2020-2021深圳市景秀中学九年级数学下期中试卷附答案
- 格式:doc
- 大小:699.00 KB
- 文档页数:19
深圳市2021年4月初三数学下学期期中综合测试答案及评分深圳市初三综合测试数学评分参考_.04
第一部分选择题(本题共12小题,每小题3分,共36分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案 A C C
A
B D D B A C
D
C
第二部分非选择题
填空题(本题共4小题,每小题3分,共12分)
题号
13
14
15
16
答案
13
解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题7分,第21题9分,第22题8分,第23题9分,共52分)
19.(1)4,6…………………2分
(2)24,…………3分
(3):矩形的最高画在对应的空模数字8处 (5)
(4)32__247;80=0.4,0.4__215;2100=840(人)…………………6分
答:今年参加航模比赛的获奖人数约是840人.……………7分
(4)按解答题的要求给分,考生若直接写出结果且答案正确给1分.
20.解:过C作CD⊥AB…………………………1分
车辆安排的方案有3种,具体方案为:
①装运A种水果12辆汽车,装运B种水果6辆汽车,装运C种水果2辆汽车,
②装运A种水果13辆汽车,装运B种水果4辆汽车,装运C种水果3辆汽车,
③装运A种水果14辆汽车,装运B种水果2辆汽车,装运C种水果4辆汽车,……………………6分
←上一页
1
2
下一页→
上一篇:上海浦东新区_年高考语文预测试卷及答案
下一篇:深圳市_年4月初三历史与社会下学期期中综合测试答案及评分参考。
x x-1 m-1 x-1 1 2kx2020-2021学年度第二学期九年级数学期中测试卷题号 一 二 三 四 总分 评卷人 复核人本试卷满分150分(前三大题100分,第四大题50分)考试时间120分钟。
一、本大题有10个小题,每小题3分,共30分。
每小题给出的四个选项中只有一个是正确的,请将题后的代号填入题后的括弧内。
1、在代数式3m+n, -2mn, p, 0, 中单项式的个数为 ( ) A 、 5 B 、4 C 、3 D 、 22、下列选项中不是正六棱柱三视图的是 ( )A B C D3、若关于x 的方程 - =0有增根,则m 的值为 ( ) A 、 3 B 、 2 C 、 1 D 、 -14、函数y=√x-3中,自变量x 的取值范围是 ( ) A 、x>3 B 、x ≥3 C 、x>-3 D 、x ≥-35、1nm 为十亿分之一米,而个体中红细胞的直径约为 0.0000077m ,那么人体中红细胞直径的纳米数用科学记数法表示为 ( )A 、7.7×103mmB 、7.7×102mmC 、7.7×104mm D 、以上都不对 6、如图1,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12、BD=10、AB=m ,那么m 的取值范围是 ( )A 、1< m <11B 、2< m <22C 、10< m <12D 、5< m <67、一组数据的方差为s 2,将这组数据的每个数据 都乘以2,所得到的一组新数据的方差是 ( ) A 、 S 2B 、S 2C 、2S 2D 、4S 28、若一个圆的内接正三角形、正方形、正六边形的边心距分别为r 1,r 2,r 3,则r 1:r 2:r 3等于 ( )A 、1:2:3B 、 √3 :√2:1C 、1:√2:√3D 、3:2:1 9、如图2,在高为2m ,坡角为30°的楼梯上铺地毯,地毯的长度至少应计( ) A 、 4m B 、 6m C 、4√2m D 、 2+2√3m10在同一直角坐标系中,函数y =kx -k 与y= (k ≠0)的图象大致 ( )二、填空题:本大题共10个小题,每小题3分,共30分。
2020-2021九年级数学下期中试卷含答案(2)一、选择题1.已知4A 纸的宽度为21cm ,如图对折后所得的两个矩形都和原来的矩形相似,则4A 纸的高度约为( )A .29.7cmB .26.7cmC .24.8cmD .无法确定2.如图,在△ABC 中,DE ∥BC,12AD DB =,DE=4,则BC 的长是( )A .8B .10C .11D .12 3.如图,△ABC 中,AD 是中线,BC =8,∠B =∠DAC ,则线段 AC 的长为( )A .43B .42C .6D .44.如图,△OAB ∽△OCD ,OA :OC =3:2,∠A =α,∠C =β,△OAB 与△OCD 的面积分别是S 1和S 2,△OAB 与△OCD 的周长分别是C 1和C 2,则下列等式一定成立的是( )A .32OBCD = B .32αβ= C .1232S S = D .1232C C =5.如图,线段AB 两个端点的坐标分别为A (2,2)、B (3,1),以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD ,则端点C 的坐标分别为( )A .(4,4)B .(3,3)C .(3,1)D .(4,1)6.在同一直角坐标系中,函数k y x =和y=kx ﹣3的图象大致是( ) A . B . C .D .7.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡比1:3,则AC 的长是( )A .10米B .53米C .15米D .103米 8.如图,AB 是⊙O 的直径,弦CD 交AB 于点P ,AP=2,BP=6,∠APC=30°,则CD 的长为( )A 15B .5C .15D .89.图(1)所示矩形ABCD 中,BC x =,CD y =,y 与x 满足的反比例函数关系如图(2)所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( )A .当3x =时,EC EM <B .当9y =时,EC EM <C .当x 增大时,EC CF ⋅的值增大D .当x 增大时,BE DF ⋅的值不变10.若反比例函数2y x =-的图象上有两个不同的点关于y 轴的对称点都在一次函数y =-x +m 的图象上,则m 的取值范围是( ) A .22m >B .-22m <C .22-22m m >或<D .-2222m <<11.如图,在△ABC 中,M 是AC 的中点,P ,Q 为BC 边上的点,且BP=PQ=CQ ,BM 与AP ,AQ 分别交于D ,E 点,则BD ∶DE ∶EM 等于A .3∶2∶1B .4∶2∶1C .5∶3∶2D .5∶2∶112.如图,一张矩形纸片ABCD 的长BC =xcm ,宽AB =ycm ,以宽AB 为边剪去一个最大的正方形ABEF ,若剩下的矩形ECDF 与原矩形ABCD 相似,则x y的值为( )A .51-B .51+C .2D .21+ 二、填空题13.若点A(m ,2)在反比例函数y =的图象上,则当函数值y≥-2时,自变量x 的取值范围是____.14.在▱ABCD 中,E 是AD 上一点,且点E 将AD 分为2:3的两部分,连接BE 、AC 相交于F ,则AEF CBF S S ∆∆:是_______.15.如图,矩形ABCD 中,AD=2,AB=5,P 为CD 边上的动点,当△ADP 与△BCP 相似时,DP=__.16.如图,在平面直角坐标系中,点A 是函数k y x=(x <0)图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若△ABC 的面积为1,则k 的值为 ______ .17.如图所示,在Rt △ABC 中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).18.已知点P 在线段AB 上,且AP :BP=2:3,那么AB :PB=_____.19.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为________.(结果保留π)20.已知线段AB 的长为10米,P 是AB 的黄金分割点(AP >BP ),则AP 的长_____米.(精确到0.01米)三、解答题21.如图,在平面直角坐标系中,每个小方格都是边长为1个单位的小正方形,点A 、B 、C 都是格点(每个小方格的顶点叫格点),其中()A 1,8,()B 3,8,()C 4,7. ()1ABC V 外接圆的圆心坐标是______;()2ABC V 外接圆的半径是______;()3已知ABC V 与DEF(V 点D 、E 、F 都是格点)成位似图形,则位似中心M 的坐标是______;()4请在网格图中的空白处画一个格点111A B C V ,使111A B C V ∽ABC V ,且相似比为2:1.22.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己的影长FG =4m .如果小华的身高为1.5m ,求路灯杆AB 的高度.23.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC 中,点O 在线段BC 上,∠BAO=30°,∠OAC=75°,AO=33,BO :CO=1:3,求AB 的长.经过社团成员讨论发现,过点B 作BD ∥AC ,交AO 的延长线于点D ,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC ⊥AD ,AO=33,∠ABC=∠ACB=75°,BO :OD=1:3,求DC 的长.24.如图所示,双曲线()10,0k y x k x=>>与直线()20y kx b k =+≠(b 为常数)交于()2,4A ,(),2B a 两点.(1)求双曲线()10,0k y x k x=>>的表达式; (2)根据图象观察,当21y y <时,求x 的取值范围;(3)求AOB ∆的面积.25.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,垂足为点D ,AN 是ABC V 外角CAM ∠的平分线,CE AN ⊥,垂足为点E ,连接DE 交AC 于点F .() 1求证:四边形ADCE 为矩形;()2当ABC V 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.()3在()2的条件下,若AB AC 22==,求正方形ADCE 周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】设A4纸的高度为xcm ,对折后的矩形高度为2x cm ,然后根据相似多边形的对应边成比例列方程求解.【详解】设A4纸的高度为xcm ,则对折后的矩形高度为2x cm , ∵对折后所得的两个矩形都和原来的矩形相似, ∴21=212x x解得29.7=≈x故选A.【点睛】本题考查相似多边形的性质,熟记相似多边形对应边成比例,找到对应边列出方程是关键. 2.D解析:D【解析】【分析】 根据AD DB =12,可得AD AB =13,再根据DE ∥BC ,可得DE BC =AD AB ; 接下来根据DE=4,结合上步分析即可求出BC 的长.【详解】 ∵AD DB =12, ∴AD AB =13, ∵在△ABC 中,DE ∥BC , ∴DE BC =AD AB =13. ∵DE=4,∴BC=3DE=12.故答案选D.【点睛】 本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.3.B解析:B【解析】【分析】由已知条件可得ABC DAC ~V V ,可得出AC BC DC AC=,可求出AC 的长. 【详解】解:由题意得:∠B =∠DAC ,∠ACB =∠ACD,所以ABC DAC ~V V ,根据“相似三角形对应边成比例”,得AC BC DC AC=,又AD 是中线,BC =8,得DC=4,代入可得AC= 故选B.【点睛】 本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.4.D解析:D【解析】A 选项,在△OAB ∽△OCD 中,OB 和CD 不是对应边,因此它们的比值不一定等于相似比,所以A 选项不一定成立;B 选项,在△OAB ∽△OCD 中,∠A 和∠C 是对应角,因此αβ=,所以B 选项不成立; C 选项,因为相似三角形的面积比等于相似比的平方,所以C 选项不成立;D 选项,因为相似三角形的周长比等于相似比,所以D 选项一定成立.故选D.5.A解析:A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C 点坐标.【详解】∵以原点O 为位似中心,在第一象限内将线段AB 扩大为原来的2倍后得到线段CD , ∴A 点与C 点是对应点,∵C 点的对应点A 的坐标为(2,2),位似比为1:2,∴点C 的坐标为:(4,4)故选A .【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.6.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k ≠0,所以分k >0和k <0两种情况讨论.当两函数系数k 取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k >0时,y =kx ﹣3与y 轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k <0时,y =kx ﹣3与y 轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A 符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.7.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1:3;∴AC=BC÷tanA=53米;故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.8.C解析:C【解析】【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA-AP=2,接着在Rt△OPH中根据含30°的直角三角形的性质计算出OH=12OP=1,然后在Rt△OHC中利用勾股定理计算出CH=15,所以CD=2CH=215.【详解】作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH=12OP=1,在Rt△OHC中,∵OC=4,OH=1,∴∴故选C.【点睛】本题主要考查圆中的计算问题,熟练掌握垂径定理、含30°的直角三角形的性质以及勾股定理等知识点,掌握数形结合的思想是解答的关键9.D解析:D【解析】【分析】由于等腰直角三角形AEF的斜边EF过C点,则△BEC和△DCF都是直角三角形;观察反比例函数图像得出反比例函数解析式为y=9x;当x=3时,y=3,即BC=CD=3,根据等腰直角三角形的性质得,CF=3,则C点与M点重合;当y=9时,根据反比例函数的解析式得x=1,即BC=1,CD=9,所以,而;利用等腰直角三角形的性质BE•DF=BC•CD=xy,然后再根据反比例函数的性质得BE•DF=9,其值为定值;由于x=2xy,其值为定值.【详解】解:因为等腰直角三角形AEF的斜边EF过C点,M为EF的中点,所以△BEC和△DCF都是直角三角形;观察反比例函数图像得x=3,y=3,则反比例解析式为y=9x.A、当x=3时,y=3,即BC=CD=3,所以,,C点与M点重合,则EC=EM,所以A选项错误;B、当y=9时,x=1,即BC=1,CD=9,所以,,,所以B选项错误;C、因为x y=2×xy=18,所以,EC•CF为定值,所以C选项错误;D、因为BE•DF=BC•CD=xy=9,即BE•DF的值不变,所以D选项正确.故选:D.【点睛】本题考查了动点问题的函数图像:先根据几何性质得到与动点有关的两变量之间的函数关系,然后利用函数解析式和函数性质画出其函数图像,注意自变量的取值范围.10.C解析:C【解析】【分析】根据题意可知反比例函数2yx=-的图象上的点关于y轴的对称的点在函数2yx=上,由此可知反比例函数2yx=的图象与一次函数y=-x+m的图象有两个不同的交点,继而可得关于x的一元二次方程,再根据根的判别式即可求得答案.【详解】∵反比例函数2yx=-上有两个不同的点关于y轴对称的点在一次函数y=-x+m图象上,∴反比例函数2yx=与一次函数y=-x+m有两个不同的交点,联立得2yxy x m⎧=⎪⎨⎪=-+⎩,消去y得:2x mx=-+,整理得:220x mx-+=,∵有两个不同的交点∴220x mx-+=有两个不相等的实数根,∴△=m2-8>0,∴22m>或-22m<,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,关于x轴、y轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.11.C解析:C【解析】【分析】过A作AF∥BC交BM延长线于F,设BC=3a,则BP=PQ=QC=a;根据平行线间的线段对应成比例的性质分别求出BD、BE、BM的长度,再来求BD,DE,EM三条线段的长度,即可求得答案.【详解】过A作AF∥BC交BM延长线于F,设3BC a=,则BP PQ QC a ===;∵AM CM =,AF ∥BC , ∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP , ∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC , ∴313BM BC a MF AF a===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.12.B解析:B【解析】【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD 是矩形,∴AD =BC =xcm ,∵四边形ABEF 是正方形,∴EF =AB =ycm ,∴DF =EC =(x ﹣y )cm ,∵矩形FDCE 与原矩形ADCB 相似,∴DF :AB =CD :AD , 即:x y y y x-= ∴x y =5+12, 故选B .【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.二、填空题13.x≤-2或x >0【解析】【分析】先把点A (m2)代入解析式得A(22)再根据反比例函数的对称性求出A 点关于原点的对称点A (-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A (解析:x≤-2或x >0【解析】【分析】先把点A (m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A 点关于原点的对称点A ’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A (m,2)代入y =,得A (2,2),∵点A (2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x 的取值范围为x≤-2或x >0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性. 14.或【解析】【分析】分两种情况根据相似三角形的性质计算即可【详解】解:①当时∵四边形ABCD 是平行四边形②当时同理可得故答案为:或【点睛】考查的是相似三角形的判定和性质平行四边形的性质掌握相似三角形的 解析:425:或925:【解析】【分析】分2332AE ED AE ED :=:、:=:两种情况,根据相似三角形的性质计算即可.【详解】解:①当23AE ED :=:时,∵四边形ABCD 是平行四边形,//25AD BC AE BC ∴,:=:,AEF CBF ∴∆∆∽,224255AEF CBF S S ∆∆∴:=()=:; ②当32AE ED :=:时,同理可得,239255AEF CBF S S ∆∆:=()=:, 故答案为:425:或925:.【点睛】考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.15.1或4或25【解析】【分析】需要分类讨论:△APD∽△PBC 和△PAD∽△PBC 根据该相似三角形的对应边成比例求得DP 的长度【详解】设DP=x 则CP=5-x 本题需要分两种情况情况进行讨论①当△PAD解析:1或4或2.5. 【解析】【分析】 需要分类讨论:△APD ∽△PBC 和△PAD ∽△PBC ,根据该相似三角形的对应边成比例求得DP 的长度.【详解】设DP=x ,则CP=5-x ,本题需要分两种情况情况进行讨论,①、当△PAD ∽△PBC 时,AD BC =DP CP∴225x x=-,解得:x=2.5; ②、当△APD ∽△PBC 时,AD CP =DP BC,即25x -=2x , 解得:x=1或x=4,综上所述DP=1或4或2.5【点晴】本题主要考查的就是三角形相似的问题和动点问题,首先将各线段用含x 的代数式进行表示,然后看是否有相同的角,根据对应角的两边对应成比例将线段写成比例式的形式,然后分别进行计算得出答案.在解答这种问题的时候千万不能出现漏解的现象,每种情况都要考虑到位. 16.-2【解析】【分析】根据已知条件得到三角形ABC 的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC的面积=1•=12AB OB,得到|k|=2,即可得到结论.【详解】解:∵AB⊥y轴,∴AB∥CO,∴111•1222ABCS AB OB x y k====g三角形,∴2k=,∵0k<,∴2k=-,故答案为:-2.【点睛】本题考查了反比例函数系数k的几何意义,明确1•=12ABCS AB OB=V是解题的关键.17.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式解析:4 () 5n【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n个正方形的边长.【详解】解:如下图所示,∵四边形DCEF是正方形,∴DF∥CE,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x 解得x 2=x 12 同理可得,113231,-=-x x x x x 解得:33121==x x x x以此类推,第n 个正方形的边长1n 45=⎛⎫= ⎪⎝⎭nn x x . 故答案为:4()5n 【点睛】 本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系.18.5:3【解析】【详解】试题解析:由题意AP :BP=2:3AB :PB=(AP+PB ):PB=(2+3):3=5:3故答案为5:3解析:5:3【解析】【详解】试题解析:由题意AP :BP=2:3,AB :PB=(AP+PB ):PB=(2+3):3=5:3.故答案为5:3.19.24π【解析】解:由图可知圆柱体的底面直径为4高为6所以侧面积=4π×6=24π故答案为24π点睛:本题考查了立体图形的三视图和学生的空间想象能力圆柱体的侧面积公式根据主视图判断出圆柱体的底面直径与解析:24π【解析】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4π×6=24π.故答案为24π.点睛:本题考查了立体图形的三视图和学生的空间想象能力,圆柱体的侧面积公式,根据主视图判断出圆柱体的底面直径与高是解题的关键.20.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设AP 为x 米根据题意得整理得x2+10x ﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x=5﹣5是原方程的解析:18【解析】【分析】根据黄金分割定义:AP BPAB AP=列方程即可求解.【详解】解:设AP为x米,根据题意,得x10 10x x -=整理,得x2+10x﹣100=0解得x1=55﹣5≈6.18,x2=﹣55﹣5(不符合题意,舍去)经检验x=55﹣5是原方程的根,∴AP的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.三、解答题21.(1)(2,6);(2)5; (3)(3,6) ;(4)见解析.【解析】【分析】(1)根据作图,结合网格特点解答;(2)根据线段垂直平分线的性质和三角形的外接圆的概念解答;(3)根据位似变换和位似中心的概念解答;(4)根据相似三角形的对应边的比相等,都等于相似比解答.【详解】解:(1)如图1,由作图可知△ABC外接圆的圆心坐标是(2,6),故答案为(2,6);(2)作AB、BC的垂直平分线交于G,连接AG,根据网格特点可知,点G的坐标为(2,6),则AG=22=5,12则△ABC外接圆的半径是5,故答案为5;(3)如图2,连接BE、FC,根据网格特点,BE与FC交于点M,点M的坐标为(3,6),根据位似中心的概念可知,位似中心M的坐标是(3,6),故答案为(3,6);(4)由网格特点可知,AB=2,BC=2,AC=10,∵△A1B1C1∽△ABC,且相似比为2:1,∴A1B1=22,B1C1=2,A1C1=25,所求的△A1B1C1如图3.【点睛】本题考查的是格点正方形、锐角三角函数的定义、位似变换与位似中心与相似三角形的性质,掌握如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段互相平行,这两个图形是位似图形是解题的关键.22.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF , ∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7,∴3437DB BD =++, ∴BD =9,BF =9+3=12, ∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.23.(1)75;32)13【解析】【分析】(1)根据平行线的性质可得出∠ADB=∠OAC=75°,结合∠BOD=∠COA 可得出△BOD ∽△COA ,利用相似三角形的性质可求出OD 的值,进而可得出AD 的值,由三角形内角和定理可得出∠ABD=75°=∠ADB ,由等角对等边可得出3解;(2)过点B 作BE ∥AD 交AC 于点E ,同(1)可得出3Rt △AEB 中,利用勾股定理可求出BE 的长度,再在Rt △CAD 中,利用勾股定理可求出DC 的长,此题得解.【详解】解:(1)∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴13 OD OBOA OC==.又∵AO=33,∴OD=13AO=3,∴AD=AO+OD=43.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°-∠BAD-∠ADB=75°=∠ADB,∴AB=AD=43.(2)过点B作BE∥AD交AC于点E,如图所示.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴BO EO BE DO AO DA==.∵BO:OD=1:3,∴13 EO BEAO DA==.∵3,∴3∴3∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(32+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt △CAD 中,AC 2+AD 2=CD 2,即82+122=CD 2,解得:CD=413. 【点睛】 本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD 的值;(2)利用勾股定理求出BE 、CD 的长度.24.(1)18y x =;(2)02x <<或4x >;(3)6. 【解析】【分析】(1)把点A 坐标代入反比例函数解析式即可求得k 的值;(2)根据点B 在双曲线上可求出a 的值,再结合图象确定双曲线在直线上方的部分对应的x 的值即可;(3)先利用待定系数法求出一次函数的解析式,再用如图的△AOC 的面积减去△BOC 的面积即可求出结果.【详解】解(1):双曲线()10,0k y x k x=>>经过()2,4A ,∴248k =⨯=, ∴双曲线的解析式为18y x =. (2)∵双曲线()10,0k y x k x =>>经过(),2B a 点, ∴82a=,解得4a =,∴()4,2B , 根据图象观察,当21y y <时,x 的取值范围是02x <<或4x >.(3)设直线AB 的解析式为y mx n =+,∴2442m n m n +=⎧⎨+=⎩,解得16m n =-⎧⎨=⎩, ∴直线AB 的解析式为6y x =-+,∴直线AB 与x 轴的交点()6,0C ,∴AOB AOC BOC S S S ∆∆∆=-116462622=⨯⨯-⨯⨯=. 【点睛】 本题是反比例函数与一次函数的综合题,重点考查了待定系数法求函数的解析式、一次函数与反比例函数的交点问题和三角形的面积计算,属于中档题型,熟练掌握一次函数与反比例函数的基本知识是解题的关键.25.(1)证明见解析;(2)BAC 90∠=o 且AB AC =时,四边形ADCE 是一个正方形;证明见解析;(3)8;【解析】【分析】( 1 )根据等腰三角形的性质,可得 ∠ CAD=12∠ BAC ,根据等式的性质,可得∠CAD+ ∠CAE=12( ∠BAC+ ∠CAM )=90°,根据垂线的定义,可得∠ADC=∠CEA ,根据矩形的判定,可得答案;( 2 )根据等腰直角三角形的性质,可得AD 与CD 的关系,根据正方形的判定,可得答案;( 3 )根据勾股定理,可得AD 的长,根据正方形周长公式,可得答案.【详解】()1∵AB AC =,AD BC ⊥,垂足为点D , ∴1CAD BAC 2∠∠=. ∵AN 是ABC V 外角CAM ∠的平分线, ∴1CAE CAM 2∠∠=. ∵BAC ∠与CAM ∠是邻补角,∴BAC CAM 180∠∠+=o , ∴()1CAD CAE BAC CAM 902∠∠∠∠+=+=o . ∵AD BC ⊥,CE AN ⊥,∴ADC CEA 90∠∠==o ,∴四边形ADCE 为矩形;(2)BAC 90∠=o 且AB AC =时,四边形ADCE 是一个正方形,∵BAC 90∠=o 且AB AC =,AD BC ⊥, ∴1CAD BAC 452∠∠==,ADC 90∠=o , ∴ACD CAD 45∠∠==o ,∴AD CD =.∵四边形ADCE为矩形,∴四边形ADCE为正方形;()3由勾股定理,得=,=,AD CDAB=,=,AD2=⨯=.正方形ADCE周长4AD428【点睛】本题考查了的正方形的判定与性质,(1)利用了等腰三角形的性质,矩形的判定;(2)利用了正方形的判定;(3)利用了勾股定理,正方形的周长,灵活运用是关键.。
2020-2021初三数学下期中试题(附答案)一、选择题1.若点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)都在反比例函数1y x =-的图象上,并且x 1<0<x 2<x 3,则下列各式中正确的是( )A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 3<y 1<y 2 2.如果反比例函数y =k x (k≠0)的图象经过点(﹣3,2),则它一定还经过( ) A .(﹣12,8) B .(﹣3,﹣2) C .(12,12) D .(1,﹣6) 3.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 坐标为(5,0),则点A 的坐标为( )A .(2,5)B .(2.5,5)C .(3,5)D .(3,6)4.在Rt ABC ∆中,90,2,1C AC BC ∠=︒==,则cos A 的值是( )A .255B .55C .52D .125.如图,河坝横断面迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高3m BC =,则坡面AB 的长度是( ).A .9mB .6mC .63mD .33m6.在函数y =21a x +(a 为常数)的图象上有三个点(﹣1,y 1),(﹣14,y 2),(12,y 3),则函数值y 1、y 2、y 3的大小关系是( )A .y 2<y 1<y 3B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 3<y 1<y 2 7.在△ABC 中,若=0,则∠C 的度数是( )A.45°B.60°C.75°D.105°8.如果两个相似三角形对应边之比是1:3,那么它们的对应中线之比是()A.1:3B.1:4C.1:6D.1:99.在同一直角坐标系中,函数kyx和y=kx﹣3的图象大致是()A.B.C.D.10.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺11.如图,已知△ABC的三个顶点均在格点上,则cosA的值为()A.33B5C.33D2512.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A .12B .24C .14D .13二、填空题13.如图,矩形ABOC 的面积为3,反比例函数y =k x的图象过点A ,则k =_____.14.如图,在平面直角坐标系内有一点()5,12P ,那么OP 与x 轴正半轴的夹角α的余弦值为______.15.利用标杆CD 测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E .若标杆CD 的高为1.5米,测得DE =2米,BD =16米,则建筑物的高AB 为_____米.16.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心,若AB=2,则DE=______.17.如图,在2×2的网格中,以顶点O 为圆心,以2个单位长度为半径作圆弧,交图中格线于点A ,则tan ∠ABO 的值为_____.18.如图,点A 在双曲线y =6x (x >0)上,过点A 作AB ⊥x 轴于点B ,点C 在线段AB 上且BC :CA =1:2,双曲线y =k x (x >0)经过点C ,则k =_____.19.如图所示的网格是正方形网格,点P 到射线OA 的距离为m ,点P 到射线OB 的距离为n ,则m __________ n .(填“>”,“=”或“<”)20.已知点P 在线段AB 上,且AP :BP=2:3,那么AB :PB=_____.三、解答题21.如图,在△ABC 中,BC =6,sin A =35,∠B =30°,求AC 和AB 的长.22.如图,一棵大树在一次强台风中折断倒下,未折断树杆AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树杆AB 形成53︒的夹角.树杆AB 旁有一座与地面垂直的铁塔DE ,测得6BE =米,塔高9DE =米.在某一时刻的太阳照射下,未折断树杆AB 落在地面的影子FB 长为4米,且点F 、B 、C 、E 在同一条直线上,点F 、A 、D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1,参考数据:sin530.7986︒≈,cos530.6018︒≈,tan53 1.3270︒≈).23.如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.24.如图,点C、D在线段AB上,△PCD是等边三角形,且CD2=AD•BC.(1)求证:△APD∽△PBC;(2)求∠APB的度数.25.如图,在正方形ABCD中,点M、N分别在AB、BC上,AB=4,AM=1,BN=3 4 .(1)求证:ΔADM∽ΔBMN;(2)求∠DMN的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣1x中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.2.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.3.B解析:B【解析】试题分析:∵以原点O为位似中心,在第一象限内,将线段CD放大得到线段AB,∴B点与D点是对应点,则位似比为5:2,∵C (1,2),∴点A 的坐标为:(2.5,5)故选B .考点:位似变换;坐标与图形性质.4.A解析:A【解析】【分析】根据勾股定理,可得AB 的长,根据余弦函数等于邻边比斜边,可得答案.【详解】如图,在Rt △ABC 中,∠C=90°,由勾股定理,得 22=5AC BC +∴cosA=2555AC AB ==, 故选A .【点睛】本题考查了锐角三角函数的定义以及勾股定理,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.B解析:B【解析】 由图可知,:3BC AC =tan 3BAC ∠=, ∴30BAC ∠=︒, ∴36m 1sin 302BC AB ===︒. 故选B . 6.A解析:A【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y 1,y 2,y 3的大小关系即可.【详解】∵反比例函数的比例系数为a2+1>0,∴图象的两个分支在一、三象限,且在每个象限y随x的增大而减小.∵﹣114-<<0,∴点(﹣1,y1),(14-,y2)在第三象限,∴y2<y1<0.∵12>0,∴点(12,y3)在第一象限,∴y3>0,∴y2<y1<y3.故选A.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.7.C解析:C【解析】【分析】根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【详解】由题意,得 cosA=,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.8.A解析:A【解析】∵两个相似三角形对应边之比是1:3,∴它们的对应中线之比为1:3.故选A.点睛: 本题考查相似三角形的性质,相似三角形的对应边、对应周长,对应高、中线、角平分线的比,都等于相似比,掌握相似三角形的性质及灵活运用它是解题的关键.9.A解析:A【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论.当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限,没有图像符合要求;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,A符合要求.故选A.【点睛】本题考查了反比例函数的图象性质和一次函数的图象性质,关键是由k的取值确定函数所在的象限.10.B解析:B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x=,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.11.D解析:D【解析】【分析】【详解】过B点作BD⊥AC,如图,由勾股定理得,AB=221310+=,AD=222222+=,cosA=ADAB=2210=25,故选D.12.D 解析:D【解析】【分析】过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.【详解】过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB=13 CDBD,∴tanB′=tanB=13.故选D.【点睛】本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.二、填空题13.-3【解析】【分析】根据比例系数k的几何含义:在反比例函数y=的图象中任取一点过这一个点向x轴和y轴分别作垂线与坐标轴围成的矩形的面积是定值|k|即可解题【详解】解:∵矩形ABOC的面积为3∴|k|解析:-3【解析】【分析】根据比例系数k的几何含义:在反比例函数y=kx的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|即可解题.【详解】解:∵矩形ABOC的面积为3,∴|k|=3.∴k=±3.又∵点A在第二象限,∴k<0,∴k=−3.故答案为:−3.【点睛】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,属于简单题,熟悉反比例函数的图像和性质是解题关键.14.【解析】【详解】如图过点P作PA⊥x轴于点A∵P(512)∴OA=5PA=12由勾股定理得OP=∴故填:【点睛】此题考查锐角三角函数的定义先构建直角三角形确定边长即可得到所求的三角函数值解析:5 13【解析】【详解】如图,过点P作PA⊥x轴于点A,∵P(5,12),∴OA=5,PA=12,由勾股定理得OP=222251213OA PA+=+=,∴5 cos13OAOPα==,故填:5 13.【点睛】此题考查锐角三角函数的定义,先构建直角三角形,确定边长即可得到所求的三角函数值. 15.5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD 的长即可【详解】解:∵AB∥CD∴△EBA∽△ECD∴即∴AB=135(米)故答案为:135【点睛】此题主要考查相似三角形的性质解题解析:5【解析】【分析】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可.【详解】解:∵AB∥CD,∴△EBA∽△ECD,∴CD EDAB EB=,即1.52216AB=+,∴AB=13.5(米).故答案为:13.5【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定与性质.16.6【解析】【分析】利用位似的性质得到AB:DE=OA:OD然后把OA=1OD=3 AB=2代入计算即可【详解】解:∵△ABC与△DEF位似原点O是位似中心∴AB:DE=OA:OD即2:DE=1:3∴D解析:6【解析】【分析】利用位似的性质得到AB:DE=OA:OD,然后把OA=1,OD=3,AB=2代入计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,∴AB:DE=OA:OD,即2:DE=1:3,∴DE=6.故答案是:6.【点睛】考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.17.2+3【解析】【分析】连接OA过点A作AC⊥O B于点C由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB﹣OC=2﹣3在Rt△ABC中根据tan∠ABO=ACBC可得答案【详解解析:2+.【解析】【分析】连接OA,过点A作AC⊥OB于点C,由题意知AC=1、OA=OB=2,从而得出OC==、BC=OB﹣OC=2﹣,在Rt△ABC中,根据tan∠ABO=可得答案.【详解】如图,连接OA,过点A作AC⊥OB于点C,则AC=1,OA=OB=2,∵在Rt△AOC中,OC==,∴BC=OB﹣OC=2﹣,∴在Rt△ABC中,tan∠ABO==2+.故答案是:2+.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO为内角的直角三角形是解题的关键.18.2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论【详解】解:连接OC∵点A在双曲线y=(x>0)上过点A作AB⊥x轴于点B∴S△OAB=×6=3∵BC:CA=1:2∴S△OBC=3×=1解析:2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论.【详解】解:连接OC,∵点A在双曲线y=6x(x>0)上,过点A作AB⊥x轴于点B,∴S△OAB=12×6=3,∵BC:CA=1:2,∴S△OBC=3×13=1,∵双曲线y=kx(x>0)经过点C,∴S△OBC=12|k|=1,∴|k|=2,∵双曲线y=kx(x>0)在第一象限,∴k=2,故答案为2.【点睛】本题考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,熟练掌握反比例函数系数k的几何意义是解题的关键.19.>【解析】【分析】由图像可知在射线上有一个特殊点点到射线的距离点到射线的距离于是可知利用锐角三角函数即可判断出【详解】由题意可知:找到特殊点如图所示:设点到射线的距离点到射线的距离由图可知【点睛】本 解析:>【解析】【分析】由图像可知在射线OP 上有一个特殊点Q ,点Q 到射线OA 的距离2QD =,点Q 到射线OB 的距离1QC =,于是可知AOP BOP ∠>∠ ,利用锐角三角函数sin sin AOP BOP ∠>∠ ,即可判断出m n >【详解】 由题意可知:找到特殊点Q ,如图所示:设点Q 到射线OA 的距离QD ,点Q 到射线OB 的距离QC由图可知2QD =1QC =∴ 2sin QD AOP OP ∠==1sin QC BOP OP OP ∠== ∴sin sin AOP BOP ∠>∠,∴m n OP OP> ∴m n >【点睛】本题考查了点到线的距离,熟知在直角三角形中利用三角函数来解角和边的关系是解题关键.20.5:3【解析】【详解】试题解析:由题意AP :BP=2:3AB :PB=(AP+PB ):PB=(2+3):3=5:3故答案为5:3解析:5:3【解析】【详解】试题解析:由题意AP :BP=2:3,AB :PB=(AP+PB ):PB=(2+3):3=5:3.故答案为5:3.三、解答题21.AC =5.AB =4+33.【解析】【分析】过点C 作CD ⊥AB 于点D ,在Rt △BCD 中利用锐角三角函数和勾股定理求出CD 、BD ,然后在Rt △ACD 中,利用锐角三角函数和勾股定理求出AC 、AD,即可.【详解】 解:如图,过点C 作CD ⊥AB 于点D ,在Rt △BCD 中,sinB =sin30°=12=CD BC . ∴CD =12×6=3,BD =32BC =3, 在Rt △ACD 中,sinA =CD AC =35, ∴AC =53CD =5. ∴AD 22AC CD -2253-4,∴AB =AD+BD=3【点睛】本题考查了锐角三角函数和勾股定理.构造直角三角形是解决本题的关键.22.9.6米.【解析】试题分析:要求这棵大树没有折断前的高度,只要求出AB 和AC 的长度即可,根据题目中的条件可以求得AB 和AC 的长度,即可得到结论.试题解析:解:∵AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE ,∴△F AB ∽△FDE ,∴AB FB DE FE = ,∵FB =4米,BE =6米,DE =9米,∴4946AB =+,得AB =3.6米,∵∠ABC =90°,∠BAC =53°,cos ∠BAC =AB AC ,∴AC =cos AB BAC ∠ =3.60.6=6米,∴AB +AC =3.6+6=9.6米,即这棵大树没有折断前的高度是9.6米.点睛:本题考查直角三角形的应用,解题的关键是明确题意,找出所求问题需要的条件,利用锐角三角函数进行解答.23.(1)证明见解析;(2)BP=25 3.【解析】【分析】(1)由题意可得∠ABC=∠ACB,∠DPC=∠BAP,可证△ABP∽△PCD;(2))由△ABP∽△PCD,可得PC ABCD BP=,由PD∥AB,可得PC BCCD AC=,即AB BCBP AC=,可求BP的长.【详解】(1)∵AB=AC,∴∠ABC=∠ACB.∵∠APC=∠ABC+∠BAP,∴∠APD+∠DPC=∠ABC+∠BAP,且∠APD=∠B,∴∠DPC =∠BAP且∠ABC=∠ACB,∴△BAP∽△CPD.(2)∵△ABP∽△PCD,∴PC CDAB BP=即PC ABCD BP=.∵PD∥AB,∴PC CDBC AC=即PC BCCD AC=,∴AB BCBP AC=,∴101210BP=,∴BP253=.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,熟练掌握相似三角形的性质是本题的关键.24.(1)见解析;(2)120°【解析】【分析】(1)CD2=AD•BC可得AD:PC=PD:BC,又由△PCD是等边三角形,所以可求出∠ADP=∠BCP=120°,进而证明△ACP∽△PDB;(2)由△APD∽△PBC,可得∠APD=∠B,则可求得∠APB的大小.【详解】(1)证明:∵△PCD是等边三角形,∴PD=PC=DC,∠PDC=∠PCD=60°,∴∠ADP=∠BCP=120°,∵CD2=AD•BC,∴AD:PC=PD:BC,∴△APD∽△PBC;(2)∵△APD∽△PBC,∴∠APD=∠B,∵∠B+∠BPC=60°,∴∠APD+∠BPC=60°,∴∠APB=60°+∠DPC=120°.【点睛】本题考查了相似三角形的判定和性质,等边三角形的性质,熟练掌握相似三角形的性质是解题的关键.25.(1)见解析;(2)90°【解析】【分析】(1)根据43ADMB=,43AMBN=,即可推出AD AMMB BN=,再加上∠A=∠B=90°,就可以得出△ADM∽△BMN;(2)由△ADM∽△BMN就可以得出∠ADM=∠BMN,又∠ADM+∠AMD=90°,就可以得出∠AMD+∠BMN=90°,从而得出∠DMN的度数.【详解】(1)∵AD=4,AM=1∴MB=AB-AM=4-1=3∵43ADMB=,14334AMBN==∴AD AM MB BN=又∵∠A=∠B=90°∴ΔADM∽ΔBMN(2)∵ΔADM∽ΔBMN∴∠ADM=∠BMN∴∠ADM+∠AMD=90°∴∠AMD+∠BMN=90°∴∠DMN=180°-∠BMN-∠AMD=90°【点睛】本题考查了正方形的性质的运用,相似三角形的判定及性质的运用,解答时证明△ADM∽△BMN是解答的关键.。
2020-2021九年级数学下期中试卷附答案(1)一、选择题1.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB .则cos ∠AOB 的值等于( )A .B .C .D .2.如图,平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交y=3x (x >0)、y=k x(x <0)的图象于B 、C 两点,若△ABC 的面积为2,则k 值为( )A .﹣1B .1C .12-D .12 3.如图,直线12y x b =-+与x 轴交于点A ,与双曲线4(0)y x x =-<交于点B ,若2AOB S ∆=,则b 的值是( )A .4B .3C .2D .14.如图,已知DE∥BC,CD 和BE 相交于点O ,S △DOE :S △COB =4:9,则AE :EC 为( )A .2:1B .2:3C .4:9D .5:45.如图,在正方形ABCD中,N为边AD上一点,连接BN.过点A作AP⊥BN于点P,连接CP,M为边AB上一点,连接PM,∠PMA=∠PCB,连接CM,有以下结论:①△PAM∽△PBC;②PM⊥PC;③M、P、C、B四点共圆;④AN=AM.其中正确的个数为()A.4B.3C.2D.16.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米7.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数kyx= (x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k的值是( )A.92B.74C.245D.128.若反比例函数2yx=-的图象上有两个不同的点关于y轴的对称点都在一次函数y=-x+m的图象上,则m的取值范围是()A.22m>B.-22m<C.22-22m m>或<D.-2222m<<9.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m10.如图所示,在△ABC 中,AB=6,AC=4,P 是AC 的中点,过 P 点的直线交AB 于点Q,若以 A、P、Q 为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ 的长为 ( )A.3B.3或43C.3或34D.4311.如图,河堤横断面迎水坡AB的坡比是1:3,堤高BC=12m,则坡面AB的长度是()A.15m B.203m C.24m D.103m12.如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.△PAB∽△PCA B.△ABC∽△DBA C.△PAB∽△PDA D.△ABC∽△DCA 二、填空题13.若反比例函数y=﹣的图象经过点A(m,3),则m的值是_____.14.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.15.如图,是由一些大小相同的小正方体搭成的几何体分别从正面看和从上面看得到的平面图形,则搭成该几何体的小正方体最多是_______个.16.如图,点A在双曲线y=2x上,点B在双曲线y=5x上,且AB∥y轴,C,D在y轴上,若四边形ABCD为平行四边形,则它的面积为________.17.如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为__时,△ADP和△ABC相似.18.如图,点A在双曲线y=6x(x>0)上,过点A作AB⊥x轴于点B,点C在线段AB上且BC:CA=1:2,双曲线y=kx(x>0)经过点C,则k=_____.19.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC 以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q 分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.20.已知一个反比例函数的图象经过点(2,3)--,则这个反比例函数的表达式为________.三、解答题21.如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作AD∥BC,与∠ABC的平分线交于点D ,BD 与AC 交于点E ,与⊙O 交于点F .(1)求∠DAF 的度数;(2)求证:AE 2=EF•ED ;22.如图,在ABC V 中,AB AC =,点E 在边BC 上移动(点E 不与点B ,C 重合),满足DEF B ∠=∠,且点D 、F 分别在边AB 、AC 上.(1)求证:BDE CEF △∽△.(2)当点E 移动到BC 的中点时,求证:FE 平分DFC ∠.23.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,其边长为2,点A ,点C 分别在轴,轴的正半轴上.函数2y x =的图象与CB 交于点D ,函数k y x=(k 为常数,0k ≠)的图象经过点D ,与AB 交于点E ,与函数2y x =的图象在第三象限内交于点F ,连接AF 、EF .(1)求函数k y x=的表达式,并直接写出E 、F 两点的坐标. (2)求△AEF 的面积. 24.如图,在平面直角坐标系xOy 中,直线y =x +b 与双曲线y =k x相交于A ,B 两点, 已知A (2,5).求:(1)b 和k 的值;(2)△OAB 的面积.25.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.2.A解析:A【解析】【分析】连接OC、OB,如图,由于BC∥x轴,根据三角形面积公式得到S△ACB=S△OCB,再利用反比例函数系数k的几何意义得到12×|3|+12•|k|=2,然后解关于k的绝对值方程可得到满足条件的k的值.【详解】连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=12×|3|+12•|k|,∴12×|3|+12•|k|=2,而k<0,∴k=﹣1,故选A.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k|,且保持不变.3.D解析:D 【解析】因为直线12y x b =-+与x 轴交于点A ,所以令y =0,可得:1 02x b -+=,解得2x b =, 则OA =2b ,又因为2AOB S ∆=,所以B 点纵坐标是:2b ,因为B 点在4(0)y x x =-<,所以B 点坐标为(-2b ,2b ),又因为B 点在直线12y x b =-+上,所以()2122b b b =-⨯-+,解得1b =±,因为直线12y x b =-+与y 轴交于正半轴,所以0b >,所以1b =,故选D. 4.A解析:A【解析】试题解析:∵ED ∥BC ,.DOE COB AED ACB ∴V V V V ∽,∽:4:9DOE BOC DOE COB S S V V Q V V ∽,,=:2:3.ED BC ∴=AED ACB QV V ∽,::.ED BC AE AC ∴=:2:3,?::ED BC ED BC AE AC Q ,==:2:3AE AC ∴=,:2:1.AE EC ∴=故选A.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.5.A解析:A【解析】【分析】根据互余角性质得∠PAM =∠PBC ,进而得△PAM ∽△PBC ,可以判断①;由相似三角形得∠APM =∠BPC ,进而得∠CPM =∠APB ,从而判断②;根据对角互补,进而判断③;由△APB ∽△NAB 得AP AN BP AB=,再结合△PAM ∽△PBC 便可判断④. 【详解】解:∵AP ⊥BN ,∴∠PAM+∠PBA =90°,∵∠PBA+∠PBC =90°,∴∠PAM =∠PBC ,∵∠PMA =∠PCB ,∴△PAM ∽△PBC ,故①正确;∵△PAM∽△PBC,∴∠APM=∠BPC,∴∠CPM=∠APB=90°,即PM⊥PC,故②正确;∵∠MPC+∠MBC=90°+90°=180°,∴B、C、P、M四点共圆,∴∠MPB=∠MCB,故③正确;∵AP⊥BN,∴∠APN=∠APB=90°,∴∠PAN+∠ANB=90°,∵∠ANB+∠ABN=90°,∴∠PAN=∠ABN,∵∠APN=∠BPA=90°,∴△PAN∽△PBA,∴AN PA BA PB=,∵△PAM∽△PBC,∴Al AP BC BP=,∴AN AM AB BC=,∵AB=BC,∴AM=AN,故④正确;故选:A.【点睛】本题考查了相似三角形的判定和性质,正方形的性质、四点共圆,同角的余角相等,判断出PM⊥PC是解题的关键.6.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC 的长.【详解】Rt △ABC 中,BC=5米,tanA=1;∴AC=BC÷ 故选:B .【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.7.C解析:C【解析】【分析】设B 点的坐标为(a ,b ),由BD=3AD ,得D (4a ,b ),根据反比例函数定义求出关键点坐标,根据S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE = 9求出k.【详解】 ∵四边形OCBA 是矩形,∴AB=OC ,OA=BC ,设B 点的坐标为(a ,b ),∵BD=3AD ,∴D (4a ,b ), ∵点D ,E 在反比例函数的图象上, ∴4ab =k , ∴E (a ,k a ), ∵S △ODE =S 矩形OCBA -S △AOD -S △OCE -S △BDE =ab-12•4ab -12•4ab -12•34a •(b-k a)=9, ∴k=245, 故选:C【点睛】 考核知识点:反比例函数系数k 的几何意义. 结合图形,分析图形面积关系是关键.8.C解析:C【解析】【分析】 根据题意可知反比例函数2y x =-的图象上的点关于y 轴的对称的点在函数2y x =上,由此可知反比例函数2y x=的图象与一次函数y=-x+m 的图象有两个不同的交点,继而可得关于x 的一元二次方程,再根据根的判别式即可求得答案.【详解】 ∵反比例函数2y x =-上有两个不同的点关于y 轴对称的点在一次函数y =-x +m 图象上, ∴反比例函数2y x=与一次函数y =-x +m 有两个不同的交点, 联立得2y x y x m⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=,∵有两个不同的交点∴220x mx -+=有两个不相等的实数根,∴△=m 2-8>0,∴m >m <故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.9.D解析:D【解析】【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【详解】∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE=, ∵DF=50cm=0.5m ,EF=30cm=0.3m ,AC=1.5m ,CD=20m ,∴由勾股定理求得DE=40cm , ∴200.30.4BC =, ∴BC=15米, ∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m .【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.10.B解析:B【解析】 AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜交型”的相似三角形,有“反A 共角型”、“反A 共角共边型”、 “蝶型”,如下图:11.C解析:C【解析】【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】解:Rt△ABC中,BC=12cm,tanA=1:3;∴AC=BC÷tanA=123cm,∴AB=2212(123)=24cm.故选:C.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.12.B解析:B【解析】【分析】根据相似三角形的判定,采用排除法,逐条分析判断.【详解】∵∠APD=90°,而∠P AB≠∠PCA,∠PBA≠∠P AC,∴无法判定△P AB与△PCA相似,故A错误;同理,无法判定△P AB与△PDA,△ABC与△DCA相似,故C、D错误;∵∠APD=90°,AP=PB=BC=CD,∴AB=P A,AC=P A,AD=P A,BD=2P A,∴=,∴,∴△ABC∽△DBA,故B正确.故选B.【点睛】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.二、填空题13.﹣2【解析】∵反比例函数y=-6x的图象过点A(m3)∴3=-6m解得=-2解析:﹣2【解析】∵反比例函数的图象过点A(m,3),∴,解得.14.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.15.7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体然后进一步计算即可得出答案【详解】根据俯解析:7【解析】【分析】首先利用从上面看而得出的俯视图得出该几何体的第一层是由几个小正方体组成,然后进一步根据其从正面看得出的主视图得知其第二层最多可以放几个小正方体,然后进一步计算即可得出答案.【详解】根据俯视图可得出第一层由5个小正方体组成;再结合主视图,该正方体第二层最多可放2个小正方体,+=,∴527∴最多是7个,故答案为:7.【点睛】本题主要考查了三视图的运用,熟练掌握三视图的特性是解题关键.16.3【解析】试题分析:由AB∥y轴可知AB两点横坐标相等设A(m)B(m)求出AB=﹣=再根据平行四边形的面积公式进行计算即可得=•m=3考点:反比例函数系数k的几何意义解析:3【解析】试题分析:由AB∥y轴可知,A、B两点横坐标相等,设A(m,2m),B(m,5m),求出AB=5m﹣2m=3m,再根据平行四边形的面积公式进行计算即可得ABCDSY=3m•m=3.考点:反比例函数系数k的几何意义17.4或9【解析】当△ADP∽△ACB时需有∴解得AP=9当△ADP∽△ABC时需有∴解得AP=4∴当AP的长为4或9时△ADP和△ABC相似解析:4或9.【解析】当△ADP∽△ACB时,需有AP ADAB AC=,∴6128AP=,解得AP=9.当△ADP∽△ABC时,需有AP ADAC AB=,∴6812AP=,解得AP=4.∴当AP的长为4或9时,△ADP和△ABC相似.18.2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论【详解】解:连接OC∵点A在双曲线y=(x>0)上过点A作AB⊥x轴于点B∴S△OAB=×6=3∵BC:CA=1:2∴S△OBC=3×=1解析:2【解析】【分析】根据反比例函数系数k的几何意义即可得到结论.【详解】解:连接OC,∵点A在双曲线y=6x(x>0)上,过点A作AB⊥x轴于点B,∴S△OAB=12×6=3,∵BC:CA=1:2,∴S△OBC=3×13=1,∵双曲线y=kx(x>0)经过点C,∴S△OBC=12|k|=1,∴|k|=2,∵双曲线y=kx(x>0)在第一象限,∴k=2,故答案为2.【点睛】本题考查了反比例函数的图象与性质,反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,熟练掌握反比例函数系数k的几何意义是解题的关键.19.8或【解析】【分析】根据题意可分两种情况①当CP和CB是对应边时△CPQ∽△CBA与②CP和CA是对应边时△CPQ∽△CAB根据相似三角形的性质分别求出时间t即可【详解】①CP和CB是对应边时△CP解析:8或64 11【解析】【分析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以CPCB=CQCA,即16216t-=12t,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以CPCA=CQCB,即16212t-=16t,解得t=64 11.综上所述,当t=4.8或6411时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.20.【解析】【分析】把已知点的坐标代入可求出k 值即得到反比例函数的解析式【详解】设这个反比例函数的表达式为了则所以这个反比例函数的表达式为故答案是:【点睛】考查的是用待定系数法求反比例函数的解析式解题关 解析:6y x =【解析】【分析】把已知点的坐标代入可求出k 值,即得到反比例函数的解析式.【详解】 设这个反比例函数的表达式为了(0)k y k x=≠,则 (2)(3)6k =-⨯-=, 所以这个反比例函数的表达式为6y x =. 故答案是:6y x=. 【点睛】考查的是用待定系数法求反比例函数的解析式,解题关键是设关系式、再将已知点坐标代入,从而求解即可. 三、解答题21.(1)36°;(2)证明见解析【解析】【分析】(1)求出∠ABC 、∠ABD 、∠CBD 的度数,求出∠D 度数,根据三角形内角和定理求出∠BAF 和∠BAD 度数,即可求出答案;(2)求出△AEF ∽△DEA ,根据相似三角形的性质得出即可.【详解】(1)∵AD ∥BC ,∴∠D=∠CBD ,∵AB=AC ,∠BAC=36°,∴∠ABC=∠ACB=12×(180°﹣∠BAC )=72°, ∴∠AFB=∠ACB=72°,∵BD 平分∠ABC , ∴∠ABD=∠CBD=12∠ABC=12×72°=36°, ∴∠D=∠CBD=36°, ∴∠BAD=180°﹣∠D ﹣∠ABD=180°﹣36°﹣36°=108°,∠BAF=180°﹣∠ABF ﹣∠AFB=180°﹣36°﹣72°=72°,∴∠DAF=∠DAB ﹣∠FAB=108°﹣72°=36°;(2)∵∠CBD=36°,∠FAC=∠CBD ,∴∠FAC=36°=∠D , ∵∠AED=∠AEF ,∴△AEF ∽△DEA , ∴AE ED EF AE =, ∴AE 2=EF×ED. 【点睛】 本题考查了圆周角定理,三角形内角和定理,等腰三角形的性质等知识点,能综合运用定理进行推理是解此题的关键.22.见解析【解析】试题分析:(1)由三角形内角和定理可得:∠BDE=180°-∠B-∠DEB ,∠CEF=180°-∠DEF-∠DEB ,结合∠B=∠DEF ,可得∠BDE=∠CEF ;由AB=AC 可得∠B=∠C ,由此即可证得:△BDE ∽△CEF ;(2)由(1)中结论:△BDE ∽△CEF 可得:BE DE CF EF=,结合BE=EC 可得:CE DE CF EF=,再结合∠C=∠B=∠DEF ,证得:△DEF ∽△ECF ,由此可得∠DFE=∠EFC ,从而得到结论EF 平分∠DFC.试题解析:(1)∵AB AC =,∴B C ∠=∠,∵180BDE B DAB ∠=︒-∠-∠,180CEF DEF DEB ∠=︒-∠-∠,∵DEF B ∠=∠,∴BDE CEF ∠=∠,BDE CEF V V ∽.(2)∵BDE CEF V V ∽,∴BE DE CF EF=, ∵E 是BC 中点,BE CE =, ∴CE DE CF EF=, ∵DEF B C ∠=∠=∠,∴DEF ECF V V ∽,∴DFE CFE ∠=∠,∴EF 平分DFC ∠.23.(1)2y x =,E (2,1),F (-1,-2);(2)32. 【解析】【分析】(1)先得到点D 的坐标,再求出k 的值即可确定反比例函数解析式;(2)过点F 作FG ⊥AB ,与BA 的延长线交于点G .由E 、F 两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF 的面积.【详解】解:(1)∵正方形OABC 的边长为2,∴点D 的纵坐标为2,即y=2,将y=2代入y=2x ,得到x=1,∴点D 的坐标为(1,2). ∵函数k y x =的图象经过点D ,∴21k =,∴k=2, ∴函数k y x=的表达式为2y x =. (2)过点F 作FG ⊥AB ,与BA 的延长线交于点G .根据反比例函数图象的对称性可知:点D 与点F 关于原点O 对称∴点F 的坐标分别为(-1,-2),把x=2代入2y x=得,y=1; ∴点E 的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF 的面积为:12AE•FG=131322⨯⨯=.24.(1)b=3,k=10;(2)S △AOB =212. 【解析】(1)由直线y=x+b 与双曲线y=k x相交于A 、B 两点,A (2,5),即可得到结论; (2)过A 作AD⊥x 轴于D ,BE⊥x 轴于E ,根据y=x+3,y=10x,得到(-5,-2),C (-3,0).求出OC=3,然后根据三角形的面积公式即可得到结论. 解:(1)把()2,5A 代入y x b =+.∴52b =+∴3b =.把()2,5A 代入k y x =,∴52k =, ∴10k =.(2)∵10y x =,3y x =+. ∴103x x=+时,2103x x =+, ∴12x =,25x =-.∴()5,2B --.又∵()3,0C -,∴AOB AOC BOC S S S =+V V V 353222⨯⨯=+ 10.5=. 25.(1)画图见解析,(2,-2);(2)画图见解析,(1,0);【解析】【分析】(1)将△ABC 向下平移4个单位长度得到的△A 1B 1C 1,如图所示,找出所求点坐标即可;(2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,如图所示,找出所求点坐标即可.【详解】(1)如图所示,画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是(2,-2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为(1)(2,-2);(2)(1,0)【点睛】此题考查了作图-位似变换与平移变换,熟练掌握位似变换与平移变换的性质是解本题的关键.。
一、选择题1.如图,已知点D ,E 是AB 的三等分点,DF ,EG 将ABC 分成三部分,且////DF EG BC ,图中三部分的面积分别为1S ,2S ,3S ,则123::S S S 的值为( )A .1:2:3B .1:2:4C .1:3:5D .2:3:42.如图,在平行四边形ABCD 中,:2:1AE BE =,F 是AD 的中点,射线EF 与AC 交于点G ,与CD 的延长线交于点P,则AGGC的值为( ).A .5:8B .3:8C .3:5D .2:53.如图,在ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①12DE BC =;②12S S =△DOE △COB ;③AD OE AB OB=;④16ODE ADC S S =△△.其中结论正确的是( ).A .①②B .①③C .①②③D .①③④4.如图,在四边形ABCD 中,对角线BD 平分∠ABC ,∠DBC =30°,∠BAD =∠BDC =90°,E 为BC 的中点,AE 与BD 相交于点F ,若CD =2,则BF 的长为( )A .235B .233C .635D .4355.△ABC 与△DBC 如图放置,已知,∠ABC =∠BDC =90°,∠A =60°,BD =CD =22,将△ABC 沿BC 方向平移至△A'B'C'位置,使得A'C 边恰好经过点D ,则平移的距离是( )A .1B .22﹣2C .23﹣2D .26﹣46.已知P 是线段AB 的黄金分割点,且51AB =+,则AP 的长为( ).A .2B .51-C .2或51-D .35-7.如图,正方形ABCD 的顶点A 的坐标为()1,0-,点D 在反比例函数my x=的图象上,B 点在反比例函数3y x=的图像上,AB 的中点E 在y 轴上,则m 的值为( )A .-2B .-3C .-6D .-88.已知0k >,函数y kx k =+和函数ky x=在同一坐标系内的图象大致是( ) A . B .C .D .9.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数y =kx的图象上,OA =1,OC =6,则正方形ADEF 的边长为( )A .1.5B .1.8C .2D .无法求10.已知二次函数2y ax bx c =++的图象如图,则一次函数y ax bc =+与反比例函数abcy x=在平面直角坐标系中的图象可能是( ).A .B .C .D .11.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,112.如图,点A 是反比例函数y =kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4二、填空题13.如图,把正ABC ∆沿AB 边平移到''A B C '的位置,它们的重叠部分(即图中阴影部分)的面积是ABC ∆的面积的一半,若23AB =,则此三角形平移距离'CC 的长度是_________.14.如图,⊙O 的直径为5,在⊙O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A ,B 重合),过C 作CP 的垂线CD 交PB 的延长线于D 点.则△PCD 的面积最大为______________.15.如图,在直角三角形ABC 中,90,C AD ︒∠=是BAC ∠的平分线,且35,22CD DB ==,则AB =____.16.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB =2m ,它的影子BC =1.5m ,木竿PQ 的影子有一部分落在了墙上,PM =1.2m ,MN =0.8m ,则木竿PQ 的长度为_______m .17.若函数2y x =与24y x =--的图像的交点坐标为(,)a b , 则12a b+的值是______. 18.如图,已知反比例函数y =kx(x >0)与正比例函数y =x (x ≥0)的图象,点A (1,4),点A '(4,b )与点B '均在反比例函数的图象上,点B 在直线y =x 上,四边形AA 'B 'B 是平行四边形,则B 点的坐标为______.19.已知点A (-1,2)在反比例函数1m y x-=的图象上,则m =_____________. 20.从﹣3,﹣2,﹣1,0,1,2这6个数中任意取出一个数记作k ,则既能使函数y =k x的图象经过第一、第三象限,又能使关于x 的一元二次方程x 2﹣kx +1=0有实数根的概率为_____.参考答案三、解答题21.如图1,ABC 与ADE 中,90ACB AED ∠=∠=︒,连接BD 、CE ,EAC DAB ∠=∠.(1)求证:BAD CAE ∽; (2)已知4BC =,3AC =,32AE =.将AED 绕点A 旋转,当C 、E 、D 三点共线时,如图2,求BD 的长.22.如图,在平面直角坐标系xOy 中,OAB 如图放置,点P 是AB 边上的一点,过点P 的反比例函数(0,0)ky k x x=>>与OA 边交于点E ,连接OP .(1)如图1,若点A 的坐标为(3,4),点B 的坐标为(5,0),且OPB △的面积为5,求直线AB 和反比例函数的解析式;(2)如图2,若60AOB ︒∠=,过P 作//PC OA ,与OB 交于点C ,若12PC OE =,并且OPC 33,求OE 的长. (3)在(2)的条件下,过点P 作//PQ OB ,交OA 于点Q ,点M 是直线PQ 上的一个动点,若OEM △是以OE 为直角边的直角三角形,则点M 的坐标为______. 23.如图,AB 是O 的直径,BC 是弦,OD BC 于点E ,交弧BC 于点D .(1)判断OE 与AC 的数量关系并证明; (2)若26BC =2ED =O 的半径.24.如图,已知一次函数12y x b=+的图象与反比例函数()0ky xx=<的图象交于点A(-1,2)和点B.(1)求b和k的值;(2)请求出点B的坐标,并观察图象,直接写出关于x的不等式12kx bx+>的解集;(3)若点P在y轴上一点,当PA PB+最小时,求点P的坐标.25.已知:如图,一次函数的图象与反比例函数kyx=的图象交于A、B两点,且点B的坐标为.(1)求反比例函数kyx=的表达式;(2)点在反比例函数kyx=的图象上,求△AOC的面积;(3)在(2)的条件下,在坐标轴上找出一点P,使△APC为等腰三角形,请直接写出所有符合条件的点P的坐标.26.如图,在平面直角坐标系xOy中,反比例函数y=mx的图象与一次函数y=k(x-2)的图象交点为A(3,2),B(x,y).(1)求反比例函数与一次函数的解析式;(2)若C 是y 轴上的点,且满足△ABC 的面积为10,求C 点坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意易得ADFAEGABC ,则有13AD AB =,23AE AB =.进而可求得119ABC S S =,213ABC S S =,359ABCS S =,最后即可求出结果.【详解】 ∵DF ∥EG ∥BC , ∴ADF AEG ABC ,∵D 、E 是AB 的三等分点, ∴13AD AB =,23AE AB =, ∴119ABC S S =,49AEGABCSS =.∵21411993AEG ABCABCABCS S S S S S =-=-=,34599ABC AEGABCABC ABCS S SSS S =-=-=.∴123115::::1:3:5939ABCABCABCS S S S S S ==.故选C . 【点睛】本题主要考查相似三角形的判定与性质,掌握面积比等于相似比的平方是解题的关键.2.D解析:D 【分析】证明AFE △≌△()DFP AAS ,推出=AE DP ,由:2:1AE BE =,设BE k =,2AE k =,推出3AB CD k ==,5PC k =,由//AE BC ,可得AG AEGC CP=的值. 【详解】∵四边形ABCD 是平行四边形, ∴//AB PC ,AB CD =, ∴AEF P ∠=∠,∵AFE DFP ∠=∠,AF DF =, ∴AFE △≌△()DFP AAS , ∴=AE DP ,∵:2:1AE BE =,设BE k =,2AE k =, ∴3AB CD k ==,5PC k =, ∵//AE BC ,∴2255AG AE k GC CP k ===, 故选:D . 【点睛】本题考查了平行四边形的性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是学会利用已知条件证明三角形全等、利用参数解决问题,属于中考常考题型.3.D解析:D 【分析】先判断DE 为ABC 的中位线,则根据三角形中位线性质得到//DE BC ,12DE BC =,于是可对①进行判断;证明DOE △∽COB △,利用相似比得到12OE DE OD OB BC OC ===,14DOE COBS S =△△,则可对②进行判断;加上12AD AB =,则可对③进行判断;利用三角形面积公式得到13ODE DCE S S =△△,12DCE ADC S S =△△,则可对④进行判断. 【详解】解:∵BE 、CD 为ABC 的中线, ∴DE 为ABC 的中位线, ∴//DE BC ,12DE BC =,所以①正确; ∵//DE BC , ∴DOE △∽COB △,∴12OE DE OD OB BC OC ===,214DOE COB S DE S CB ⎛⎫== ⎪⎝⎭△△,所以②错误; ∵12AD AB =, ∴AD OEAB OB=,所以③正确; ∵:1:2OD OC =,∴13ODE DCE S S =△△, ∵AE CE =,∴12DCE ADC S S =△△, ∴16ODE ADC S S =△△,所以④正确. 故选D . 【点睛】本题考查相似三角形的性质和判定,解题的关键是熟练运用相似三角形的性质和判定定理.4.C解析:C 【分析】连接DE ,根据直角三角形的性质求出BC ,根据勾股定理求出BD ,再求出AB ,根据DE ∥AB ,得到BDE AB DFF =,把已知数据代入计算,得到答案. 【详解】 解:连接DE ,∵∠BDC =90°,∠CBD =30°,CD =2, ∴BC =2CD =4,由勾股定理得,BD =22BC CD -=2242-=23, ∵E 是BC 的中点,∴DE =12BC =BE =2, ∴∠BDE =∠CBD =30°,∵对角线BD 平分∠ABC ,∴∠ABD =∠CBD =∠BDE ,∴DE ∥AB ,∴BDE AB DF F =, 在Rt △ABD 中,∠ABD =30°, ∴AD =12BD =3, ∴AB =22BD AD -=3,∴23DF FB =, 即2332BF =-, 解得,BF =635故选:C .【点睛】 本题考查的是勾股定理、角平分线的性质、直角三角形30度角的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题.5.C解析:C【分析】过点D 作DJ ⊥BC 于J ,根据勾股定理求出BC ,利用等腰直角三角形的性质求出DJ 、BJ 、JC ,利用平行线分线段成比例定理求出JC′即可解决问题.【详解】解:过点D 作DJ ⊥BC 于J .∵DB =DC =2,∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB , ∵DJ//A′B′, ∴DJ A B ''=C J C B''',∴4C J ', ∴C′J =∴JB′=4﹣∴BB′=2﹣(4﹣=﹣2.故选:C .【点睛】本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理. 6.C解析:C【分析】若点P 是靠近点B 的黄金分割点,则12AP AB =,然后代入数据计算即可;若点P 是靠近点A 的黄金分割点,先求出BP ,再利用线段的和差即可求出AP .【详解】解:若P 是靠近点B 的黄金分割点,则)111222AP AB ==⨯=;若P 是靠近点A 的黄金分割点,则)12BP AB ===,∴121AP AB BP =-=-=;故选:C .【点睛】本题主要考查了黄金分割,熟练掌握黄金分割比为12是解题的关键. 7.D解析:D【分析】作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN 得到DM=AN=2,AM=BN=3,则D (-4,2),根据待定系数法即可求得m 的值.【详解】解:作DM ⊥x 轴于M ,BN ⊥x 轴于N ,如图,∵点A 的坐标为(-1,0),∴OA=1,∵AE=BE ,BN ∥y 轴,∴OA=ON=1,∴AN=2,B 的横坐标为1,把x=1代入3y x=,得y=3, ∴B (1,3),∴BN=3,∵四边形ABCD 为正方形,∴AD=AB ,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM ,在△ADM 和△BAN 中90AND ANB ADM BAN AD AB ∠∠︒⎧⎪∠∠⎨⎪⎩==== ∴△ADM ≌△BAN (AAS ),∴DM=AN=2,AM=BN=3,∴134OM OA AM =+=+= ,∴D 42-(,), ∵点D 在反比例函数m y x=,的图象上, ∴428m =-⨯=- ,故选:D .本题考查了反比例函数图象上点的坐标特征,正方形的性质,三角形全等的判定和性质等知识,求得D的坐标是解题的关键.8.D解析:D【解析】根据题意,在函数y=kx+k和函数kyx=中,有k>0,则函数y=kx+k过一二三象限.且函数kyx=在一、三象限,则D选项中的函数图象符合题意;故选D.9.C解析:C【分析】根据OA、OC的长度,可得反比例函数的比例系数k=6,设正方形ADEF的边长为x,则OD DE=(1x)x=6⋅+⋅,解得x即为正方形的边长.【详解】解:根据OA=1,OC=6,可得反比例函数的比例系数k=OA OC=6⋅,设正方形ADEF的边长为x,则OD=OA+AD=1+x,DE=x,则OD DE=(1x)x=6⋅+⋅,解得:x=2或-3(舍),故选:C.【点睛】本题主要考察了反比例函数与几何图形的综合、解一元二次函数,解题的关键在于根据图形求出反比例函数的比例系数k.10.C解析:C【分析】由二次函数的图像性质分析a,b,c的符号,从而判断bc和abc的符号,然后结合反比例函数和一次函数图像性质进行判断即可.【详解】解:由题意可知,二次函数开口向上,∴a>0由二次函数对称轴在y轴右侧,∴b<0由二次函数与y轴交于原点上方,∴c>0∴bc<0,abc<0∴一次函数图像经过一、三、四象限,反比例函数图像经过二四象限【点睛】本题考查一次函数、二次函数、反比例函数的图像性质,掌握函数图像性质,利用数形结合思想解题是关键.11.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键. 12.B解析:B【分析】作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|.【详解】解:作AE ⊥BC 于E ,如图,∵四边形ABCD 为平行四边形,∴AD ∥x 轴,∴四边形ADOE 为矩形,∴S 平行四边形ABCD =S 矩形ADOE ,而S 矩形ADOE =|k|,∴|k|=8,而k <0∴k=-8.故选:B .【点睛】本题考查了反比例函数y=k x (k≠0)系数k 的几何意义:从反比例函数y=k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|. 二、填空题13.【分析】根据题意可知△ABC 与阴影部分为相似三角形且面积比为2:1所以AB :A′B=:1推出A′B=从而得到AA′的长【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置∴AC ∥A′C′∴△AB解析:【分析】根据题意可知△ABC 与阴影部分为相似三角形,且面积比为2:1,所以AB ::1,推出,从而得到AA′的长.【详解】解:∵△ABC 沿AB 边平移到△A′B′C′的位置,∴AC ∥A′C′,∴△ABC ∽△A′BD , ∴21()2A BDABC S A B S AB ''∆∆==, ∴AB ::1,∵AB=∴,∴AA′=.由平移可得' 'CC AA =∴'6CC =故答案为:.【点睛】本题主要考查相似三角形的判定和性质、平移的性质,关键在于求证△ABC 与阴影部分为相似三角形.14.【分析】由圆周角定理可知再由可证明最后根据相似三角形对应边成比例及已知条件BC :CA =4:3结合三角形面积公式解题即可【详解】为直径又BC :CA =4:3当点P 在弧AB 上运动时当PC 最大时取得最大值而 解析:503【分析】由圆周角定理可知A P ∠=∠,再由90ACB PCD ∠=∠=︒可证明~ACB PDC ,最后根据相似三角形对应边成比例,及已知条件BC :CA =4:3,结合三角形面积公式解题即可.【详解】 AB 为直径,90ACB ∴∠=︒PC CD ⊥,90PCD ∴∠=︒又CAB CPD ∠=∠~ACB PDC ∴AC BC CP CD∴= BC :CA =4:3,43CD PC ∴= 当点P 在弧AB 上运动时, 12PCD S PC CD =⋅△ 2142233PCD S PC PC PC ∴=⨯⋅= 当PC 最大时,PCD S 取得最大值而当PC 为直径时最大,22505=33PCD S ∴=⨯. 【点睛】本题考查圆周角定理、三角形面积、相似三角形的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.5【分析】过D 作DE ⊥AB 于E 根据角平分线的性质得到根据勾股定理得到根据相似三角形的性质即可得到结论【详解】过作于是的平分线故答案为:【点睛】本题考查了角平分线的性质相似三角形的判定和性质勾股定理正 解析:5【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得到32CD DE ==,根据勾股定理得到BE =2==,根据相似三角形的性质即可得到结论. 【详解】过D 作DE AE ⊥于E ,90,C AD ︒∠=是BAC ∠的平分线32CD DE ∴== 52DB = 4BC BD CD ∴=+=22BE BD DE ∴=-2253222⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭90,C DEB B B ︒∠=∠=∠=∠ BDE BAC ∴∆∆ BC BE BD AB ∴= 5224AB∴= 故答案为:5【点睛】本题考查了角平分线的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.16.24【分析】过N 点作ND ⊥PQ 于D 先根据同一时刻物高与影长成正比求出QD 的影长再求出PQ 即可【详解】解:如图过N 点作ND ⊥PQ 于D ∴又∵AB=2BC=15DN=PM=12NM=08∴∴QD=16∴P解析:2.4【分析】过N 点作ND ⊥PQ 于D ,先根据同一时刻物高与影长成正比求出QD 的影长,再求出PQ 即可.【详解】解:如图,过N 点作ND ⊥PQ 于D ,∴BC DN AB QD=, 又∵AB=2,BC=1.5,DN=PM=1.2, NM=0.8, ∴1.5 1.22QD=, ∴QD=1.6,∴PQ=QD+DP=QD+NM=1.6+0.8=2.4(m ).故答案为:2.4.【点睛】在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.17.-2【分析】求出两函数组成的方程组的解即可得出ab 的值再分别代入求出即可【详解】解:由题意得:把①代入②得:整理得:x2+2x+1=0解得:∴交点坐标是(-1-2)∴a=-1b=-2∴=-1+(-1解析:-2【分析】求出两函数组成的方程组的解,即可得出a 、b 的值,再分别代入求出即可.【详解】 解:由题意得:224y x y x ⎧=⎪⎨⎪=--⎩①②把①代入②得:224x x=--, 整理得: x 2+ 2x +1=0, 解得: 12x y =-⎧⎨=-⎩∴交点坐标是(-1,-2),∴ a= -1,b= -2, ∴12a b+= -1 +(-1)= -2. 故答案为:- 2.【点睛】 本题主要考查函数交点坐标求法与运用;求出两函数组成的方程组的解,即为交点坐标是本题的解题关键.18.【分析】先根据点A的坐标求出反比例函数的解析式然后求出点的坐标由点B在直线上设出点B的坐标为(aa)从而利用平行四边形的性质可得到的坐标因为在反比例函数图象上将点代入反比例函数解析式中即可求出a的值解析:【分析】先根据点A的坐标求出反比例函数的解析式,然后求出点A'的坐标,由点B在直线上,设出点B的坐标为(a,a),从而利用平行四边形的性质可得到B'的坐标,因为B'在反比例函数图象上,将点B'代入反比例函数解析式中即可求出a的值,从而可确定点B的坐标.【详解】∵反比例函数y=k(x>0)过点A(1,4),x∴k=1×4=4,∴反比例函数解析式为:y=4.x∵点A'(4,b)在反比例函数的图象上,∴4b=4,解得:b=1,∴A'(4,1).∵点B在直线y=x上,∴设B点坐标为:(a,a).∵点A(1,4),A'(4,1),∴A点向下平移3个单位,再向右平移3个单位,即可得到A'点.∵四边形AA'B'B是平行四边形,∴B点向下平移3个单位,再向右平移3个单位,即可得到B'点(a+3,a﹣3).∵点B'在反比例函数的图象上,∴(a+3)(a﹣3)=4,解得:a=或a=舍去),故B点坐标为:.故答案为:.【点睛】本题主要考查反比例函数与几何综合,掌握待定系数法,平行四边形的性质,点的平移规律和一元二次方程的解法是解题的关键.19.-1【分析】将点A(-12)代入反比例函数即可求出m的值【详解】将点A (-12)代入反比例函数得解得m=-1;故答案为:-1【点睛】本题考查了反比例函数图象上点的坐标特征所有在反比例函数上的点的横纵解析:-1【分析】将点A (-1,2)代入反比例函数1m y x -=即可求出m 的值. 【详解】将点A (-1,2)代入反比例函数1m y x-=,得 121m -=-, 解得,m=-1;故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.20.【分析】确定使函数的图象经过第一三象限的k 的值然后确定使方程有实数根的k 值找到同时满足两个条件的k 的值即可【详解】解:这6个数中能使函数y =的图象经过第一第三象限的有12这2个数∵关于x 的一元二次方 解析:16【分析】确定使函数的图象经过第一、三象限的k 的值,然后确定使方程有实数根的k 值,找到同时满足两个条件的k 的值即可.【详解】解:这6个数中能使函数y =k x的图象经过第一、第三象限的有1,2这2个数, ∵关于x 的一元二次方程x 2﹣kx +1=0有实数根,∴k 2﹣4≥0,解得k ≤﹣2或k ≥2,能满足这一条件的数是:﹣3、﹣2、2这3个数,∴能同时满足这两个条件的只有2这个数, ∴此概率为16, 故答案为:16. 三、解答题21.(1)见解析;(2)BD =【分析】(1)由已知可得CAB EAD ∠=∠,则A ABC DE ∽△△,可得AC AE AB AD=,结合EAC BAD ∠=∠,则结论得证;(2)由A ABC DE ∽△△,求出AB 、AD 的长,再结合BAD CAE ∽可得90AEC ADB ∠=∠=︒,则BD 可求.【详解】(1)证明:∵EAC DAB ∠=∠,∴CAB EAD ∠=∠.∵90ACB AED ∠=∠=︒,∴A ABC DE ∽△△. ∴AC AE AB AD=. ∵EAC BAD ∠=∠, ∴BAD CAE ∽. (2)∵90ACB ∠=︒,4BC =,3AC =,∴5AB ===.∵A ABC DE ∽△△, ∴AC AB AE AD=. ∴52AB AE AD AC ⋅==. 将AED 绕点A 旋转,当C 、E 、D 三点共线时,90AEC ∠=︒,∵BAD CAE ∽,∴90AEC ADB ∠=∠=︒.∴BD === 【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定方法及相似性质是解题的关键.22.(1)210y x =-+,8y x =;(2)4OE =;(3)(-或(5. 【分析】(1)过点P 作PD ⊥OB 于点D ,根据点B 的坐标为(5,0),且OPB △的面积为5求出PD 的长,求出直线AB 的解析式,故可得出P 点坐标,利用待定系数法求出反比例函数的解析式即可;(2)作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,先证明OEF CPD ∽,设OE=m ,根据相似三角形对应边成比例求得1133,,2222OF OE m EF OE m ====13,,44CD m PD m ==进而求得P 的坐标,求得OC 的长,然后根据OPC 的面积为332,列出关于m 的方程,解方程求得即可. (3)先求得,E P 的坐标,再根据//,PQ OB 设(),3,M x 分两种情况讨论,当90MOE ∠=︒,90OEM ∠=︒, 再利用勾股定理列方程,解方程可得答案. 【详解】解:(1)如图1,过点P 作PD ⊥OB 于点D ,∵点B 的坐标为(5,0), OPB △的面积为 5,∴152OB PD =, 552PD ∴=, 解得:PD=2, 设直线AB 的解析式为 y=ax+b (a≠0),∵A (3,4),B (5,0),∴ 3450a b a b +=⎧⎨+=⎩, 解得:210a b =-⎧⎨=⎩, ∴直线AB 的解析式为210y x =-+,当y=2时,-2x+10=2,解得x=4,∴P ( 4,2),∵点P 的反比例函数k y x =(x >0)上, ∴2=4k ,解得:k=8, ∴反比例函数的解析式为:8y x =; (2)如图2,作EF ⊥OB 于F ,PD ⊥OB 于D ,则//EF PD ,∵//PC OA , 12PC OE =∴OEF CPD ∽, ∴2OF EF OE CD PD CP===, 设OE=m , ∵∠AOB=60°, ∴1133,,2222OF OE m EF m ==== ∴13,,44CD m PD m == ∴132E m ⎛⎫ ⎪ ⎪⎝⎭,P 的纵坐标为34m , ∵E 、P 都是反比例函数k y x =(k >0,x >0)上的点, ∴设P 的横坐标为x ,则 133224m m =, x m ∴=,∴OD=m ,∴1344OC OD CD m m m =-=-=, ∵OPC 的面积为332, ∴13322OC PD =,即 13333,2442m m ⨯⨯= 解得:m=4,(负根舍去)∴OE=4.(3)∵(223E ,, (43,P , //,PQ OB 如图3,当∠EOM=90°时,设(3,M x由222,OM OE ME += ()()()()22222232232323,x x ∴+++=-+- 412,x ∴-=3,x ∴=-()33,M ∴-,如图4,当∠OEM=90°时,由222,OE EM OM += (()222222232333,x x ∴++-+=+ 420,x ∴-=-5,x ∴=(53.M ∴,∴M 的坐标为(3-或(53,.故答案为:(3-或(53,.【点睛】本题考查的是反比例函数综合题,涉及到用待定系数法求一次函数及反比例函数的解析式,相似三角形的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.23.(1)1OE 2AC =;见解析;(2)⊙O 的半径为2.5. 【分析】 (1)先可证得BOE ~BAC ,然后根据相似三角形的性质即可求解;(2)OD ⊥BC ,由垂径定理得BE=CE=12,在Rt △OEB 中,由勾股定理就可以得到关于半径的方程,可以求出半径.【详解】11OE 2AC =() 证明:∵B A 是O 的直径∴ACB 90∠=︒∵C OD B∴OE AC ∴BOE ~BAC ∴12BO OE BA AC == 即1OE 2AC =; (2)∵OD ⊥BC ,∴BE=CE=12设⊙O 的半径为R ,则OE OD ED R =-=在Rt △OEB 中,由勾股定理得: OE 2+BE 2=OB 2,即,()2222R R -+=解得:R 2.5=.∴⊙O 的半径为2.5.【点睛】此题主要考查相似三角形的判定和性质、垂径定理、勾股定理,解题的关键是熟练进行逻辑推理.24.(1)b=52,k=-2;(2)-4<x <-1;(3)(0,1710). 【分析】(1)把A (-1,2)代入两个解析式即可得到结论;(2)求出点B 的坐标,根据两函数图象的上下关系结合点A 、B 的坐标,即可得出不等式的解集;(3)根据点A′与点A 关于y 轴对称,求出点A′的坐标,设出直线A′B 的解析式为y=mx+n ,结合点的坐标利用待定系数法即可求出直线A′B 的解析式,令直线A′B 解析式中x为0,求出y的值,即可得出结论.【详解】解:(1)∵一次函数y=12x+b的图象与反比例函数y=kx(x<0)的图象交于点A(-1,2),把A(-1,2)代入两个解析式得:2=12×(-1)+b,2=-k,解得:b=52,k=-2;(2)由(1)得:1522y x=+,2yx=联立一次函数解析式与反比例函数解析式成方程组:15222y xyx⎧=+⎪⎪⎨⎪=-⎪⎩,解得:412xy=-⎧⎪⎨=⎪⎩或12xy=-⎧⎨=⎩,∴点A的坐标为(-1,2)、点B的坐标为(-4,12).观察函数图象,发现:当-4<x<-1时,反比例函数图象在一次函数图象下方,∴不等式12kx bx+>的解集为-4<x<-1.(3)作点A关于y轴的对称点A′,连接A′B交y轴于点P,此时点P即是所求,如图所示.∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有2142m nm n+=⎧⎪⎨-+=⎪⎩,解得:3101710mn⎧=⎪⎪⎨⎪=⎪⎩,∴直线A′B 的解析式为3171010y x =+. 令x=0,则y=1710, ∴点P 的坐标为(0,1710). 【点睛】 本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:求出直线A′B 的解析式;找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.25.(1);(2)32;(3)(-1,0)、(0,0)、(0,1). 【详解】 (1)一次函数的图象过点B , ∴∴点B 坐标为∵反比例函数k y x=的图象经过点B反比例函数表达式为(2)设过点A 、C 的直线表达式为,且其图象与轴交于点D ∵点在反比例函数的图象上 ∴∴点C 坐标为∵点B 坐标为∴点A 坐标为解得:过点A 、C 的直线表达式为∴点D 坐标为∴(3)①当点P 在x 轴上时,设P(m ,0)∵AC=2,AP=22(1)2m ++,CP=22(2)1m ++,∴22(1)2m ++=22(2)1m ++或22(2)1m ++=2,解得:m=0或-1②当点P 在y 轴上时,设P(0,n),∵AC=2,AP=221(2)n +-,CP=222(1)n +-,∴221(2)n +-=222(1)n +-或221(2)n +-=2解得:n=0或1 综上所述:点P 的坐标可能为、、 26.(1)y =6x ,y =2x -4;(2)C 点的坐标为()0,1或()0,9-. 【分析】(1)将点()3,2A 分别代入反比例函数和一次函数解析式中,求得参数m 和k 的值,即可得到两个函数的解析式;(2)联立反比例函数和一次函数的解析式,求得B 的坐标,再利用一次函数的解析式求得一次函数与y 轴交点的坐标点M 的坐标为()0,4-,设C 点的坐标为(0,y c ),根据12×3×|y c -(-4)|+12×1×|y c -(-4)|=10解得y c 的值,即可得到点C 的坐标. 【详解】(1)∵点()3,2A 在反比例函数y =m x 和一次函数y =k (x -2)的图象上, ∴2=3m ,2=k (3-2),解得m =6,k =2, ∴反比例函数的解析式为y =6x,一次函数的解析式为y =2x -4. (2)∵点B 是一次函数与反比例函数的另一个交点, ∴6x=2x -4,解得x 1=3,x 2=-1, ∴B 点的坐标为()1,6--.设点M 是一次函数y =2x -4的图象与y 轴的交点,则点M 的坐标为()0,4-. 设C 点的坐标为(0,y c ),由题意知12×3×|y c -(-4)|+12×1×|y c -(-4)|=10, ∴|y c +4|=5.当y c +4≥0时,y c +4=5,解得y c =1;当y c +4<0时,y c +4=-5,解得y c =-9,∴C 点的坐标为()0,1或()0,9-.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出两个函数的解析式以及直线AB与y轴的交点坐标.。
2020-2021九年级数学下期中试卷带答案一、选择题1.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数1yx=-的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y2 2.下列说法正确的是( )A.小红小学毕业时的照片和初中毕业时的照片相似B.商店新买来的一副三角板是相似的C.所有的课本都是相似的D.国旗的五角星都是相似的3.反比例函数kyx=与1(0)y kx k=-+≠在同一坐标系的图象可能为()A.B.C.D.4.如图,校园内有两棵树,相距8米,一棵树树高13米,另一棵树高7米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞()A.8米B.9米C.10米D.11米5.已知线段a、b、c、d满足ab=cd,把它改写成比例式,错误的是()A.a:d=c:b B.a:b=c:d C.c:a=d:b D.b:c=a:d6.若反比例函数2yx=-的图象上有两个不同的点关于y轴的对称点都在一次函数y=-x+m的图象上,则m的取值范围是()A.22m>B.-22m<C.22-22m m>或<D.-2222m<<7.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m8.在△ABC中,若|sinA-32|+(1-tanB)2=0,则∠C的度数是( )A.45°B.60°C.75°D.105°9.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.10.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m11.如图,在△ABC中,M是AC的中点,P,Q为BC边上的点,且BP=PQ=CQ,BM与AP,AQ分别交于D,E点,则BD∶DE∶EM等于A.3∶2∶1B.4∶2∶1C.5∶3∶2D.5∶2∶112.在小孔成像问题中,如图所示,若为O到AB的距离是18 cm,O到CD的距离是6 cm,则像CD的长是物体AB长的()A .13B .12C .2倍D .3倍二、填空题13.若反比例函数y =﹣的图象经过点A(m ,3),则m 的值是_____.14.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为________.15.如图,已知点A ,C 在反比例函数(0)a y a x=>的图象上,点B ,D 在反比例函(0)b y b x=<的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB=5,CD=4,AB 与CD 的距离为6,则a −b 的值是_______.16.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x的图象经过A 、B 两点,则菱形ABCD 的面积是_____;17.已知AB ∥CD ,AD 与BC 相交于点O.若BO OC =23,AD =10,则AO =____.18.如图,在平面直角坐标系中,点A 是函数k y x=(x <0)图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若△ABC 的面积为1,则k 的值为 ______ .19.将一副三角板按如图1位置摆放,使得两块三角板的直角边AC 和MD 重合.已知AB="AC=8" cm,将△MED 绕点A(M)逆时针旋转60°后(图2),两个三角形重叠(阴影)部分的面积是 cm2.20.若关于x 的分式方程33122x m x x +-=--有增根,则m 的值为_____. 三、解答题21.在学习了矩形这节内容之后,明明同学发现生活中的很多矩形都很特殊,如我们的课本封面、A 4 的打印纸等,这些矩形的长与宽之比都为2:1,我们将具有这类特征的矩形称为“完美矩形”如图(1),在“完美矩形”ABCD 中,点 P 为 AB 边上的定点,且 AP =AD .(1)求证:PD =AB .(2)如图(2),若在“完美矩形“ABCD 的边 BC 上有一动点 E ,当BE CE的值是多少时,△PDE 的周长最小?(3)如图(3),点 Q 是边 AB 上的定点,且 BQ =BC .已知 AD =1,在(2)的条件下连接 DE 并延长交 AB 的延长线于点 F ,连接 CF ,G 为 CF 的中点,M 、N 分别为线段 QF 和 CD 上的动点,且始终保持 QM =CN ,MN 与 DF 相交于点 H ,请问 GH 的长度是定值吗?若是,请求出它的值,若不是,请说明理由.22.如图所示,双曲线()10,0k y x k x=>>与直线()20y kx b k =+≠(b 为常数)交于()2,4A ,(),2B a 两点.(1)求双曲线()10,0k y x k x=>>的表达式; (2)根据图象观察,当21y y <时,求x 的取值范围; (3)求AOB ∆的面积.23.如图,M 、N 为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M 、N 两点之间的直线距离,选择测量点A 、B 、C ,点B 、C 分别在AM 、AN 上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M 、N 两点之间的距离.24.如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC=14,AD=12,tan ∠BAD=,求sinC 的值.25.如图,l 1∥l 2∥l 3,AB=3,AD=2,DE=4,EF=7.5.求BC 、BE 的长?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣1x中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.2.D解析:D【解析】【分析】观察图形,看它们的形状是否相同,形状相同的两个图形是相似图形.【详解】A.小明上幼儿园时的照片和初中毕业时的照片,形状不相同,不相似;B.商店新买来的一副三角板,形状不相同,不相似;C.所有的课本都是相似的,形状不相同,不相似;D.国旗的五角星都是相似的,形状相同,相似.故选D.【点睛】本题考查了相似图形,相似图形是指形状相同的图形,仔细观察看每组图形是否相同,如果相同就相似,否则就不相似.3.B解析:B【解析】【分析】根据反比例函数和一次函数的性质逐个对选项进行分析即可.【详解】A 根据反比例函数的图象可知,k>0,因此可得一次函数的图象应该递减,但是图象是递增的,所以A错误;B根据反比例函数的图象可知,k>0,,因此一次函数的图象应该递减,和图象吻合,所以B正确;C根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,并且过(0,1)点,但是根据图象,不过(0,1),所以C错误;D根据反比例函数的图象可知,k<0,因此一次函数的图象应该递增,但是根据图象一次函数的图象递减,所以D错误.故选B【点睛】本题主要考查反比例函数和一次函数的性质,关键点在于系数的正负判断,根据系数识别图象.4.C解析:C【解析】如图所示,AB,CD为树,且AB=13,CD=8,BD为两树距离12米,过C作CE⊥AB于E,则CE=BD=8,AE=AB-CD=6,在直角三角形AEC中,AC=10米,答:小鸟至少要飞10米.故选C.5.B解析:B【解析】【分析】根据比例的基本性质:两外项之积等于两内项之积.对选项一一分析,选出正确答案.【详解】解:A、a:d=c:b⇒ab=cd,故正确;B、a:b=c:d⇒ad=bc,故错误;C、d:a=b:c⇒dc=ab,故正确;D、a:c=d:b⇒ab=cd,故正确.故选B.【点睛】本题考查比例的基本性质,解题关键是根据比例的基本性质实现比例式和等积式的互相转换.6.C解析:C【解析】【分析】 根据题意可知反比例函数2y x =-的图象上的点关于y 轴的对称的点在函数2y x =上,由此可知反比例函数2y x=的图象与一次函数y=-x+m 的图象有两个不同的交点,继而可得关于x 的一元二次方程,再根据根的判别式即可求得答案.【详解】 ∵反比例函数2y x =-上有两个不同的点关于y 轴对称的点在一次函数y =-x +m 图象上, ∴反比例函数2y x=与一次函数y =-x +m 有两个不同的交点, 联立得2y x y x m⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=,∵有两个不同的交点∴220x mx -+=有两个不相等的实数根,∴△=m 2-8>0,∴m >m <故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.7.D解析:D【解析】【分析】利用直角三角形DEF 和直角三角形BCD 相似求得BC 的长后加上小明同学的身高即可求得树高AB .【详解】∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE=, ∵DF=50cm=0.5m ,EF=30cm=0.3m ,AC=1.5m ,CD=20m ,∴由勾股定理求得DE=40cm,∴20 0.30.4 BC,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m.【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.8.C解析:C【解析】【分析】先根据非负数的性质求出sinA及tanB的值,再根据特殊角的三角函数值求出∠A及∠B的值,由三角形内角和定理即可得出结论.【详解】∵|sin A−3|+(1−tan B)2=0,∴sinA=32,tanB=1,∴∠A=60°,∠B=45°,∴∠C=180°-∠A-∠B=180°-60°-45°=75°.故选C.【点睛】(1)非负数的性质:几个非负数的和等0,这几个非负数都为0;(2)三角形内角和等于180°.9.C解析:C【解析】【分析】【详解】利用如图所示的计算器计算2cos55°,按键顺序正确的是.故答案选C.10.A解析:A【解析】∵BE∥AD,∴△BCE∽△ACD,∴CB CE AC CD =,即 CB CE AB BC DE EC=++, ∵BC=1,DE=1.8,EC=1.2 ∴1 1.21 1.8 1.2AB =++ ∴1.2AB=1.8,∴AB=1.5m .故选A . 11.C 解析:C 【解析】【分析】过A 作AF ∥BC 交BM 延长线于F ,设BC=3a ,则BP=PQ=QC=a ;根据平行线间的线段对应成比例的性质分别求出BD 、BE 、BM 的长度,再来求BD ,DE ,EM 三条线段的长度,即可求得答案. 【详解】过A 作AF ∥BC 交BM 延长线于F ,设3BC a =,则BP PQ QC a ===;∵AM CM =,AF ∥BC ,∴1AF AM BC CM==, ∴3AF BC a ==,∵AF ∥BP ,∴133BD BP a DF AF a ===, ∴34DF BF BD ==, ∵AF ∥BQ , ∴2233BE BQ a EF AF a ===, ∴23EF BE =,即25BF BE =, ∵AF ∥BC ,∴313BM BC a MF AF a ===, ∴BM MF =,即2BF BM =, ∴235420BF BF BF DE BE BD =-=-=,22510BF BF BF EM BM BE =-=-=, ∴3::::?53242010BF BF BF BD DE EM ==::. 故选:C .【点睛】 本题考查了平行线分线段成比例定理以及比例的性质,正确作出辅助线是关键.12.A解析:A【解析】【分析】作OE ⊥AB 于E ,OF ⊥CD 于F ,根据题意得到△AOB ∽△COD ,根据相似三角形的对应高的比等于相似比计算即可.【详解】作OE ⊥AB 于E ,OF ⊥CD 于F ,由题意得,AB ∥CD ,∴△AOB ∽△COD ,∴CD AB =OF OE =13, ∴像CD 的长是物体AB 长的13. 故答案选:A.【点睛】 本题考查了相似三角形的应用,解题的关键是熟练的掌握相似三角形的应用.二、填空题13.﹣2【解析】∵反比例函数y=-6x 的图象过点A (m3)∴3=-6m 解得=-2 解析:﹣2【解析】∵反比例函数的图象过点A (m ,3),∴,解得.14.【解析】已知BC=8AD 是中线可得CD=4在△CBA 和△CAD 中由∠B=∠DAC ∠C=∠C 可判定△CBA ∽△CAD 根据相似三角形的性质可得即可得AC2=CD•BC=4×8=32解得AC=4 解析:42 【解析】 已知BC=8, AD 是中线,可得CD=4, 在△CBA 和△CAD 中, 由∠B=∠DAC ,∠C=∠C , 可判定△CBA ∽△CAD ,根据相似三角形的性质可得AC CD BC AC= , 即可得AC 2=CD•BC=4×8=32,解得AC=42. 15.【解析】【分析】利用反比例函数k 的几何意义得出a-b=4•OEa -b=5•OF 求出=6即可求出答案【详解】如图∵由题意知:a-b=4•OEa -b=5•OF ∴OE=OF=又∵OE+OF=6∴=6∴a-解析:403【解析】【分析】利用反比例函数k 的几何意义得出a-b=4•OE ,a-b=5•OF ,求出45a b a b --+=6,即可求出答案.【详解】如图,∵由题意知:a-b=4•OE ,a-b=5•OF ,∴OE=4a b -,OF=5a b -, 又∵OE+OF=6,∴45a b a b --+=6, ∴a-b=403,故答案为:403. 【点睛】 本题考查了反比例函数图象上点的坐标特征,能求出方程45a b a b --+=6是解此题的关键. 16.【解析】【分析】作AH⊥BC 交CB 的延长线于H 根据反比例函数解析式求出A 的坐标点B 的坐标求出AHBH 根据勾股定理求出AB 根据菱形的面积公式计算即可【详解】作AH⊥BC 交CB 的延长线于H∵反比例函数y解析:42【解析】【分析】作AH ⊥BC 交CB 的延长线于H ,根据反比例函数解析式求出A 的坐标、点B 的坐标,求出AH 、BH ,根据勾股定理求出AB ,根据菱形的面积公式计算即可.【详解】作AH ⊥BC 交CB 的延长线于H ,∵反比例函数y =3x的图象经过A 、B 两点,A 、B 两点的横坐标分别为1和3, ∴A 、B 两点的纵坐标分别为3和1,即点A 的坐标为(1,3),点B 的坐标为(3,1),∴AH =3﹣1=2,BH =3﹣1=2,由勾股定理得,AB 2222+=2,∵四边形ABCD 是菱形,∴BC =AB =2,∴菱形ABCD 的面积=BC×AH =2, 故答案为2【点睛】本题考查的是反比例函数的系数k 的几何意义、菱形的性质,根据反比例函数解析式求出A 的坐标、点B 的坐标是解题的关键.17.【解析】∵AB∥CD 解得AO=4故答案是:4【点睛】运用了平行线分线段成比例定理灵活运用定理找准对应关系是解题的关键解析:【解析】∵AB ∥CD ,223103AO BO AO OD OC AO ∴===-,即, 解得,AO=4,故答案是:4.【点睛】运用了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.18.-2【解析】【分析】根据已知条件得到三角形ABC 的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y 轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k 的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC 的面积=1•=12AB OB ,得到|k|=2,即可得到结论. 【详解】解:∵AB ⊥y 轴,∴AB ∥CO , ∴111•1222ABC S AB OB x y k ====g 三角形 , ∴2k =,∵0k <,∴2k =-,故答案为:-2.【点睛】本题考查了反比例函数系数k 的几何意义,明确1•=12ABC S AB OB =V 是解题的关键. 19.【解析】【分析】分析:设BCAD 交于点G 过交点G 作GF⊥AC 与AC 交于点F 根据AC=8就可求出GF 的长从而求解【详解】解:设BCAD 交于点G 过交点G 作GF⊥AC 与AC 交于点F 设FC=x 则GF=FC=解析:【解析】【分析】分析:设BC ,AD 交于点G ,过交点G 作GF ⊥AC 与AC 交于点F ,根据AC=8,就可求出GF 的长,从而求解.【详解】解:设BC ,AD 交于点G ,过交点G 作GF ⊥AC 与AC 交于点F ,设FC=x ,则GF=FC=x ,∵旋转角为60°,即可得∠FAG=60°,∴AF=GFcot∠FAG=3x.所以x+3x=8,则x=12-43.所以S△AGC=12×8×(12-43)=48-16320.3【解析】【分析】把分式方程化为整式方程进而把可能的增根代入可得m 的值【详解】去分母得3x-(x-2)=m+3当增根为x=2时6=m+3∴m=3故答案为3【点睛】考查分式方程的增根问题;增根问题可按解析:3【解析】【分析】把分式方程化为整式方程,进而把可能的增根代入,可得m的值.【详解】去分母得3x-(x-2)=m+3,当增根为x=2时,6=m+3∴m=3.故答案为3.【点睛】考查分式方程的增根问题;增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.三、解答题21.(1)证明见解析(2)222(32【解析】【分析】(1)根据题中“完美矩形”的定义设出AD与AB,根据AP=AD,利用勾股定理表示出PD,即可得证;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,表示出AB与CD,由AB-AP表示出BP,由对称的性质得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=2,理由为:由(2)可知BF=BP=AB-AP,由等式的性质得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形对应边相等得到FH=DH,再由G为CF中点,得到HG为中位线,利用中位线性质求出GH的长即可.【详解】(1)在图1中,设AD=BC=a,则有AB=CD=2a,∵四边形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD=22AD PA+=2a,∵AB=2a,∴PD=AB;(2)如图,作点P关于BC的对称点P′,连接DP′交BC于点E,此时△PDE的周长最小,设AD=PA=BC=a,则有2,∵BP=AB-PA,∴2a-a,∵BP′∥CD,∴22222BE BP aCE CD a===;(3)2,理由为:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN ,即MF=DN ,∵MF ∥DN ,∴∠NFH=∠NDH ,在△MFH 和△NDH 中,{MFH NDHMHF NHD MF DN∠∠∠∠=== ,∴△MFH ≌△NDH (AAS ),∴FH=DH ,∵G 为CF 的中点,∴GH 是△CFD 的中位线,∴GH=12CD=12×. 【点睛】 此题属于相似综合题,涉及的知识有:相似三角形的判定与性质,全等三角形的判定与性质,勾股定理,三角形中位线性质,平行线的判定与性质,熟练掌握相似三角形的性质是解本题的关键.22.(1)18y x =;(2)02x <<或4x >;(3)6. 【解析】【分析】(1)把点A 坐标代入反比例函数解析式即可求得k 的值;(2)根据点B 在双曲线上可求出a 的值,再结合图象确定双曲线在直线上方的部分对应的x 的值即可;(3)先利用待定系数法求出一次函数的解析式,再用如图的△AOC 的面积减去△BOC 的面积即可求出结果.【详解】解(1):双曲线()10,0k y x k x=>>经过()2,4A ,∴248k =⨯=, ∴双曲线的解析式为18y x =. (2)∵双曲线()10,0k y x k x =>>经过(),2B a 点, ∴82a=,解得4a =,∴()4,2B , 根据图象观察,当21y y <时,x 的取值范围是02x <<或4x >.(3)设直线AB 的解析式为y mx n =+,∴2442m n m n +=⎧⎨+=⎩,解得16m n =-⎧⎨=⎩, ∴直线AB 的解析式为6y x =-+,∴直线AB 与x 轴的交点()6,0C, ∴AOB AOC BOC S S S ∆∆∆=-116462622=⨯⨯-⨯⨯=. 【点睛】本题是反比例函数与一次函数的综合题,重点考查了待定系数法求函数的解析式、一次函数与反比例函数的交点问题和三角形的面积计算,属于中档题型,熟练掌握一次函数与反比例函数的基本知识是解题的关键.23.5千米【解析】【分析】先根据相似三角形的判定得出△ABC ∽△AMN,再利用相似三角形的性质解答即可【详解】在△ABC 与△AMN 中,305549AC AB ==,151.89AM AN ==, ∴AC AM AB AN=,∵∠A=∠A , ∴△ABC ∽△ANM ,∴AC AM BC MN =,即30145MN =,解得MN=1.5(千米) ,因此,M 、N 两点之间的直线距离是1.5千米.【点睛】此题考查相似三角形的应用,解题关键在于掌握运算法则24..【解析】【分析】首先根据Rt△ABD的三角函数求出BD的长度,然后得出CD的长度,根据勾股定理求出AC的长度,从而得出∠C的正弦值.【详解】∵在直角△ABD中,tan∠BAD=,∴BD=AD•tan∠BAD=12×=9,∴CD=BC-BD=14-9=5,∴AC==13,∴sinC=.【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.25.BC=6,BE=5【解析】【分析】根据平行线分线段成比例定理得BFBE=3BC=24,则可计算出BC=6,BF=12BE,然后利用12BE+BE=7.5求出BE的长.【详解】∵l1∥l2∥l3,∴FBBE=ABBC=ADDE,即BFBE=3BC=24,∴BC=6,BF=12BE,∴12BE+BE=7.5,∴BE=5.【点睛】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.。
2020-2021学年度第二学期九年级数学期中试卷学校__________班级___________姓名___________成绩___________考生须知1.本试卷共8页,共三道大题,29道小题,满分120分,考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、画图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡一并交回。
一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的.1.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为A.96.5×107B.9.65×107 C.9.65×108 D.0.965×1092.如图是某个几何体的三视图,该几何体是A.长方体B.正方体C.圆柱D.三棱柱3.一个不透明的口袋中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为A.14B.34C.15D.454.下列图形中,是轴对称图形但不是中心对称图形的是A.B.C.D.5.如图,在ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为A.5 B.4C.3 D.26.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,1=35∠︒,则2∠的度数为A.35︒B.15︒C.10︒D.5︒7.初三(8)班体委用划记法统计本班40名同学投掷实心球的成绩,结果如下表所示:ECDBA则这40名同学投掷实心球的成绩的众数和中位数分别是A.9,8 B.9,8.5 C.8,8 D.8,8.58.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数(,)表示图中承德的位置,“数对”对”19043︒(,)表示图中保定的位置,则与图中张家口160238︒的位置对应的“数对”为(,)A.176145︒(,)B.17635︒(,)C.100145︒(,)D.10035︒9.油电混动汽车是一种节油、环保的新技术汽车.它将行驶过程中部分原本被浪费的能量回收储存于内置的蓄电池中.汽车在低速行驶时,使用蓄电池带动电动机驱动汽车,节约燃油.某品牌油电混动汽车与普通汽车的相关成本数据估算如下:油电混动汽车普通汽车购买价格(万元)17.48 15.98每百公里燃油成本(元)31 46某人计划购入一辆上述品牌的汽车.他估算了未来10年的用车成本,在只考虑车价和燃油成本的情况下,发现选择油电混动汽车的成本不高于选择普通汽车的成本.则他在估算时,预计平均每年行驶的公里数至少..为A.5 000 B.10 000 C.15 000 D.20 00010.小明在暗室做小孔成像实验.如图1,固定光源(线段MN)发出的光经过小孔(动点K)成像(线段M'N')于足够长的固定挡板(直线l)上,其中MN// l.已知点K匀速运动,其运动路径由AB,BC,CD,DA,AC,BD组成.记它的运动时间为x,M'N'的长度为y,若y关于x的函数图象大致如图2所示,则点K的运动路径可能为A.A→B→C→D→A B.B→C→D→A→BC.B→C→A→D→B D.D→A→B→C→D图1 图2二、填空题(本题共18分,每小题3分)11. 分解因式:a2b-2ab+b=________________.12. 如图,AB为⊙O的弦,OC⊥AB于点C.若AB=8,OC=3,则⊙O的半径长为________.13.埃及《纸草书》中记载:“一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33.”设这个数是x,可列方程为.14.在下列函数①21y x=+;②22y x x=+;③3yx=;④3y x=-中,与众不同的一个是_____(填序号),你的理由是________.15.北京市2010~2015年高考报名人数统计如图所示.根据统计图中提供的信息,预估2016年北京市高考报名人数约为________万人,你的预估理由是____________.16.阅读下面材料:A BCO在数学课上,老师提出如下问题:小云的作法如下:老师说:“小云的作法正确.”请回答:小云的作图依据是________________________________________.三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:)2016tan3012π-⎛⎫--︒++⎪⎝⎭18.解不等式组41)3(2),14,2x xxx-≤+⎧⎪⎨-<-⎪⎩(并写出它的所有整数解....19.已知250x x+-=,求代数式2(1)(3)(2)(2)x x x x x---++-的值.20.如图,在△ABC中,90BAC∠=︒,AD BC⊥于点D,DE为AC边上的中线.求证:BAD EDC∠=∠.21.目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现小琼步行12 000步与小博步行9 000步消耗的能量相同.若 每消耗1千卡能量小琼行走的步数比小博多10步,求小博每消耗1千卡能量需要行走多 少步.22.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点B 作AC的平行线交DC 的延长线于点E . (1)求证:BD=BE ;(2)若BE =10,CE =6,连接OE ,求tan ∠OED 的值.23.在平面直角坐标系xOy 中,直线y x =-与双曲线ky x=(0k ≠)的一个交点为(6,)P m . (1)求k 的值;(2)将直线y x =-向上平移b (b>0)个单位长度后,与x 轴,y 轴分别交于点A ,点B ,与双曲线ky x =(0k ≠)的一个交点记为Q .若2BQ AB =,求b 的值.24.如图,AB ,AD 是⊙O 的弦,AO 平分BAD ∠.过点B作⊙O 的切线交AO 的延长线于点C ,连接CD ,BO . 延长BO 交⊙O 于点E ,交AD 于点F ,连接AE ,DE . (1)求证:CD 是⊙O 的切线; (2)若3AE DE ==,求AF 的长.O ED ABC25.阅读下列材料:2015年中国内地电影市场票房总收入400亿元,动画电影成为了新崛起的热点, 票房占比为11.25%.2014年,中国内地动画电影市场6部破亿,只有一部《熊出没》为国产动画电影, 票房成绩为2.4亿元.而2015年中国内地动画电影市场共8部破亿,国产动画电影占3 部,分别是《大圣归来》,《熊出没2》和《十万个冷笑话》.其中,《大圣归来》以9.55 亿元票房夺冠,《熊出没2》比2014年第一部的票房又增长了20%,《十万个冷笑话》 以1.2亿元票房成绩勉强破亿.另外5部来自海外动画电影,其中美国两部全球热映的 动画电影《超能陆战队》和《小黄人大眼萌》在中国内地只拿下5.26亿元和4.36亿元 票房,而同样来自美国的《精灵旅社2》收获1.2亿元票房,日本的《哆啦A 梦之伴我 同行》和法国的《小王子》分别获得5.3亿和1.58亿元票房收入. 2015年中国内地动画电影市场中,国产动画电影共上映41部,其中票房在1000万元~5000万元、5000万元~1亿元的国产动画电影分别有12部和5部,票房金字塔结构分化更加明显,标志着中国国产动画电影市场的日趋成熟.根据以上材料解答下列问题:(1)2015年中国内地动画电影票房收入为亿元; (2)右图为2015年国产..动画电影票房金字塔,则B =; (3)选择统计表或.统计图将2015年中国内地动画电影市场票房收入前5名的票房成绩表示出来.26.有这样一个问题:探究函数(1)(2)(3)y x x x =---的图象与性质.小东对函数(1)(2)(3)y x x x =---的图象与性质进行了探究.下面是小东的探究过程,请补充完成:(1)函数(1)(2)(3)y x x x =---的自变量x 的取值范围是全体实数; (2)下表是y 与x 的几组对应值.x … 2-1- 0 1 2 3 4 5 6 … y…m24-6-62460…①m =;②若M (7-,720-),N (n ,720)为该函数图象上的 两点,则n =;(3)在平面直角坐标系xOy 中, A (,A A x y ),B (,B A x y -)为该函数图象上的两点,且A 为23x ≤≤范围内的最低点, A 点的位置如图所示. ①标出点B 的位置;②画出函数(1)(2)(3)y x x x =---(04x ≤≤)的图象.27.在平面直角坐标系xOy 中,抛物线224y mx mx m =-+-(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含 C ,D 两点).若过点A 的直线+(0)y kx b k =≠ 与图象G 有两个交点,结合函数的图象,求k 的取值范围.28.在△ABC 中,AB =AC ,∠BAC =90︒,点D 在射线BC 上(与B 、C 两点不重合),以AD 为边作正方形ADEF ,使点E 与点B 在直线AD 的异侧,射线BA 与射线CF 相交于点G . (1)若点D 在线段BC 上,如图1.①依题意补全图1;②判断BC 与CG 的数量关系与位置关系,并加以证明;(2)若点D 在线段BC 的延长线上,且G 为CF 中点,连接GE ,AB=2,则GE 的长为_______,并简述求GE 长的思路.图1 备用图29.在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C不重合的点,点P 关于⊙C 的限距点的定义如下:若P '为 直线PC 与⊙C 的一个交点,满足2r PP r '≤≤,则称P ' 为点P 关于⊙C 的限距点,右图为点P 及其关于⊙C 的限 距点P '的示意图.(1)当⊙O 的半径为1时.①分别判断点M (3,4),N 5(,0)2,T (1,2)关 于⊙O 的限距点是否存在?若存在,求其坐标;②点D 的坐标为(2,0),DE ,DF 分别切⊙O 于点E ,点F ,点P 在△DEF 的 边上.若点P 关于⊙O 的限距点P '存在,求点P '的横坐标的取值范围;(2)保持(1)中D ,E ,F 三点不变,点P 在△DEF 的边上沿E →F →D →E 的方向运动,⊙C 的圆心C 的坐标为(1,0),半径为r .请从下面两个问题中任选一个作答. 温馨提示:答对问题1得2分,答对问题2得1分,两题均答不重复计分.问题1问题2若点P 关于⊙C 的限距点P '存在,且P '随点P 的运动所形成的路径长为r π,则r 的最小值为__________.若点P 关于⊙C 的限距点P '不存在,则r 的取值范围为________.2020-2021学年度第二学期九年级数学期中试卷参考答案题号 1 2 3 4 5 6 7 8 9 10答案B D C C D C A A B B题号11 12 13答案2)1(-ab 5 33712132=+++xxxx题号14 15 16答案所填写的理由需支持你填写的结论. 如:③,理由是:只有③的自变量取值范围不是全体实数预估理由需包含统计图提供的信息,且支撑预估的数据. 如:6.53 ,理由是:最近三年下降趋势平稳四条边都相等的四边形是菱形;菱形的对边平行(本题答案不唯一)三、解答题(本题共72分,第17~26题,每小题5分,第27题7分,第28题7分,第29题8分)17.解:原式3164313=-⨯++-……………………4分43=-.………………………5分解不等式①,得10≤x.………………………2分解不等式②,得7>x.………………………3分∴原不等式组的解集为107≤<x.………………………4分∴原不等式组的所有整数解为8,9,10.………………………5分19.解:原式4312222-++-+-=xxxxx………………………3分32-+=xx.………………………4分∵250x x+-=,∴52=+xx.∴原式=532-=..………………………5分20.证明:∵ 90BAC ∠=︒,∴ 90BAD DAC ∠+∠=︒. ∵ AD BC ⊥, ∴ 90ADC ∠=︒.∴ 90DAC C ∠+∠=︒.∴ BAD C ∠=∠. ………………………2分 ∵ DE 为AC 边上的中线, ∴ DE EC =.∴ EDC C ∠=∠. .………………………4分 ∴ BAD EDC ∠=∠. ………………………5分21.解:设小博每消耗1千卡能量需要行走x 步.………………………1分由题意,得xx 90001012000=+ . ………………………3分 解得 30=x . ………………………4分 经检验,30=x 是原方程的解,且符合题意.答:小博每消耗1千卡能量需要步行30步. ………………………5分22.(1) 证明:∵ 四边形ABCD 为矩形,∴ AC BD =,AB ∥DC .∵ AC ∥BE ,∴ 四边形ABEC 为平行四边形. ………………………2分 ∴ AC BE =.∴ BD BE =. ………………………3分 (2) 解:过点O 作OF ⊥CD 于点F .∵ 四边形ABCD 为矩形, ∴ 90BCD ∠=︒. ∵ 10BE BD ==, ∴ 6CD CE ==. 同理,可得132CF DF CD ===. ∴9EF =. ………………………4分 在Rt △BCE 中,由勾股定理可得8BC =. ∵ OB=OD ,∴ OF 为△BCD 的中位线. ∴ 142OF BC ==. ∴在Rt △OEF 中,4tan 9OF OED EF ∠==. ………………………5分A23. 解:(1)∵(6,)P m 在直线y x =-上,∴6m =-. ………………………1分∵(6,6)P -在双曲线k y x =上, ∴6(6)6k =⨯-=-. ………………………2分图1 图2(2) ∵y x =-向上平移b (0b >)个单位长度后,与x 轴,y 轴分别交于A ,B ,∴(,0),(0,)A b B b . ………………………3分作QH ⊥x 轴于H ,可得△HAQ ∽△OAB .如图1,当点Q 在AB 的延长线上时,∵2BQ AB =,∴3===ABAQ OA HA OB HQ . ∵OA OB b ==, ∴3HQ b =,2HO b =.∴Q 的坐标为(2,3)b b -.由点Q 在双曲线6y x=-上, 可得1b =. ………………………4分 如图2,当点Q 在AB 的反向延长线上时,同理可得,Q 的坐标为(2,)b b -.由点Q 在双曲线6y x=-上,可得3b =综上所述,1b =或3b =. ………………………5分24. (1) 证明:如图,连接OD . ………………………1分∵BC 为⊙O 的切线,∴90CBO ∠=︒.∵AO 平分BAD ∠,∴12∠=∠.∵OA OB OD ==,∴1=4=2=5∠∠∠∠.∴BOC DOC ∠=∠.∴△BOC ≌△DOC .∴90CBO CDO ∠=∠=︒.∴CD 为⊙O 的切线. ……………2分(2) ∵AE DE =,∴AE DE =.∴34∠=∠. ………………………3分∵124∠=∠=∠,∴123∠=∠=∠.∵BE 为⊙O 的直径,∴90BAE ∠=︒.∴123430∠=∠=∠=∠=︒.………………………4分∴90AFE ∠=︒ .在Rt △AFE 中,∵3AE =,︒=∠303,∴332AF =. ………………………5分25. (1) 45;………………………2分(2) 21;………………………3分(3) 2.4(120%) 2.88⨯+=.2015年中国内地动画电影市场票房收入前5名的票房成绩统计表电影票房(亿元) 大圣归来9.55 哆啦A 梦之伴我同行5.3 超能陆战队5.26 小黄人大眼萌4.36 熊出没22.88 ………………………5分或2015年中国内地动画电影市场票房收入前5名的票房成绩统计图………………………5分m=-;………………………1分26. (2) ①60n=;………………………2分②11(3)正确标出点B的位置,画出函数图象. …………………5分27. 解:(1)224=-+-y mx mx m2(21)4=-+-m x x2=--.m x(1)4-.………………………2分∴点A的坐标为(1,4)(2)①由(1)得,抛物线的对称轴为x=1.∵抛物线与x轴交于B,C两点(点B在点C左侧),BC=4,∴ 点B 的坐标为 (1,0)-,点C 的坐标为 (3,0).………………………3分∴ 240m m m ++-=.∴ 1m =.∴ 抛物线的解析式为223y x x =--.……4分② 由①可得点D 的坐标为 (0,3)-.当直线过点A ,D 时,解得1k =-.………5分当直线过点A ,C 时,解得2k =. ………6分结合函数的图象可知,k 的取值范围为10k -≤<或02k <≤. …………7分28. 解:(1) ①补全图形,如图1所示. ………………………1分图1②BC 和CG 的数量关系:BC CG =,位置关系:BC CG ⊥.…………………2分证明: 如图1.∵︒=∠=90,BAC AC AB ,∴︒=∠=∠45ACB B ,︒=∠+∠9021.∵射线BA 、CF 的延长线相交于点G ,∴︒=∠=∠90BAC CAG .∵四边形ADEF 为正方形,∴︒=∠+∠=∠9032DAF ,AF AD =.∴31∠=∠.∴△ABD ≌△ACF .…………………3分∴︒=∠=∠45ACF B .∴45B G ∠=∠=︒,90BCG ∠=︒.∴BC CG =,BC CG ⊥.…………………4分(2) 10GE =.…………………5分思路如下:a . 由G 为CF 中点画出图形,如图2所示.b . 与②同理,可得BD=CF ,BC CG =,BC CG ⊥;c . 由2=AB ,G 为CF 中点,可得2====CD FG CG BC ;d . 过点A 作AM BD ⊥于M ,过点E 作EN FG ⊥于N ,可证△AMD ≌△FNE ,可得1AM FN ==,NE 为FG 的垂直平分线,FE EG =;e . 在Rt △AMD 中,1AM =,3MD =,可得10AD =,即10GE FE AD ===. ……7分29.解:(1)①点M ,点T 关于⊙O 的限距点不存在;点N 关于⊙O 的限距点存在,坐标为(1,0).………………………2分②∵点D 的坐标为(2,0),⊙O 半径为1,DE ,DF 分别切⊙O 于点E ,点F ,∴切点坐标为13()22,,13()22,-.……………3分 如图所示,不妨设点E 的坐标为13()2,,点F 的坐标为13()2,-,EO ,FO 的延长线分别交⊙O 于点'E ,'F ,则13'()2E --,,13'()2F -,. 设点P 关于⊙O 的限距点的横坐标为x .Ⅰ.当点P 在线段EF 上时,直线PO 与''E F 的交点'P 满足2'1≤≤PP ,故点P 关于⊙O 的限距点存在,其横坐标x 满足112x -≤≤-.………5分 Ⅱ.当点P 在线段DE ,DF (不包括端点)上时,直线PO 与⊙O 的交点'P 满足1'0<<PP 或2'3PP <<,故点P 关于⊙O 的限距点不存在.Ⅲ.当点P 与点D 重合时,直线PO 与⊙O 的交点'(1,0)P 满足1'=PP ,故点P 关于⊙O 的限距点存在,其横坐标x =1.综上所述,点P关于⊙O的限距点的横坐标x的范围为112x-≤≤-或x=1.……………………6分(2)问题1:39.………………8分问题2:0 < r < 16.………………7分2020-2021学年度第二学期九年级数学期中试卷一、选择题(每小题3分,共24分)1.3的相反数是()A.﹣3 B.3 C.﹣D.2.不等式组的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<23.如图所示,下列几何体中主视图、左视图、俯视图都相同的是()A.B.C.D.4.如图,在四边形ABCD中.AD=BC.E,F,G分别是AB,CD,AC的中点,若∠DAC=36°,∠ACB=84°,则∠FEG等于()A.20°B.24°C.26°D.15°5.下列计算正确的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a26.若一个圆锥的底面积为4πcm2,高为4cm,则该圆锥的侧面展开图中圆心角为()A.40°B.80°C.120°D.150°7.如图是正方形网格,除A,B两点外,在网格的格点上任取一点C,连接AC,BC,能使△ABC为等腰三角形的概率是()A.B.C.D.8.如图,点B,E是反比例函数y=﹣(x<0)图象上的两点,点C在y轴上,点A,D在x轴上,且四边形OABC和四边形ADEF均为正方形,则点D的横坐标是()A.﹣1﹣B.﹣5+C.﹣2D.﹣1﹣2二、填空题(每小题3分,共24分)9.甲型H1N1流感病毒的直径大约是0.000000081米,将0.000000081米用科学记数法表示为米.10.某校九年级(1)班8名学生的体重(单位:kg)分别为39,43,40,43,45,45,46,43,则这组数据的中位数是.11.分解因式:a3﹣4ab2=.12.甲、乙两人5次射击命中的环数如下:甲:7 9 8 6 10;乙:7 8 9 8 8.则这两人5次射击命中的环数的平均数,方差s甲2s乙2.(填“>”“<”或“=”).13.如果是整数,则正整数n的最小值是.14.如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,连接AE,∠E=36°,则∠ADC 的度数是.15.如图,已知在等边△ABC中,D、E是BC,AC上的点,AE=CD,AD与BE相交于Q,BP丄AD,则的值是.16.如图,已知直线l的解析式是y=x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2…,按此作法继续下去,则点A2014的纵坐标为.三、解答题(每小题8分,共16分)17.先化简,再求值:(1﹣)÷,再选一个你喜欢的整数代入求值.18.如图,已知△ABC,按如下步骤作图:①分别以A,C为圆心,大于AC的长为半径画弧,两弧交于P,Q两点;②作直线PQ,分别交AB,AC于点E,D,连接CE;③过C作CF∥AB交PQ于点F,连接AF.(1)求证:△AED≌△CFD;(2)求证:四边形AECF是菱形.四、解答下列各题(每小题10分,共20分)19.某中学开展以“我最喜欢的职业”为主题的调査活动,并根据收集的数据绘制了如图不完整的统计图.请你根据图中提供的信息,解答下面的问题:(1)求被调査的学生人数;(2)将折线统计图补充完整;(3)求出扇形统计图中公务员部分对应的圆心角的度数.20.在一个口袋里有四个完全相同的小球,把它们分别标号为1,2,3,4,小明和小强采取的摸取方法分别是:小明:随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;小强:随机摸取一个小球记下标号,不放回,再随机摸取一个小球,记下标号.(1)用画树状图(或列表法)分别表示小明和小强摸球的所有可能出现的结果;(2)分别求出小明和小强两次摸球的标号之和等于5的概率.五、解答下列各题(每小题10分,共20分)21.如图是某个园区部分景点(景点A,B,C,D,E)示意图,景点A,D之间是一个荷花池,景点E,D和景点B,D之间正在维修,不能通行.已知AB=400米,BC=l000米,CE=600米,CD⊥AD,∠BDC=45°,∠ABD=15°.请根据以上条件求出荷花池AD的宽度和景点E,D之间的距离.22.如图,AB、BC、CD分别与⊙O切于E、F、G,且AB∥CD.连接OB、OC,延长CO交⊙O于点M,过点M作MN∥OB交CD于N.(1)求证:MN是⊙O的切线;(2)当0B=6cm,OC=8cm时,求⊙O的半径及MN的长.六、解答下列各题(每小题10分,共20分)23.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?24.某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p=﹣0.4m2+2m;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!七、25.在△ABC中,AB=AC,CG⊥BA交BA的延长线于点G,一个等腰直角三角尺按如图①所示的位置摆放.该三角尺的直角顶点为F,一条直角边与AC边在一条直线上,另一条直角边恰好经过点B.(1)在图①中请你通过观察,测量BF与CG的长度,猜想BF与CG满足的数量关系是.(2)当三角尺沿AC方向平移到图②所示的位置时,一条直角边仍与AC边在同一直线上,另一条直角边交直线BC于点D,过点D作DE丄BA于点E,此时请你通过观察、测量DE、DF与CG的长度关系,猜想并写出DE+DF与CG之间满足的数量关系,然后证明你的猜想.(3)当三角尺在(2)的基础上沿AC方向继续平移(点F在射线AC上,且点F与点A、点C不重合)时,直接写出DE、DF与CG之间满足的数量关系,不用说明理由.八、26.如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4.B 为线段OA的中点.直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合).PQ∥y轴与抛物线交于点Q.(1)求经过B、E、C三点的抛物线的解忻式;(2)判断△BDC的形状.并绐出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;(3)若抛物线的顶点为N.连接QN.探究四边形PMNQ能否为菱形?若能,请直接写出点P的坐标;若不能,请说明理由.2020-2021学年度第二学期九年级数学期中试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.3的相反数是()A.﹣3 B.3 C.﹣D.【分析】根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:根据相反数的含义,可得3的相反数是:﹣3.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.不等式组的解集是()A.x>﹣3 B.x<﹣3 C.x>2 D.x<2【分析】先分别求出两个不等式的解集,再求出解集的公共部分即可.【解答】解:,由①得:x>﹣3,由②得:x>2,所以不等式组的解集是x>2.故选C.【点评】本题考查了解一元一次不等式组,关键是求出两个不等式的解集,找出解集的公共部分.3.如图所示,下列几何体中主视图、左视图、俯视图都相同的是()A.B.C.D.【分析】根据三视图的基本知识,分析各个几何体的三视图然后可解答.【解答】解:A、此半球的三视图分别为半圆弓形,半圆弓形,圆,不符合题意;B、圆柱的三视图分别为长方形,长方形,圆,不符合题意;C、球的三视图都是圆,符合题意;D、六棱柱的三视图分别为长方形,长方形,六边形,不符合题意.故选C.【点评】本题考查了几何体的三种视图,掌握定义是关键.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.4.如图,在四边形ABCD中.AD=BC.E,F,G分别是AB,CD,AC的中点,若∠DAC=36°,∠ACB=84°,则∠FEG等于()A.20°B.24°C.26°D.15°【分析】根据三角形中位线定理和等腰三角形等边对等角的性质求解即可.【解答】解:∵AD=BC,E,F,G分别是AB,CD,AC的中点,∴GF是△ACD的中位线,GE是△ACB的中位线,∴GF AD,GE BC.又∵AD=BC,∴GF=GE,∠FGC=∠DAC=36°,∠AGE=∠ACB=84°,∴∠EFG=∠FEG,∵∠FGE=∠FGC+∠EGC=36°+(180°﹣84°)=132°,∴∠EFG=(180°﹣∠FGE)=24°.故选:B.【点评】主要考查了三角形中位线定理和等腰三角形的判定与性质.中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.5.下列计算正确的是()A.(﹣2a)2=2a2 B.a6÷a3=a2C.﹣2(a﹣1)=2﹣2a D.a•a2=a2【分析】利用同底数的幂的乘法、除法以及分配律即可求解.【解答】解:A、(﹣2a)2=4a2,选项错误;B、a6÷a3=a3,选项错误;C、正确;D、a•a2=a3,选项错误.故选C.【点评】本题考查同底数幂的除法,分配律,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.6.若一个圆锥的底面积为4πcm2,高为4cm,则该圆锥的侧面展开图中圆心角为()A.40°B.80°C.120°D.150°【分析】根据圆锥底面积求得圆锥的底面半径,然后利用勾股定理求得母线长,根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【解答】解:∵圆锥的底面积为4πcm2,∴圆锥的底面半径为2cm,∴底面周长为4π,∵高为4cm,∴由勾股定理得圆锥的母线长为6cm,设侧面展开图的圆心角是n°,根据题意得:=4π,解得:n=120.故选C.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.7.如图是正方形网格,除A,B两点外,在网格的格点上任取一点C,连接AC,BC,能使△ABC为等腰三角形的概率是()A.B.C.D.【分析】根据已知条件,可知按照点C所在的直线分两种情况:①点C以点A为标准,AB为底边;②点C以点B为标准,AB为等腰三角形的一条边.【解答】解:解:如图,∵AB==,∴①若AB=BC,则符合要求的有:C1,C2,C3,C4,C5,共5个点;②若AB=AC,则符合要求的有:C6,C7,C8共3个点;若AC=BC,则不存在这样格点.∴这样的C点有8个.∴能使△ABC为等腰三角形的概率是.故选D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.如图,点B,E是反比例函数y=﹣(x<0)图象上的两点,点C在y轴上,点A,D在x轴上,且四边形OABC和四边形ADEF均为正方形,则点D的横坐标是()A.﹣1﹣B.﹣5+C.﹣2D.﹣1﹣2【分析】易得点B的坐标,设点E的纵坐标为y,可表示出点E的横纵坐标,代入所给反比例函数即可求得点E的纵坐标,也就求得了点E的横坐标.【解答】解:∵四边形OABC是正方形,点B在反比例函数y=﹣的图象上,∴点B的坐标为(﹣2,2).设点E的纵坐标为y,∴点E的横坐标为(﹣2+y),∴y×(﹣2+y)=﹣4,即y2﹣2y+4=0,即y=﹣1±,∵y>0,∴y=﹣1+,∴点E的横坐标为﹣1++2=﹣1﹣,则点E的横坐标为﹣1﹣,故选:A.【点评】此题主要考查了反比例函数的综合应用中反比例函数的比例系数的意义,突破点是得到点B的坐标,用到的知识点为:在反比例函数图象上的点的横纵坐标的积等于反比例函数的比例系数.二、填空题(每小题3分,共24分)9.甲型H1N1流感病毒的直径大约是0.000000081米,将0.000000081米用科学记数法表示为8.1×10﹣8米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00 000 008 1=8.1×10﹣8,故答案为:8.1×10﹣8.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.某校九年级(1)班8名学生的体重(单位:kg)分别为39,43,40,43,45,45,46,43,则这组数据的中位数是43.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将这组数据从小到大的顺序排列:39,40,43,43,43,45,45,46,处于中间位置的那两个数是43,那么由中位数的定义可知,这组数据的中位数是=43.故答案为:43.【点评】本题主要考查了将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错,难度适中.11.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.12.甲、乙两人5次射击命中的环数如下:甲:7 9 8 6 10;乙:7 8 9 8 8.则这两人5次射击命中的环数的平均数,方差s甲2>s乙2.(填“>”“<”或“=”).【分析】分别计算出甲、乙两人的方差,再比较.。
2020-2021深圳市景秀中学九年级数学下期中试卷附答案一、选择题1.若反比例函数kyx(x<0)的图象如图所示,则k的值可以是()A.-1B.-2C.-3D.-42.如图,用放大镜看△ABC,若边BC的长度变为原来的2倍,那么下列说法中,不正确的是().A.边AB的长度也变为原来的2倍;B.∠BAC的度数也变为原来的2倍;C.△ABC的周长变为原来的2倍;D.△ABC的面积变为原来的4倍;3.在Rt△ABC中,∠ACB=90°,AB=5,tan∠B=2,则AC的长为()A.1B.2C.5D.254.如图,已知直线a∥b∥c,直线m、n与直线a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=()A.7B.7.5C.8D.8.55.如图,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,反比例函数y=kx(x>0)的图象经过顶点B,则反比例函数的表达式为()A.y=12xB.y=24xC.y=32xD.y=40x6.如图,在△ABC中,DE∥BC ,12ADDB=,DE=4,则BC的长是()A.8 B.10 C.11 D.127.对于反比例函数y=1x,下列说法正确的是()A.图象经过点(1,﹣1)B.图象关于y轴对称C.图象位于第二、四象限D.当x<0时,y随x的增大而减小8.如图,点D,E分别在△ABC的AB,AC边上,增加下列条件中的一个:①∠AED=∠B,②∠ADE=∠C,③AE DEAB BC=,④AD AEAC AB=,⑤AC2=AD•AE,使△ADE与△ACB一定相似的有()A.①②④B.②④⑤C.①②③④D.①②③⑤9.下列命题是真命题的是()A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:910.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+11.若反比例函数2yx=-的图象上有两个不同的点关于y轴的对称点都在一次函数y=-x+m的图象上,则m的取值范围是()A.22m>B.-22m<C.22-22m m>或<D.-2222m<<12.给出下列函数:①y=﹣3x+2;②y=3x;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③二、填空题13.若点A(m,2)在反比例函数y=的图象上,则当函数值y≥-2时,自变量x的取值范围是____.14.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.15.如图,点D、E、F分别位于△ABC的三边上,满足DE∥BC,EF∥AB,如果AD:DB=3:2,那么BF:FC=_____.16.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.17.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.18.如图所示,在Rt △ABC 中,∠C=90°,BC=1,AC=4,把边长分别为1x ,2x ,3x ,…,n x 的n ()1n ≥个正方形依次放入△ABC 中,则第n 个正方形的边长n x =_______________(用含n 的式子表示).19.已知线段AB 的长为10米,P 是AB 的黄金分割点(AP >BP ),则AP 的长_____米.(精确到0.01米)20.若a b =34,则a b b+=__________. 三、解答题21.如图,在Rt ABC 中,90BAC ∠=,AD BC ⊥于点D ,求证:2AD CD BD =⋅.22.已知:如图,四边形ABCD 的对角线AC 和BD 相交于点E ,AD=DC ,DC 2=DE•DB ,求证:(1)△BCE ∽△ADE ;(2)AB•BC=BD•BE .23.如图,直线y=12x+2与双曲线y=k x相交于点A (m ,3),与x 轴交于点C . (1)求双曲线的解析式;(2)点P 在x 轴上,如果△ACP 的面积为3,求点P 的坐标.24.如图,平面直角坐标系xOy 中,A (2,1),B (3,﹣1),C (﹣2,1),D (0,2).已知线段AB 绕着点P 逆时针旋转得到线段CD ,其中C 是点A 的对应点.(1)用尺规作图的方法确定旋转中心P ,并直接写出点P 的坐标;(要求保留作图痕迹,不写作法)(2)若以P 为圆心的圆与直线CD 相切,求⊙P 的半径25.如图,已知在ABC 中,4AB =,8BC =,D 为BC 边上一点,2BD =.(1)求证:ABD CBA ;(2)过点D 作//DE AB 交AC 于点E ,请再写出另一个与ABD △相似的三角形,并直接写出DE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由图像可知,反比例函数与线段AB 相交,由A 、B 的坐标,可求出k 的取值范围,即可得到答案.【详解】如图所示:由题意可知A (-2,2),B (-2,1),∴1-2⨯2<<-2⨯k ,即4-<<-2k故选C.【点睛】本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.2.B解析:B【解析】【分析】根据相似三角形的判定和性质,可得出这两个三角形相似,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.【详解】解:∵用放大镜看△ABC ,若边BC 的长度变为原来的2倍,∴放大镜内的三角形与原三角形相似,且相似比为2∴边AB 的长度也变为原来的2倍,故A 正确;∴∠BAC 的度数与原来的角相等,故B 错误;∴△ABC 的周长变为原来的2倍,故C 正确;∴△ABC 的面积变为原来的4倍,故D 正确;故选B【点睛】本题考查了相似三角形的性质,相似三角形的周长之比等于相似比,面积之比等于相似比的平方.3.B解析:B【解析】【分析】根据正切的定义得到BC=12AC,根据勾股定理列式计算即可.【详解】在Rt△ABC中,∠ACB=90°,tan∠B=2,∴ACBC=2,∴BC=12 AC,由勾股定理得,AB2=AC2+BC2)2=AC2+(12AC)2,解得,AC=2,故选B.【点睛】本题考查的是锐角三角函数的定义、勾股定理,掌握锐角A的对边a与邻边b的比叫做∠A的正切是解题的关键.4.B解析:B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.5.C解析:C【解析】【分析】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,根据菱形性质得出OA=BC=AB=OC ,AB ∥OC ,OA ∥BC ,求出∠AOM=∠BCN ,OM=3,AM=4,OC=OA=AB=BC=5,证△AOM ≌△BCN ,求出BN=AM=4,CN=OM=3,ON=8,求出B 点的坐标,把B 的坐标代入y=kx 求出k 即可.【详解】过A 作AM ⊥x 轴于M ,过B 作BN ⊥x 轴于N ,则∠AMO=∠BNC=90°,∵四边形AOCB 是菱形,∴OA=BC=AB=OC,AB ∥OC,OA ∥BC ,∴∠AOM=∠BCN ,∵A(3,4),∴OM=3,AM=4,由勾股定理得:OA=5,即OC=OA=AB=BC=5,在△AOM 和△BCN 中AMO BNC AOM BCN OA BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BCN(AAS),∴BN=AM=4,CN=OM=3,∴ON=5+3=8,即B 点的坐标是(8,4),把B 的坐标代入y=kx 得:k=32,即y=32x, 故答案选C.【点睛】 本题考查了菱形的性质,解题的关键是熟练的掌握菱形的性质.6.D解析:D【解析】【分析】根据AD DB =12,可得AD AB =13,再根据DE ∥BC ,可得DE BC =AD AB ; 接下来根据DE=4,结合上步分析即可求出BC 的长.【详解】 ∵AD DB =12, ∴AD AB =13, ∵在△ABC 中,DE ∥BC , ∴DE BC =AD AB =13. ∵DE=4,∴BC=3DE=12.故答案选D.【点睛】 本题考查了平行线分线段成比例的知识,解题的关键是熟练的掌握平行线分线段成比例定理.7.D解析:D【解析】A 选项:∵1×(-1)=-1≠1,∴点(1,-1)不在反比例函数y=1x的图象上,故本选项错误;B 选项:反比例函数的图象关于原点中心对称,故本选项错误;C 选项:∵k=1>0,∴图象位于一、三象限,故本选项错误;D 选项:∵k=1>0,∴当x <0时,y 随x 的增大而减小,故是正确的.故选B . 8.A解析:A【解析】①AED B ∠=∠,且DAE CAB ∠=∠,∴ADE ACB ∽,成立.②ADE C ∠=∠且DAE CAB ∠=∠,∴ADE ACB ∽,成立. ③AE DE AB BC=,但AED 比一定与B 相等,故ADE 与ACD 不一定相似. ④AD AE AC AB=且DAE CAB ∠=∠, ∴ADE ACB ∽,成立.⑤由2AC AD AE =⋅,得AC AE AD AC=无法确定出ADE , 故不能证明:ADE 与ABC 相似.故答案为A .点睛:本题考查了相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.9.B解析:B【解析】【分析】根据相似三角形的性质分别对每一项进行分析即可.【详解】解:A 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题;B 、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题;C 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;D 、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题;故选B .【点睛】此题考查了命题与定理,用到的知识点是相似三角形的性质,关键是熟练掌握有关性质和定理.10.D解析:D【解析】【分析】设点B 的横坐标为x ,然后表示出BC 、B′C 的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B 的横坐标为x ,则B 、C 间的横坐标的长度为﹣1﹣x ,B′、C 间的横坐标的长度为a+1,∵△ABC 放大到原来的2倍得到△A′B′C ,∴2(﹣1﹣x )=a+1,解得x =﹣12(a+3), 故选:D .本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.11.C解析:C【解析】【分析】 根据题意可知反比例函数2y x =-的图象上的点关于y 轴的对称的点在函数2y x =上,由此可知反比例函数2y x=的图象与一次函数y=-x+m 的图象有两个不同的交点,继而可得关于x 的一元二次方程,再根据根的判别式即可求得答案.【详解】 ∵反比例函数2y x =-上有两个不同的点关于y 轴对称的点在一次函数y =-x +m 图象上, ∴反比例函数2y x=与一次函数y =-x +m 有两个不同的交点, 联立得2y x y x m ⎧=⎪⎨⎪=-+⎩,消去y 得:2x m x =-+, 整理得:220x mx -+=,∵有两个不同的交点∴220x mx -+=有两个不相等的实数根,∴△=m 2-8>0,∴m >m <故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,关于x 轴、y 轴对称的点的坐标,熟练掌握相关内容、正确理解题意是解题的关键.12.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案. 详解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误;②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项错误; ③y =2x 2,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确;④y =3x ,当x >1时,函数值y 随自变量x 增大而减小,故此选项正确.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.二、填空题13.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(解析:x≤-2或x>0【解析】【分析】先把点A(m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A点关于原点的对称点A’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】把点A(m,2)代入y=,得A(2,2),∵点A(2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x的取值范围为x≤-2或x>0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性.14.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.15.3:2【解析】因为DE∥BC所以因为EF∥AB所以所以故答案为:3:2解析:3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 16.3【解析】试题分析:如图∵CD ∥AB ∥MN ∴△ABE ∽△CDE △ABF ∽△MNF ∴即解得:AB=3m 答:路灯的高为3m 考点:中心投影解析:3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF ,∴,CD DE FN MN AB BE FB AB ==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.17.cm 【解析】【分析】将杯子侧面展开建立A 关于EF 的对称点A′根据两点之间线段最短可知A′B 的长度即为所求【详解】解:如答图将杯子侧面展开作A 关于EF 的对称点A′连接A′B 则A′B 即为最短距离根据勾股解析:cm .【解析】【分析】将杯子侧面展开,建立A 关于EF 的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A 关于EF 的对称点A′,连接A′B ,则A′B 即为最短距离.根据勾股定理,得(cm ).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.18.【解析】【分析】根据正方形的对边平行证明△BDF∽△BCA 然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长同理利用前两个小正方形上方的三角形相似根据相似三角形对应边成比例列出比例式 解析:4()5n 【解析】【分析】根据正方形的对边平行证明△BDF ∽△BCA ,然后利用相似三角形对应边成比例列出比例式即可求出第1个正方形的边长,同理利用前两个小正方形上方的三角形相似,根据相似三角形对应边成比例列出比例式即可求出前两个小正方形的边长的关系,以此类推,找出规律便可求出第n 个正方形的边长.【详解】解:如下图所示,∵四边形DCEF 是正方形,∴DF ∥CE ,∴△BDF ∽△BCA ,∴DF :AC=BD :BC ,即x 1:4=(1-x 1):1解得x 1= 45, 同理,前两个小正方形上方的三角形相似,112121-=-x x x x x同理可得,113231,-=-x x x x x 解得:33121==x x x x以此类推,第n 个正方形的边长1n 45=⎛⎫= ⎪⎝⎭n n x x . 故答案为:4()5n【点睛】本题考查了正方形的性质,相似三角形的判定与性质,解题的关键是根据相似三角形对应边成比例找出后面正方形的边长与第一个正方形的边长的关系. 19.18【解析】【分析】根据黄金分割定义:列方程即可求解【详解】解:设AP 为x 米根据题意得整理得x2+10x ﹣100=0解得x1=5﹣5≈618x2=﹣5﹣5(不符合题意舍去)经检验x =5﹣5是原方程的解析:18【解析】【分析】 根据黄金分割定义:AP BP AB AP=列方程即可求解. 【详解】解:设AP 为x 米,根据题意,得 x 1010x x-= 整理,得x 2+10x ﹣100=0解得x 1=﹣5≈6.18,x 2=﹣5(不符合题意,舍去)经检验x =5是原方程的根,∴AP 的长为6.18米.故答案为6.18.【点睛】本题考查了黄金分割的概念,熟练掌握黄金比是解答本题的关键.20.【解析】【分析】由比例的性质即可解答此题【详解】∵∴a=b ∴=故答案为【点睛】此题考查了比例的基本性质熟练掌握这个性质是解答此题的关键 解析:74【解析】【分析】由比例的性质即可解答此题.∵34a b =, ∴a=34b , ∴a b b +=3744b b b b b+= , 故答案为74【点睛】 此题考查了比例的基本性质,熟练掌握这个性质是解答此题的关键.三、解答题21.见解析【解析】【分析】根据相似三角形的判定方法证明Rt △ABD ∽Rt △ADC ,即可得到BD :AD=AD :CD , 再利用比例性质可得.【详解】∵BD AC ⊥,∴ADB CDB 90∠∠==,∴BAD 90∠∠+=B∵90BAC ∠=∴90B C ∠+∠=∴BAD ∠∠=C∴Rt ABD Rt CAD ∽,∴BD :AD=AD :CD ,∴2AD CD BD =⋅.【点睛】考查了直角三角形性质的应用,判定三角形相似是解题的关键.22.(1)见解析;(2)见解析.【解析】【分析】(1)由∠DAC =∠DCA ,对顶角∠AED =∠BEC ,可证△BCE ∽△ADE .(2)根据相似三角形判定得出△ADE ∽△BDA ,进而得出△BCE ∽△BDA ,利用相似三角形的性质解答即可.【详解】证明:(1)∵AD=DC ,∴∠DAC=∠DCA,∵DC2=DE•DB,∴=,∵∠CDE=∠BDC,∴△CDE∽△BDC,∴∠DCE=∠DBC,∴∠DAE=∠EBC,∵∠AED=∠BEC,∴△BCE∽△ADE,(2)∵DC2=DE•DB,AD=DC∴AD2=DE•DB,同法可得△ADE∽△BDA,∴∠DAE=∠ABD=∠EBC,∵△BCE∽△ADE,∴∠ADE=∠BCE,∴△BCE∽△BDA,∴=,∴AB•BC=BD•BE.【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解.23.(1)6yx(2)(-6,0)或(-2,0).【解析】分析:(1)把A点坐标代入直线解析式可求得m的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(t,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于t 的方程,则可求得P点坐标.详解:(1)把A点坐标代入y=12x+2,可得:3=12m+2,解得:m=2,∴A(2,3).∵A点也在双曲线上,∴k=2×3=6,∴双曲线解析式为y=6x;(2)在y=12x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵点P在x轴上,∴可设P点坐标为(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=12×3|t+4|.∵△ACP的面积为3,∴12×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P点坐标为(﹣6,0)或(﹣2,0).点睛:本题主要考查函数图象的交点,掌握函数图象的交点坐标满足每个函数解析式是解题的关键.24.(1)如图点P即为所求.见解析;(2)以P为圆心的圆与直线CD相切,⊙P的半径为655.【解析】【分析】(1)作相对AC,BD的垂直平分线,两条垂直平分线的交点P即为所求.(2)作PE⊥CD于E,求出点E的坐标,利用相似三角形的性质求出PE即可.【详解】(1)如图点P即为所求.(2)作PE⊥CD于E,设AC交PD于K.∵∠CDO=∠PDE,∠CKD=∠PED=90°,∴△COD∽△PED,∴COPE=CDPD,∴2PE=53,∴PE 65,∵以P为圆心的圆与直线CD相切,∴⊙P的半径为655.【点睛】本题考查作图,相似三角形的判定和性质,切线的性质等知识,解题的关键是熟练掌握基本知识.25.(1)证明见解析;(2)△CDE ,3DE =.【解析】【分析】(1)中根据图中B 为公共角,找到三角形相似的“夹角相等”的条件,只要证明AB BD BC AB=,依据是“两边对应成比例,且夹角相等,两三角形相似 ;(2)由//DE AB 可得出C ABD ED ∽,在(1)中ABD CBA ,所以可得EDC CBA ,于是可构建与线段DE 有关的比例式,即可求出DE 的长 .【详解】(1)【证明】∵4AB =,8BC =,2BD =,12AB BD CB BA ∴==. ∵ABD CBA ∠=∠, ∴ABD CBA . (2)【解】由(1)知,ABD CBA .∵//DE AB , ∴CDE CBA ,∴ABD CDE . 由CDE CBA ,得DE DC BA BC =, 即8248DE -=, 解得3DE =.【点睛】本题考查的知识点是相似三角形的判定,关键是根据题中的线段的长和图形的特点,通过仔细观察和计算寻找缺少的条件.。