电离层物理与电波传播3
- 格式:ppt
- 大小:2.34 MB
- 文档页数:40
无线电波和无线电通信责编:武霞【学习目标】1.知道无线电波可以在真空中传播,它的速度等于光速。
知道无线电波的波长、频率以及它们之间的定性关系。
2.知道无线电波的几个主要波段,它们的传播特点和主要用途。
3.知道什么是模拟信号、调频、调幅和调谐。
【要点梳理】要点一、无线电波1、定义:电磁波中用于广播、电视和移动电话的频率为数百千赫至数百兆赫的那部分,叫作无线电波。
2.无线电波主要可分为四个波段:长波、中波、短波、微波。
要点诠释:1.无线电波是电磁波的一种,电磁波是由变化的磁场产生的,它的频率范围为30HZ~1019HZ。
无线电波、红外线、可见光、紫外线、X射线都电磁波,但它们处在不同的频率范围2.无线电波与声波一样也有不同的频率,不同的频率对应不同的波长,频率越高,波长越短,反之,频率越低,波长越长。
要点二、无线电波的传播及应用1.无线电波传播的特点:(1)与光的传播相同,不需要介质,可在真空中传播,在真空中的传播速度等于光速c=3×108m/s,在空气中的传播速度与在真空中的传播速度几乎相同。
(2)无线电波也具有能量,但在沿地球表面附近的空间传播时能量会不断损失,而且频率越高(波长越短)能量损失越大;频率越低(波长越长)能量损失越小。
(3)频率越高,传递信息就越多。
(4)波长越长,如长波、中波,能绕过障碍物的本领越大。
波长短,如短波、微波,遇较大的障碍物不能绕过,会受到阻挡。
(5)微波遇到障碍物会发生反射,还能穿过电离层。
2.不同频率范围的无线电波的传播特点和应用特点应用长波适宜沿地球表面传播。
传播距离远,稳定性和抗干扰性好。
发射长波的设备庞大,造价高。
因此长波很少用于无线电广播。
长波多用于潜艇、远洋航行的通信。
中波白天中波被电离层几乎全部吸收,因此,适宜沿地球表面传播,晚上可依靠电离层的反射来传播。
所以昼夜信号强度差比较大中波多用于城市广播、电报通信。
收音机上的中波段(MW)就是接受中波的无线电波。
第一章无线电波的发射与接收我们在物理学的学习中知道,通有交流电的导线,会在它周围产生变化的磁场,变化的磁场又能在它周围引起变化的电场,而变化的电场还将在它周围更远的空间引起变化的磁场。
这种不断交替变化,由近及远传播的电磁场就叫电磁波。
无线电技术中使用的电磁波叫无线电波。
无线电广播、电视广播都是利用无线电波进行传播信号的。
现代通讯离不开无线电波。
本章将介绍无线电波的波长、频率、波段划分,以及它的发射与接收。
第一节无线电波的波长、频率与波段划分一、无线电波波段的划分表1-1无线电波波段的划分理论和实验都可以证明,无线电波在真空中的传播速度跟实验测得的光速相等,即C=3.0×108m/s无线电波在一个振荡周期T内传播的距离叫做波长。
波长、频率和无线电波传播速度c的关系为λ=c/f式中:λ一无线电波的波长,单位m ;c一无线电波的传播速度,单位m/s;f一无线电波的频率,单位HZ无线电波的波长从不到一毫米到几十千米(频率范围由几十千赫到几十万兆赫)。
通常根据波长〔频率)把无线电波划分成几个波段,如表1-1所示。
二、无线电波的传播无线电波是横波,即电场和磁场的方向都跟波的传播方向垂直。
在无线电波中各处的电场强度和磁感应强度的方向也总是互相垂直的,如图1-1所示。
不同波长的电磁波,传播特性不相同;其传播方式大致可分为地波、天波和空间波三种形式。
(一)地波沿地球表面空间向外传播的无线电波叫地波,如图1-2(a)所示。
波具有衍射特性,当无线电波的波长大于或相当于山坡、建筑物等障碍物的尺寸时,它可以绕过障碍物继续向前传播。
地球是导体,地波沿地面传播时,地球表面因电磁感应而产生感应电流,因此要消耗能量,并且能量损耗随频率升高而增大。
考虑到能量损失,只有中、长波才利用地波方式传播。
由于地波传播稳定可靠,在超远程无线电通讯和导航等方面多采用中长波。
图1-1无线电波传播示意图(二)天波依靠电离层的反射作用传播的无线电波叫做天波,如图1-2(b〕所示。
浅谈电离层对短波传播及选频的影响作者:曹文丽来源:《中国科技博览》2019年第01期中图分类号:TP3 文献标识码:A 文章编号:1009-914X(2019)01-0198-01电离层的各种变化都将对短波无线电通信带来不同程度的影响,轻则通信质量下降,重则通信中断。
短波通信按传播途径可分成地波和天波两种基本传播途径,由于电离层不断变化,使通过天波传播的短波信道并不稳定,影响短波通信的效果。
在短波电台灵敏度和发射功率、天线架设、地形地物均已确定的情况下,选择工作频率成为决定通信质量的唯一可选因素。
本文主要就短波通信特别是短波天波通信的电波传播特点和工作频率选择问题作了简要的探讨。
一、短波的地波传播利用地波路径,可在一定距离内建立稳定可靠的短波通信联络。
其有效距离主要取决于短波电台的发射功率、天线的架设方式、传播路径上的地形地物的影响及使用的载波频段。
鉴于频率越低大地对电波的吸收越小,短波电台的地波通信宜选用短波频率的低段。
对于短波通信而言,其噪声主要来自产生于大气的天电和周围工业设备的电气干扰。
一般来说,在一方天线高架的情况下,选择合适的载波频率,小型短波电台利用地波路径可在数十公里范围内建立可靠的通信联络。
二、短波的天波传播(1)关于电离层:短波无线电远程通信依赖于高空电离层反射的天波路径,了解电离层的生成、结构和变化规律,了解电离层不同时段对不同频段的短波段电波的反射规律,对短波无线电通信有至关重要的意义。
电离层中电子密度呈层状分布,对短波通信影响大的有 D 层、E 层、F1 层、F2 层,各层的电子密度 D〈 E〈 F1〈F2 :由于电离层的形成主要是太阳紫外线照射的结果,因此电离层的电子密度与阳光强弱密切相关,随地理位置、昼夜、季节和年度变化,其中昼夜变化的影响最大。
(2)电离层对电波的折射和反射:电离层可看成具有一定介电常数的媒质,电波进入电离层会发生折射。
折射率与电子密度和电波频率有关。
无线电波的传播特性无线电波的传播特性传播特性(一)移动通信的一个重要基础是无线电波的传播,无线电波通过多种方式从发射天线传播到接收天线,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.为了更好地说明移动通信的问题,我们先介绍一下电波的各种传播方式:1.表面波传播表面波传播是指电波沿着地球表面传播情况.这时电波是紧靠着地面传播的,地面的性质,地貌,地物等的情况都会影响着电波的传播.当电波紧靠着实际地面--起伏不平的地面传播时,由于地表面是半导体,因此一方面使电波发生变化和引起电波的吸收.另一方面由于地球表面是球型,使沿它传播的电波发生绕射.从物理课程中我们已经知道,只有当波长与障碍物高度可以比较的时候,才能有绕射功能.由此可知,在实际情况中只有长波,中波以及短波的部分波段能绕过地球表面的大部分障碍到达较远的地方.在短波的部分波段和超短波,微波波段,由于障碍高度比波长大,因而电波在地面上不绕射,而是按直线传播.2.天波传播短波能传至地球上较远的地方,这种现象并不能用绕射或其他的现象做解释.直到1925年,利用在地面上垂直向上发射一个脉冲,并收到其反射回波,才直接证明了高层大气中存在电离层.籍此电离层的反射作用,电波在地面与电离层之间来回反射传播至较远的地方.我们把经过电离层反射到地面的电波叫天波.电离层是指分布在地球周围的大气层中,60km以上的电离区域.在这个区域中,存在有大量的自由电子与正离子,还可能有大量的负离子,以及未被电离的中性离子.发现电离层后,尤其近三四十年来,随着火箭与卫星技术的发展,利用这些工具对电离层进行了深入的试验和研究.当前电离层的研究已经成为空间物理的一个重要的组成部分,其研究的空间范围和频段也日益宽广.在电离层中,当被调制的无线电波信号在电离层内传播时,组成信号的不同频率成分有着不同的传播速度.所以波形会发生失真.这就是电离层的色散性.同时,由于自由电子受电波电场作用而发生运动,所以当电波经过电离层,其能量会被吸收一部分.而且,从电离层吸收电波的规律看,若使用电波的工作频率太低,则电离层对电波的吸收作用很强.所以天波传播中有一个最低可用频率,低于这个频率,就会因为电离层对电波的吸收作用太大而无法工作.传播特性(二)1.空间波传播当发射以及接收天线架设得较高的时候,在视线范围内,电磁波直接从发射天线传播到接收天线,另外还可以经地面反射而到达接收天线.所以接收天线处的场强是直接波和反射波的合成场强,直接波不受地面影响,地面反射波要经过地面的反射,因此要受到反射点地质地形的影响.空间波在大气的底层传播,传播的距离受到地球曲率的影响.收,发天线之间的最大距离被限制在视线范围内,要扩大通信距离,就必须增加天线高度.一般地说,视线距离可以达到50km左右.空间波除了受地面的影响以外,还受到低空大气层即对流层的影响.移动通信中,电波主要以空间波的形式传播.类似的还有微波传播.2.散射传播大气对流层中,除了有规则的片状或层状气流外,还存在有不规则的,这类似于水流中漩涡的不均匀体.相应的,在电离层中则有电子密度的不均匀性.当天线辐射出去的电波,投射到这些不均匀体的时候,类似于光的散射和反射现象,电波发生散射或反射,一部分能量传播到接收点的这种传播称为散射传播.这种通信方式通信距离可达300-800km,适用于无法建立微波中继站的地区,例如用于海岛之间和跨越湖泊,沙漠,雪山等地区.但是,由于散射信号相当微弱,所以散射传播接收点的接收信号也相当微弱,即传播损耗很大,这样,散射通信必须采用大功率发射机,高灵敏度接收机和高增益天线.3.外层空间传播电磁波由地面发出(或返回),经低空大气层和电离层而到达外层空间的传播,如卫星传播,宇宙探测等均属于这种远距离传播.由于电磁波传播的距离很远,且主要是在大气以外的宇宙空间内进行,而宇宙空间近似于真空状态,因而电波在其中传播时,它的传输特性比较稳定.我们可以把电波穿过电离层外面的空间传播,基本上当作自由空间中的传播来研究.至于电波在大气层中传播所受到的影响,可以在考虑这一简单的情况基础上加以修正. 传播特性(三)前面我们对电磁波的各种传播方式做了介绍,在这里,我们简单地介绍一下各个波段的传播特点,我们按照无线电波的波长人为地把电波分为长波(波长1000米以上),中波(波长100-1000米),短波(波长10-100米),超短波和微波(波长为10米以下)等等.各个波段的传播特点如下:1.长波传播的特点由于长波的波长很长,地面的凹凸与其他参数的变化对长波传播的影响可以忽略.在通信距离小于300km时,到达接收点的电波,基本上是表面波.长波穿入电离层的深度很浅,受电离层变化的影响很小,电离层对长波的吸收也不大.因而长波的传播比较稳定.虽然长波通信在接收点的场强相当稳定,但是它有两个重要的缺点:①由于表面波衰减慢,发射台发出的表面波对其他接受台干扰很强烈.②天电干扰对长波的接收影响严重,特别是雷雨较多的夏季.2.中波传播的特点中波能以表面波或天波的形式传播,这一点和长波一样.但长波穿入电离层极浅,在电离层的下界面即能反射.中波较长波频率高,故需要在比较深入的电离层处才能发生反射.波长在3000-2000米的无线电通信,用无线或表面波传播,接收场强都很稳定,可用以完成可靠的通信,如船舶通信与导航等.波长在2000-200m的中短波主要用于广播,故此波段又称广播波段.3.短波传播的特点与长,中波一样,短波可以靠表面波和天波传播.由于短波频率较高,地面吸收较强,用表面波传播时,衰减很快,在一般情况下,短波的表面波传播的距离只有几十公里,不适合作远距离通信和广播之用.与表面波相反,频率增高,天波在电离层中的损耗却减小.因此可利用电离层对天波的一次或多次反射,进行远距离无线电通信.4.超短波和微波传播的特点超短波,微波的频率很高,表面波衰减很大;电波穿入电离层很深,甚至不能反射回来,所以超短波,微波一般不用表面波,天波的传播方式,而只能用空间波,散射波和穿透外层空间的传播方式.超短波,微波,由于他们的频带很宽,因此应用很广.超短波广泛应用于电视,调频广播,雷达等方面.利用微波通信时,可同时传送几千路电话或几套电视节目而互不干扰.超短波和微波在传播特点上有一些差别,但基本上是相同的,主要是在低空大气层做视距传播.因此,为了增大通信距离,一般把天线架高.。
无线电波传播方式与各频段的利用无线电通信是利用电磁波在空间传送信息的通信方式。
电磁波由发射天线向外辐射出去,天线就是波源。
电磁波中的电磁场随着时间而变化,从而把辐射的能量传播至远方。
无线电波共有以下七种传播方式(附图为无线电波传播方式示意图)。
(1)波导方式当电磁波频率为30kHz以下(波长为10km以上)时,大地犹如导体,而电离层的下层由于折射率为虚数,电磁波也不能进入,因此电磁波被限制在电离层的下层与地球表面之间的空间内传输,称为波导传波方式;(2)地波方式沿地球表面传播的无线电波称为地波(或地表波),这种传播方式比较稳定,受天气影响小;(3)天波方式射向天空经电离层折射后又折返回地面(还可经地面再反射回到天空)的无线电波称为天波,天波可以传播到几千公里之外的地面,也可以在地球表面和电离层之间多次反射,即可以实现多跳传播。
(4)空间波方式主要指直射波和反射波。
电波在空间按直线传播,称为直射波。
当电波传播过程中遇到两种不同介质的光滑界面时,还会像光一样发生镜面反射,称为反射波。
(5)绕射方式由于地球表面是个弯曲的球面,因此电波传播距离受到地球曲率的限制,但无线电波也能同光的绕射传播现象一样,形成视距以外的传播。
(6)对流层散射方式地球大气层中的对流层,因其物理特性的不规则性或不连续性,会对无线电波起到散射作用。
利用对流层散射作用进行无线电波的传播称为对流层散射方式。
(7)视距传播指点到点或地球到卫星之间的电波传播。
附表给出了从甚低频(VLF)至极高频(EHF)频段的电波传播方式、传播距离、可用带宽以及可能形成的干扰情况。
序频段名号称 4 5 甚低频(VLF)低频频段范围 3-30kHz 传播可用干扰传播距离方式带宽量波导数千公里利用极有宽扩世界范围长距离无线限展电导航 30-300kHz 地波数千公里很有宽扩长距离无线电民航战(LF) 6 7 天波限展略通信中频地波宽扩中等距离点到点广播300-3000kHz 几千公里适中(MF)天波展和水上移动高频(HF) 3-30MHz 天波几千公里宽有限长和短距离点到点全的球广播,移动空间波对短和中距离点到点移甚高频几百公里有限8 30-300MHz 流层很宽动,LAN声音和视频广(VHF)以内的散射播个人通信绕射空间波对短和中距离点到点移特高频流层100公里有限9 300-3000MHz 很宽动,LAN声音和视频广(UHF)散射以内的播个人通信卫星通信绕射祝距超高频(SHF)短和中距离点到点移通常30公里左动LAN声音和视频广视距很宽是有右播移动/个人通信卫限的星通信 10 3-30GHz 通常短和中距离点到点移极高频 11 30-3000GHz 视距 20公里很宽是有动,LAN个人通信卫星(EHF)限的通信在确定无线电系统实际通信距离、覆盖范围和无线电干扰影响范围时,无线电传播损耗是一个关键参数。
中山大学硕士学位论文卫星通信受电离层的影响与改善方法姓名:张啸飞申请学位级别:硕士专业:电子与通信工程指导教师:龙云亮20061108拟调制方式有线性调制——双边带调幅(AM)、抑制载波双边带调幅(DSB.SC)、单边带调幅(SSB),还有模拟角调制——分为调频(FM)和调相(PM),FM为最常用的卫星模拟调制方式.十年前FM模拟电视传输还占有很大的市场份额。
随着微电子技术、视音频压缩技术、数据流压缩技术、纠错技术、调制技术的发展,模拟调制节省带宽的优势已经变成了明显的劣势,而抗干扰方面更无法与数字调制相比拟,因此渐渐被数字调制所取代。
要使用数字调制,必须保证基带信号为数字信号,如果信号源是模拟信号,则要先进行抽样和量化实现A/D转换,再经编码压缩后,方可进行数字调制。
数字基带信号必须经过调制进行D/A转换才能在带宽受限的卫星信道中传送,基本数字调制方式有幅移键控(ASK)、频移键控(FSK)和相移监控(PSK)三种。
在恒参条件下,PSK不仅更能有效地利用信道频带,而且有较高的抗噪声干扰能力,因此现在INTELSAT在SCPC、TDMA、IDR等卫星通信系统中都广泛使用QPSK调制技术。
QPSK信号的解调方式有两种:相干解调和非相干解调,相干解调性能较好,在卫星通信中应用更为普遍。
下一代数字卫星广播DVB.S2标准还将使用更节省带宽的8PSK和16QAM技术,其有效性(相同带宽可传输的比特率)分别接近QPSK的1.5和2倍,即在传输相同比特率下只需要QPSK的约70%和50%的带宽,但它们的误码性能不及QPSK好,8PSK是当前比较合适的平衡点,已经在部分高清晰度电视(HDTV)卫星广播中使用;另外,使用修正恒模(MCMA)等算法来修正相位失真可有效降低PSK解调的误码率,从而提高相位调制解调在电离层等原因导致的电波相位失真情形下的抗干扰能力,如图1.3所示,Tandberg解码器使用的PrekorDynamiePre.correction(动态预纠错)技术处理失真的]6QAM信号的星座图,可见该技术能够有效修正数字相幅调制解调的相位和幅度失真。
第3、4节电磁波谱电磁波的应用无线电波的发射、传播和接收1.在电磁波谱中波长由长到短的排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。
不同的电磁波,频率不同,特性不同,产生机理也不同。
2.要有效地发射电磁波必须具备两个条件:(1)开放电路,(2)足够高的振荡频率。
3.将要传递的信号加到载波上的过程叫调制,调制有调幅和调频两种。
对应学生用书P44电磁波谱电磁波的应用[自读教材·抓基础]1.电磁波谱按波长(或频率)的顺序把所有电磁波排列起来,称之为电磁波谱。
按照波长从长到短依次排列为:无线电波、红外线、可见光、紫外线、X射线、γ射线。
2.不同电磁波的比较波长、频率特点应用无线电波波长大于可见光许多自然过程也辐射无线电波广播和通讯,天体卫星研究红外线所有物体都会发射红外线,热物体的红外线辐射比冷物体强红外线摄影红外线遥感可见光复色光波长(红)――→大小小大(紫)频率⎭⎪⎬⎪⎫太空黑暗天空明亮――→原因没有大气,天空蓝色――→原因短波散射,傍晚阳光红色――→原因短波吸收紫外线能量较高灭菌消毒促进人体对钙的吸收,利用荧光效应防伪X射线对生命物质有较强作用,过量会引起病变,穿透本领强检查人体内部器官、零件内部缺陷γ射线能量很高,破坏生命物质治疗疾病探测金属部件内部缺陷[跟随名师·解疑难]1.电磁波的共性(1)它们在本质上都是电磁波,它们的行为服从相同的规律,各波段之间的区别并没有绝对的意义。
(2)都遵守公式v=λf,它们在真空中的传播速度都是c=3.0×108 m/s。
(3)它们的传播都不需要介质。
(4)它们都具有反射、折射、衍射和干涉的特性。
2.电磁波的个性(1)不同电磁波的频率或波长不同,表现出不同的特性,波长越长越容易产生干涉、衍射现象,波长越短穿透能力越强。
(2)同频率的电磁波,在不同介质中速度不同。
不同频率的电磁波,在同一种介质中传播时,频率越大折射率越大,速度越小。
天线与电波传播天线部分:引言天线是一种用来发射或接收电磁波的器件,是任何无线电系统中的基本组成部分。
换句话说,发射天线将传输线中的导行电磁波转换为“自由空间”波,接收天线则与此相反。
于是信息可以在不同地点之间不通过任何连接设备传输,可用来传输信息的电磁波频率构成了电磁波谱。
人类最大的自然资源之一就是电磁波谱,而天线在利用这种资源的过程中发挥了重要的作用。
第一讲:传输线基础知识在通信系统中,传输线(馈线)是连接发射机与发射天线或接收机与接收天线的器件。
为了更好的了解天线的性能与参数,首先简单介绍有关传输线的基础知识。
传输线根据频率的使用范围区分有两种类型:1、低频传输线;2、微波传输线。
这里重点介绍微波传输线中无耗传输线的基础知识,主要包括反映传输线任一点特性的参量:反射系数Γ、阻抗Z 和驻波比ρ。
一、反射系数Γ这里定义传输线上任一点处的电压反射系数为()()''''''''2()()()00j z j z j zl U z z U z U z e Uzee βββ-+--+-Γ=====Γ (1)由上式可以看出,反射系数的模是无耗传输线系统的不变量,即 ()'l z Γ=Γ (2) 此外,反射系数呈周期性,即()()''/2g z m z λΓ+=Γ (3) 二、阻抗Z这里定义传输线上任一点处的阻抗为 ()()()'''U z Z z I z =(4)经过一系列的推导,得出阻抗的最终表达式()''00'0tan tan l l Z jZ z Z z Z Z jZ zββ+=+ (5) 三、驻波比ρ(VSWR)这里定义传输线上任一点处的驻波比为 ()()'max 'minU z U zρ=(6)经过一系列的推导,得出阻抗的最终表达式 11l lρ+Γ=-Γ (7)此外,这里还给出反射系数与阻抗的关系表达式()()()()()()''''''011z Z z Z z Z z Z z Z z Z +Γ=-Γ-Γ=+ (8)这里还简单介绍一下传输线理论所要用到的一些基本参数,例如特性阻抗0Z 以与相位常数β,具体表达式如下: 02,L Z LC C πβωλ===(9) 此外,不同的系统有不同的特性阻抗0Z ,为了统一和便于研究,常常提出归一化的概念,即阻抗()'0Z z Z 称为归一化阻抗()()''Z z Z z Z =(10)第二讲:基本振子的辐射一、电基本振子的辐射电基本振子(Electric short Dipole)又称电流元,无穷小振子或赫兹电偶极子, 它是指一段理想的高频电流直导线,其长度l 远小于波长λ,其半径a 远小于l ,同时振子沿线的电流I 处处等幅同相。