参数估计
- 格式:ppt
- 大小:454.00 KB
- 文档页数:27
参数估计知识点一、知识概述《参数估计》①基本定义:简单说,参数估计就是通过样本数据去猜总体的一些参数。
比如说,想知道全校学生的平均身高,不可能一个一个去量,那就找一部分学生(样本)量出他们的身高,然后根据这部分学生的身高数据来推测全校学生(总体)的平均身高,这个推测的过程就是参数估计。
②重要程度:在统计学里那可相当重要。
就像要了解一个大群体的情况,直接研究整体往往很难,通过参数估计从样本推测整体的情况就变得可行而且高效。
无论是搞市场调查,还是科学研究,这个工具相当好使。
③前置知识:得有点基本的数学知识,像平均数、方差这些概念要能明白,还得对抽样有点概念,知道怎么从一个大群体里抽取样本出来。
④应用价值:在各种实际场景里都有用。
比如企业想了解消费者对产品的满意度,不可能访谈每个消费者,抽样一部分做参数估计就好了。
还有估算农作物亩产量之类的,都可以用到。
二、知识体系①知识图谱:在统计学里,参数估计是推断统计的一部分,是和假设检验等方法相互联系的。
推断统计主要就是根据样本信息推断总体特征,而参数估计是其中很核心的一部分。
②关联知识:和抽样分布密切相关啊。
抽样分布是参数估计的理论基础,如果不知道抽样分布,那参数估计就像无根之木。
还和概率相关,毕竟在样本中各种数值出现是有概率的。
③重难点分析:掌握难度嘛,开始会觉得有点抽象。
关键在于理解样本和总体之间的关系,以及怎么根据不同的条件选择合适的估计方法。
④考点分析:在统计学考试里常考。
考查方式有直接给样本数据让进行参数估计,或者结合其他知识点,像给出抽样分布然后问参数估计的结果之类的。
三、详细讲解【理论概念类】①概念辨析:参数估计就是根据样本统计量去估计总体参数。
总体参数就是描述总体特征的数值,像总体均值、方差之类的。
样本统计量就是从样本里计算出来的值,比如说样本均值、样本方差等。
②特征分析:不确定性算一个特点吧。
毕竟样本不是总体,根据样本做的估计不可能完全精准。
五种估计参数的方法在统计学和数据分析中,参数估计是一种用于估计总体的未知参数的方法。
参数估计的目标是通过样本数据来推断总体参数的值。
下面将介绍五种常用的参数估计方法。
一、点估计点估计是最常见的参数估计方法之一。
它通过使用样本数据计算出一个单一的数值作为总体参数的估计值。
点估计的核心思想是选择一个最佳的估计量,使得该估计量在某种准则下达到最优。
常见的点估计方法有最大似然估计和矩估计。
最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的点估计方法。
它的核心思想是选择使得样本观测值出现的概率最大的参数值作为估计值。
最大似然估计通常基于对总体分布的假设,通过最大化似然函数来寻找最优参数估计。
矩估计(Method of Moments,简称MoM)是另一种常用的点估计方法。
它的核心思想是使用样本矩和总体矩之间的差异来估计参数值。
矩估计首先计算样本矩,然后通过解方程组来求解参数的估计值。
二、区间估计点估计只给出了一个参数的估计值,而没有给出该估计值的不确定性范围。
为了更全面地描述参数的估计结果,我们需要使用区间估计。
区间估计是指在一定的置信水平下,给出一个区间范围,该范围内包含了真实参数值的可能取值。
常见的区间估计方法有置信区间和预测区间。
置信区间是对总体参数的一个区间估计,表示我们对该参数的估计值的置信程度。
置信区间的计算依赖于样本数据的统计量和分布假设。
一般来说,置信区间的宽度与样本大小和置信水平有关,较大的样本和较高的置信水平可以得到更准确的估计。
预测区间是对未来观测值的一个区间估计,表示我们对未来观测值的可能取值范围的估计。
预测区间的计算依赖于样本数据的统计量、分布假设和预测误差的方差。
与置信区间类似,预测区间的宽度也与样本大小和置信水平有关。
三、贝叶斯估计贝叶斯估计是一种基于贝叶斯理论的参数估计方法。
它将参数看作是一个随机变量,并给出参数的后验分布。
贝叶斯估计的核心思想是根据样本数据和先验知识来更新参数的分布,从而得到参数的后验分布。
参数估计方法与实例例题和知识点总结一、参数估计的概念参数估计是指根据从总体中抽取的样本估计总体分布中包含的未知参数。
参数通常是描述总体分布的特征值,比如均值、方差、比例等。
二、参数估计的方法(一)点估计点估计就是用样本统计量来估计总体参数,给出一个具体的数值。
常见的点估计方法有矩估计法和最大似然估计法。
1、矩估计法矩估计法的基本思想是用样本矩来估计总体矩。
比如,用样本均值估计总体均值,用样本方差估计总体方差。
2、最大似然估计法最大似然估计法是求使得样本出现的概率最大的参数值。
它基于这样的想法:如果在一次抽样中得到了某个样本,那么这个样本出现概率最大的参数值就是总体参数的估计值。
(二)区间估计区间估计则是给出一个区间,认为总体参数以一定的概率落在这个区间内。
区间估计通常包含置信水平和置信区间两个概念。
置信水平表示区间包含总体参数的可靠程度,常见的置信水平有90%、95%和 99%。
置信区间则是根据样本数据计算得到的一个区间范围。
三、实例例题假设我们要研究某地区成年人的身高情况。
随机抽取了 100 名成年人,他们的身高数据如下(单位:厘米):165, 170, 172, 168, 175, 180, 160, 178, 176, 169,(一)点估计1、用样本均值估计总体均值:计算这 100 个数据的均值,得到样本均值为 172 厘米。
因此,我们估计该地区成年人的平均身高约为 172 厘米。
2、用样本方差估计总体方差:计算样本方差,得到约为 25 平方厘米。
(二)区间估计假设我们要以 95%的置信水平估计总体均值的置信区间。
首先,根据样本数据计算样本标准差,然后查找标准正态分布表或使用相应的统计软件,得到置信系数。
最终计算出置信区间为(168,176)厘米。
这意味着我们有 95%的把握认为该地区成年人的平均身高在 168 厘米到 176 厘米之间。
四、知识点总结(一)点估计的评价标准1、无偏性:估计量的期望值等于被估计的参数。
一、参数估计(一)参数估计内涵参数估计(parameter estimation )是根据从总体中抽取的样本估计总体分布中包含的未知参数的方法。
它是统计推断的一种基本形式,是数理统计学的一个重要分支,分为点估计和区间估计两部分。
(二)估计量的评价准则对于同一参数,用不同方法来估计,结果是不一样的。
例1 设总体X 服从参数为λ的泊松分布,即,2,1,0,!}{===-k k ek X P kλλ则易知λλ==)(,)(X D X E ,分别用样本均值和样本方差取代)(X E 和)(X D ,于是得到λ的两个矩估计量21ˆ,ˆS X ==λλ. 既然估计的结果往往不是唯一的,那么究竟孰优孰劣?这里首先就有一个标准的问题。
1、 无偏性(Unbiased)定义1 设),,,(ˆˆ21nX X X θθ=是θ的一个估计量,若对任意的Θ∈θ,都有θθθ=)ˆ(E ,则称θˆ是θ的无偏估计量(Unbiased estimator),如果 0)(lim )),,,((lim 21=∆-∞→∧∞→θθθδn n n n b X X X E则称θˆ是θ的渐近无偏估计量(Approximation unbiased estimator),其中)(θn b 称为是θˆ的偏差(affect)。
无偏性反映了估计量的取值在真值θ周围摆动,显然,我们希望一个量具有无偏性。
例2 X 是总体期望值μ=)(X E 的无偏估计,因为μμ===⎪⎭⎫ ⎝⎛=∑∑==n n X E n X n E X E ni i n i i 1)(11)(112、 最小方差性和有效性(Minimum Variance and efficiency) 前面已经说过,无偏估计量只说明估计量的取值在真值周围摆动,但这个“周围”究竟有多大?我们自然希望摆动范围越小越好,即估计量的取值的集中程度要尽可能的高,这在统计上就引出最小方差无偏估计的概念。
定义2 对于固定的样本容量n ,设),,,(21n X X X T T =是参数函数)(θg 的无偏估计量,若对)(θg 的任一个无偏估计量),,,(21n X X X T T '='有Θ∈≤θθθ对一切),'()(T D T D则称),,,(21n X X X T 为)(θg 的(一致)最小方差无偏估计量,简记为UMVUE(Uniformly Minimum Variance Unbiased Estimation)或者称为最优无偏估计量。
参数估计的三种方法参数估计是统计学中的一项重要任务,其目的是通过已知的样本数据来推断未知的总体参数。
常用的参数估计方法包括点估计、区间估计和最大似然估计。
点估计是一种常见的参数估计方法,其目标是通过样本数据估计出总体参数的一个“最佳”的值。
其中最简单的点估计方法是样本均值估计。
假设我们有一个总体,其均值为μ,我们从总体中随机抽取一个样本,并计算出样本的平均值x。
根据大数定律,当样本容量足够大时,样本均值会无偏地估计总体均值,即E(x) = μ。
因此,我们可以用样本的平均值作为总体均值的点估计。
另一个常用的点估计方法是极大似然估计。
极大似然估计的思想是寻找参数值,使得给定观测数据出现的概率最大。
具体来说,我们定义一个参数θ的似然函数L(θ|x),其中θ是参数,x是观测数据。
极大似然估计即求解使得似然函数取得最大值的θ值。
举个例子,假设我们有一个二项分布的总体,其中参数p表示成功的概率,我们从总体中抽取一个样本,得到x个成功的观测值。
那么,样本观测出现的概率可以表示为二项分布的概率质量函数,即L(p|x) = C(nx, x) * p^x * (1-p)^(n-x),其中C(nx, x)是组合数。
我们通过求解使得似然函数取得最大值的p值,来估计总体成功的概率。
与点估计相比,区间估计提供了一个更加全面的参数估计结果。
区间估计指的是通过样本数据推断总体参数的一个区间范围。
常用的区间估计方法包括置信区间和预测区间。
置信区间是指通过已知样本数据得到的一个参数估计区间,使得这个估计区间能以一个预先定义的置信水平包含总体参数的真值。
置信水平通常由置信系数(1-α)来表示,其中α为显著性水平。
置信区间的计算方法根据不同的总体分布和参数类型而异。
举个例子,当总体为正态分布且总体方差已知时,可以利用正态分布的性质计算得到一个置信区间。
预测区间是指通过对总体参数的一个估计,再结合对新样本观测的不确定性,得到一个对新样本值的一个区间估计。
6. 参数估计6.1. 参数估计概述统计学包括四个方面的问题,其中之一就是统计推断。
所谓统计推断就是指,如果有一个总体,其分布和统计量都不知道,如一批生产出来的产品的质量。
这样就需要对其进行推断,如一批灯泡的平均使用寿命是多少,是否为合格品等。
统计推断就是解决这些问题。
统计推断分为两个方面,一方面是参数估计,另一方面是假设检验。
6.1.1.参数估计所谓参数估计就是通过对样本的研究,来确定总体的统计量。
其中又可分为点估计和区间估计两类。
点估计就是估计出总体的某一统计量的确切值,如总体的均值、方差等。
通常可以通过样本的相应值来进行估计。
如:样本的平均值∑=i X nx 1是总体平均值的估计量; 样本的方差为∑=--=ni i x x n s 122)(11是总体方差的估计量; 点估计的优点在于它能明确地给出所估计的参数。
但是一般说来,估计的数值与实际值之间是肯定会有误差存在的。
在实际工作中常常需要对这种误差进行衡量,也就是说还需要确定这个估计值的精度,或误差范围和可信程度。
因此就产生了区间估计的问题。
区间估计是通过样本来估计总体参数可能位于的区间。
例如说一批产品的平均使用寿命为1000小时,这仅仅是一个点估计,还需要说明大多数产品(95%)的使用寿命的上限和下限值,比如说位于800~1200小时之间,这就是一个区间估计值。
因此,在进行区间估计时,除了要给出一个区间值外,还需要同时指明可以信赖的程度,即在进行区间估计时,需要确定的是αθθθ-=<<1)ˆˆ(21p ,其中α为事先给定的一个很小的正数,如0.10, 0.05, 0.01或0.001等,称之为显著水平;1-α称为参数θ的置信概率,或置信水平。
θ1和θ2为所估计的参数θ的区间范围的上下限。
其含为我们有100(1-α)%的把握相信所估计的参数θ位于θ1和θ2的区间范围内。
6.1.2.估计量的评价标准对于所给出的估计来说,有些是好的,有些则不是。