子表示) (2)试比较()23x -与()23x -的大小;(3)若关于x 的方程()212kx -=-的解为正整数,求整数k 的值. 22.(2022·福建宁德·七年级期中)已知数轴上两点A ,B 表示的数分别为4-,2.(1)动点P 从A 出发,以每秒3个单位的速度沿数轴向右匀速运动.另一动点R 从B 出发,以每秒1个单位的速度沿数轴向右匀速运动,若点P 、R 同时出发,点P 运动 秒追上点R ,此时点P 在数轴上表示的数是 .(2)若点P 从A 出发,以每秒2个单位的速度沿数轴向右匀速运动,点R 从B 出发,以每秒1个单位的速度沿数轴向左匀速运动,设点P 、R 同时出发,运动时间为t 秒,试探究:t 为何值时,点P 、R 两点间的距离为4个单位?23.(2022·全国·七年级专题练习)列方程解应用题:一商场经销的A 、B 两种商品,A 种商品每件进价40元,利润率为50%;B 种商品每件进价50元,售价80元.(1)A 种商品每件售价为 元,每件B 种商品利润率为 %.(2)若该商场同时购进A 、B 两种商品共50件,恰好总进价为2100元,求购进A 种商品多少件?(3)在“春节”期间,该商场只对A 、B 两种商品进行如下的优惠促销活动: 按上述优惠条件,若小华一次性购买A 、B 商品实际付款522元,求若没有优惠促销,小华在该商场购买同样商品要付多少元?。