桥梁工程专业毕业设计中英文摘要
- 格式:doc
- 大小:34.00 KB
- 文档页数:2
附录附录A 外文翻译第一部分英文原文4.2.2 Model that Failed in Punching ShearIt was realized that complete restraint in both the longitudinal and transversedirections is necessary for the development of the internal arching system in the deck slab. With this realization,another half-scale model of a two-girder bridge was built. This model also had a deck slab reinforced only by polypropylene fibres, and was very similar to the previous one, the main difference being that the top flangesof the girders were now interconnected by transverse steel straps lying outside the deck slab. A view of the steel work of this model can be seen in Fig. 4.7.These straps were provided so as to serve as transverse ties to the internal arch in the slab.The 100 mm thick slab of the model with transverse straps failed under a central load of 418 kN in a punching-shear failure mode. As can be seen in Fig. 4.8, the damaged area of the slab was highly localized. It can be appreciated that with such a high failure load, the thin deck slab of the half-scale model could have easily withstood the weights of even the heaviest wheel load of commercial vehicles.The model tests described above and in sub-section 4.2.1 clearly demonstrate that an internal arching action will indeed develop in a deck slab, but only if it is suitably restrained.4.2.3 Edge StiffeningA further appreciation of the deck slab arching action is provided by tests on a scale model of a skew slab-on-girder bridge. As will be discussed in sub-section 4.4.2, one transverse free edge of the deck slab of this model was stiffened by a composite steel channel with its web in the vertical plane. The other free edge was stiffened by a steel channel diaphragm with its web horizontal and connected to the deck slab through shear connectors. The deck slab near the former transverse edge failed in a mode that was a hybrid between punching shear and flexure. Tests near the composite diaphragm led to failure at a much higher load in punching shear (Bakht and Agarwal, 1993).The above tests confirmed yet again that the presence of the internal arching action in deck slabs induces high in-plane force effects which in turn demand stiffer restraint in the plane of the deck than in the out-of-plane direction.4.3 INTERNALLY RESTRAINED DECK SLABSDeck slabs which require embedded reinforcement for strength will now be referred to as internally restrained deck slabs. The state-of-art up to 1986 relating to the quantification and utilization of the beneficial internal arching action in deck slabs with steel reinforcement has been provided by Bakht and Markovic (1986). Their conclusions complemented with up-to-date information are presented in this chapter in a generally chronological order which, however, cannot be adhered to rigidlybecause of the simultaneous occurrence of some developments.4.3.1 Static Tests on Scale ModelsAbout three decades ago, the Structures Research Office of the Ministry of Transportation of Ontario (MTO), Canada, sponsored an extensive laboratory-based research program into the load carrying capacity of deck slabs; this research program was carried out at Queen's University, Kingston, Ontario. Most of this research was conducted through static tests on scale models of slab-on-girder bridges. This pioneering work is reported by Hewitt and Batchelor (1975) and later by Batchelor et al. (1985), and is summarized in the following.The inability of the concrete to sustain tensile strains, which leads to cracking, has been shown to be the main attribute which causes the compressive membrane forces to develop. This phenomenon is illustrated in Fig. 4.9 (a) which shows the part cross-section of slab-on-girder bridge under the action of a concentrated load.The cracking of the concrete, as shown in the figure, results in a net compressive force near the bottom face of the slab at each of the two girder locations. Midway between the girders, the net compressive force moves towards the top of the slab. It can be readily visualized that the transition of the net compressive force from near the top in the middle region, to near the bottom at the supports corresponds to the familiar arching action. Because of this internal arching action, the failure mode of a deck slab under a concentrated load becomes that of punching shear.If the material of the deck slab has the same stress-strain characteristics in both tension and compression, the slab will not crack and, as shown in Fig. 4.9 (b), will not develop the net compressive force and hence the arching action.In the punching shear type of failure, a frustum separates from the rest of the slab, as shown in schematically in Fig. 4.10. It is noted that in most failure tests, the diameter of the lower end of the frustrum extends to the vicinity of the girders.From analytical and confirmatory laboratory studies, it was established that the most significant factor influencing the failure load of a concrete deck slab is the confinement of the panel under consideration. It was concluded that this confinement is provided by the expanse of the slab beyond the loaded area; its degree was founddifficult to assess analytically. A restraint factor, η, was used as an empirical measure of the confinement; its value is equal to zero for the case of no confinement and 1.0 for full confinement.The effect of various parameters on the failure load can be seen in Table 4.1, which lists the theoretical failure loads for various cases. It can be seen that an increase of the restraint factor from 0.0 to 0.5 results in a very large increase in the failure load. The table also emphasizes the fact that neglect of the restraint factor causes a gross underestimation of the failure load.It was concluded that design for flexure leads to the inclusion of large amounts of unnecessary steel reinforcement in the deck slabs, and that even the minimum amount of steel required for crack control against volumetric changes in concrete is adequate to sustain modern-day, and even future, highway vehicles of North America.It was recommended that for new construction, the reinforcement in a deck slab should be in two layers, with each layer consisting of an orthogonal mesh having the same area of reinforcement in each direction. The area of steel reinforcement in each direction of a mesh was suggested to be 0.2% of the effective area of cross-section of the slab. This empirical method of design was recommended for deck slabs with certain constraints.4.3.2 Pulsating Load Tests on Scale ModelsTo study the fatigue strength of deck slabs with reduced reinforcement, five small scale models with different reinforcement ratios in different panels were tested at the Queen's University at Kingston. Details of this study are reported by Batchelor et al. (1978).Experimental investigation confirmed that for loads normally encountered in North America deck slabs with both conventional and recommended reducedreinforcement have large reserve strengths against failure by fatigue. It was confirmed that the reinforcement in the deck slab should be as noted in sub-section 4.3.1. It is recalled that the 0.2% reinforcement requires that the deck slab must have a minimum restraint factor of 0.5.The work of Okada, et al. (1978) also deals with fatigue tests on full scale models of deck slabs and segments of severely cracked slab removed from eight to ten year old bridges. The application of these test results to deck slabs of actual bridges is open to question because test specimens were removed from the original structures in such a way that they did not retain the confinement necessary for the development of the arching action.4.3.3 Field TestingAlong with the studies described in the preceding sub-section, a program of field testing of the deck slabs of in-service bridges was undertaken by the Structures Research Office of the MTO. The testing consisted of subjecting deck slabs to single concentrated loads, simulating wheel loads, and monitoring the load-deflection characteristics of the slab. The testing is reported by Csagoly et al. (1978) and details of the testing equipment are given by Bakht and Csagoly (1979).Values of the restraint factor, η, were back-calculated from measured deflections.A summary of test results, given in Table 4.2, shows that the average value of η in composite bridges is greater than 0.75, while that for non-composite bridges is 0.42. It was concluded that for new construction, the restraint factor, η, can be assumed to have a minimum value of 0.5.Bakht (1981) reports that after the first application of a test load of high magnitude on deck slabs of existing bridges, a small residual deflection was observed in most cases. Subsequent applications of the same load did not result in further residual deflections. It is postulated that the residual deflections are caused by cracking of the concrete which, as discussed earlier, accompanies the development of the internal arching action. The residual deflections after the first cycle of loading suggest that either the slab was never subjected to loads high enough to cause cracking, or the cracks have 'healed' with time.第二部分汉语翻译4.2.2 在冲切剪应力下的实效模型我们已经知道在桥面板内部拱形系统的形成中,不仅纵向而且横向也被完全约束限制是完全必要的。
摘要XX大桥主孔斜拉桥是一座公铁两用的斜拉桥,跨度为504米。
是国内首座上层为六车道公路桥面,下层为四线铁路的斜拉桥。
本文以该斜拉桥为工程背景。
首先采用SAP90程序,建立全桥三维有限元模型,考虑了主桁、主塔和斜拉索的关系。
三片桁架通过横梁联系,将混凝土桥面板、钢桥面板按恒载考虑。
进行恒活载计算时,将横纵梁、桥面板、道碴、道碴槽、汽车活载、列车活载等转化为集中力施加到桁架节点上。
并以刚度控制为标准确定斜拉索初张力。
在恒活载内力分析中,上层公路桥面用弹性支撑连续梁法,下层铁路桥面用杠杆法计算横向分布系数,从而确定中桁为最不利桁架。
结构计算以跨中和支座处的断面为控制断面,绘出控制杆件的轴力影响线,利用影响线加活载并求内力。
按照公路规范进行内力组合,对控制杆件进行强度、刚度和疲劳强度的检算。
最后进行结构性能评定。
关键词:斜拉桥,钢桁梁,初张力,内力分析,结构验算ABSTRACTThe main span of Tianxingzhou Bridge is a Cable-stayed Bridge in Wuhan, which is used for highway and railway. The main span is 504m.It is the first bridge that its up layer can hold 6 lanes of highway, and it’s down layer is used for 4 track railway in our country.The thesis takes this Cable-stayed Bridge for engineering background.First, three dimensional finite element model is set up using SAP90 program.Consider revising the connection of primary truss, main tower and cables,regarding concrete deck and steel deck as dead load.The three trusses are integrated through cross beams. In the process of load calculating, the gravity of cross beams, girders, deck, ballast, ballast trough are transformed into concentrated force which compel on the joints of trusses.Moreover, according to the stiffness norm, the initial prestress are added to the cables.In the process of internal force analysis, the middle truss is determined as the most dangerous truss through calculating cross subsection factor. The up layer adopts the method of continuous beams on elastic support,and the down layer use heaver method.Next, definite the most dangerous section, the influence line of the most dangerous member is made , and calculate the internal force.According to the highway bridge standard and railway, combine internal force.Check the strength, rigidity and fatigue initiation of the control member.Last, the structural performance is evaluated.Key words: Cable-stayed Bridge, steel truss girder, initial prestress, internal force analysis, structural check。
摘要:吕利高架桥的创新设计提出了一种轻型结构和透明的三角交叉预制圆管,这种结构完全从节点区无线条作出。
其结果是双空间桁架,以42.75米的典型跨径。
每个横向三角形截面为2.9米和4.0米宽,是由一个细长桥墩支持。
最大的直径和管壁厚度超过500毫米和70毫米,相差很大。
第一期间的连接设计的主要困难是确定复杂交叉沿管周长的应力分布,并计算支点应力。
几何计算,精密切割和边缘管的准备是必要的设计,桥身充满穿透焊缝。
移动模架,这也确保了在混凝土浇筑,也需要特殊考虑的管状桁架的稳定。
本文介绍了从设计演变的项目,桁架加工和焊接,到施工现场的步骤。
引言在瑞士A1高速公路,1000米长的吕利高架桥,空间管桁架制造,是一个工程师设计比赛的结果。
该项目选择了由它的独创性和审美素质陪审团。
在过去,没有人敢来建造与焊接动态应力管节点的道路桥梁。
设计争论附近的村庄位于在弗里堡州,分为公路高架桥从东到西运行瑞士格中。
穿越山谷的湿农村单位土地和树木所包围,这座桥将完成于伊华东之间与穆尔登公路连接。
弗里堡州公路处,有3个项目之间的选择由选定的有经验的咨询公司提交的。
该设计必须遵循下列条件:--桥梁总长度:约1000米--桥面宽度:从原来的13.25米至16.00米(每个交通方向)--为了维护原因,会议决定建立两个独立的道路--纵倾角:2.9和3.6%之间的一个凹角与40000米半径圆弧--水平曲线:2日期间过渡的3'000米半径圆--桥高:4至15米下列项目已提交给审核团的5名成员:--一预应力的44.60米和一个2.50米,平均高度的连续混凝土箱形梁--一预应力42.50米的大跨度混凝土箱形梁,平均这梁深度变化2至2.45米--之一,对42.75米和一个身高3.75米,平均跨度不断复合空间桁架第三个项目是建议由它的“轻”,并允许它融入农村氛围。
该建议是由负责当局批准的。
该项目提交的咨询工程师小组迪爱生- DMA的(多纳IngénieursConseils SA和Devaud,蒙加蒂等Associées SA),接受了这一创新的设计挑战概念设计:周围的树木形状启发了笔者的概念设计[1]。
本科毕业设计(论文)专业外文翻译专业名称:土木工程专业(道路与桥梁)年级班级:道桥08-5班学生姓名:指导教师:二○一二年五月十八日Geometric Design of Highwayse.fo.travel.I.i.mad.o.th.roadbed.th.roa.surfac e.th.bridge.th.culver.an.th.tunnel.I.addition.i.als.ha.th.crossin.o.lines.th.protectiv.proje c.an.th.traffi.engineerin.an.th.rout.facility.Th.roadbe.i.th.bas.o.roa.surface.roa.shoulder.sid.slope.sid.ditc.foundations.I.i.sto n.materia.structure.whic.i.designe.accordin.t.route'.plan.positio..Th.roadbed.a.th.bas.o. travel.mus.guarante.tha.i.ha.th.enoug.intensit.an.th.stabilit.tha.ca.preven.th.wate.an.ot he.natura.disaste.fro.corroding.ple.structur.buil.wit.mixture.Th.roa .surfac.requir.bein.smooth.havin.enoug.intensity.goo.stabilit.an.anti-slipper.function.T for.an.th.traffic.Highwa.geometr.design.t.conside.Highwa.Horizonta.Alignment.Vertica.Alignme positio.o.coordination.bu.als.pa.attentio.t.th.sm oot.flo.o.th.lin.o.sight.etc.Determin.th.roa.geometry.conside.th.topography.surfac.feat .o.th.highwa.geom bination.1.Alignment DesignTh.alignmen.o..roa.i.show.o.th.plan.vie.an.i..serie.o.straigh.line.calle.tangent.con mo.t.interpos.transitio.o.spira.curve.betwee.tan gent.an.circula.curves.Alignmen.mus.b.consistent.Sudde.change.fro.fla.t.shar.curve.an.lon.tangent.follo we.b.shar.curve.mus.b.avoided.otherwise.acciden.hazard.wil.b.created.Likewise.placi n.circula.curve.o.differen.radi.en.t.en.(compoun.curves.o.havin..shor.tangen.betwee.tw .curve.i.poo.practic.unles.suitabl.transition.betwee.the.ar.provided.Long.fla.curve.ar.pr eferabl.a.al.times.a.the.ar.pleasin.i.appearanc.an.decreas.possibilit.o.futur.obsolescenc e.However.alignmen.withou.tangent.i.undesirabl.o.two-lan.road.becaus.som.driver.hes e.fo.smal.change.i.direction.a.shor.curve.a ppea.a.“kink”.Als.horizonta.an.vertica.alignmen.mus.b.considere.together.no.separately.Fo .example..shar.horizonta.curv.beginnin.nea..cres.ca.creat..seriou.acciden.hazard..vehicl.travelin.i..curve.pat.i.subjec.t.centrifuga.force.Thi.i.balance.b.a.equa.an.o pposit.forc.develope.throug.canno.excee.certai.maximums.an.thes.control.plac.limit.o. uall.th.sharpnes.o..give.circula.cur monl.expresse.i.ter m.o.degre.o.curve.whic.i.th.centra.angl.subtende.b..100-f.lengt.o.curve.Degre.o.curv.i. inversel.proportiona.t.th.radius.Tangen.section.o.highway.carr.norma.cros.slope.curve.section.ar.supe.elevated.Pr uall.involve.maintainin.th.ce nte.lin.o.eac.individua.roadwa.a.profil.grad.whil.raisin.th.oute.edg.an.lowerin.th.inne. edg.t.produc.th.desire.supe.elevatio.i.attaine.som.distanc.beyon.th.poin.o.curve.I..vehicl.travel.a.hig.spee.o..carefull.restricte.pat.mad.u.o.tangent.connecte.b.shar. circula.curve.ridin.i.extremel.uncomfortable.A.th.ca.approache..curve.supe.elevatio.be gin.an.th.vehicl.i.tilte.inward.bu.th.passenge.mus.remai.vertica.sinc.ther.i.o.centrifuga. pensation.Whe.th.vehicl.reache.th.curve.ful.centrifuga.forc.develop.a.once.an.pull.th.ride.outwar.fro.hi.vertica.position.T.achiev..positio.o.equilibriu.h.mus .forc.hi.bod.fa.inward.A.th.remainin.supe.elevatio.take.effect.furthe.adjustmen.i.positi o.i.required.Thi.proces.i.repeate.i.revers.orde.a.th.vehicl.leave.th.curve.Whe.easemen. curve.ar.introduced.th.chang.i.radiu.fro.infinit.o.th.tangen.t.tha.o.th.circula.curv.i.effec te.graduall.s.tha.centrifuga.forc.als.develop.gradually.B.carefu.applicatio.o.supe.elevat io.alon.th.spiral..smoot.an.gradua.applicatio.o.centrifuga.forc.ca.b.ha.an.th.roughnes.a voided.e.b.th.railroad.fo.man.years.bu.thei.adoptio.b.highwa.a .onl.recently.Thi.i.understandable.Railroa.train.mus.follo.th.precis.align men.o.th.tracks.an.th.discomfor.describe.her.ca.b.avoide.onl.b.adoptin.easemen.curves tera.positio.o.th.roa.an.ca.provi d.hi.ow.easemen.curve.b.steerin.int.circula.curve.gradually.However.thi.weavin.withi.. n.(nes.i.dangerous.Properl.designe.easemen.curve.mak. rgel.fo.safet.reasons.then.tha.easemen.curve.hav.bee.widel.ad opte.b.highwa.agencies.Fo.th.sam.radiu.circula.curve.th.additio.o.easemen.curve.a.th.end.change.th.locat .shoul.b.mad.befor.tbele.th.P.(p oin.o.curve.o.B.(beginnin.o.curve).It.en.i.marke.th.P.(poin.o.tangent.o.E.(en.o.curve). mo.notatio.is.a.stationin.increases.T.(tangen.t.spi ral).S.(spira.t.circula.curve).C.(circula.curv.t.spiral).an.S.(spira.g.tangent).O.two-lan.pavement.provisio.o..wilde.roadwa.i.advisabl.o.shar.curves.Thi.wil.all o.fo.suc.factor.a.(1.th.tendenc.fo.driver.t.sh.awa.fro.th.pavemen.edge.(2.increase.effect iv.transvers.vehicl.widt.becaus.th.fron.an.rea.wheel.d.no.track.an.(3.adde.widt.becaus. o.th.slante.positio.o.th.fron.o.th.vehicl.t.th.roadwa.centerline.Fo.24-f.roadways.th.add e.widt.i.s.smal.tha.i.ca.b.neglected.Onl.fo.30mp.desig.speed.an.curve.sharpe.tha.22°doe.th.adde.widt.reac..ft.Fo.narrowe.pavements.however.widenin.assume.importanc.e ve.o.fairl.fla.curves.Recommende.amount.o.an.procedure.fo.curv.widenin.ar.give.i.Ge ometri.Desig.fo.Highways.2.GradesTh.vertica.alignmen.o.th.roadwa.an.it.effec.o.th.saf.an.economica.operatio.o.th. moto.vehicl.constitut.on.o.th.mos.importan.feature.o.roa.design.Th.vertica.alignment. whic.consist.o..serie.o.straigh.line.connecte.b.vertica.paraboli.o.circula.curves.i.know.a.th.“grad.line..Whe.th.grad.lin.i.increasin.fro.th.horizonta.i.i.know.a..“plu.grade,.an.whe.i.i.decreasin.fro.th.horizonta.i.i.know.a..“uall.studie.th.effec.o.chan g.i.grad.o.th.centerlin.profile.I.th.establishmen.o..grade.a.idea.situatio.i.on.i.whic.th.cu.i.balance.agains.th.fil. withou..grea.dea.o.borro.o.a.exces.o.cu.t.b.wasted.Al.haul.shoul.b.downhil.i.possibl.a n.no.to.long.Th.grad.shoul.follo.th.genera.terrai.an.ris.an.fal.i.th.directio.o.th.existin.dr ainage.I.mountainou.countr.th.grad.ma.b.se.t.balanc.excavatio.agains.embankmen.a..c lu.towar.leas.overal.cost.I.fla.o.prairi.countr.i.wil.b.approximatel.paralle.t.th.groun.sur fac.bu.sufficientl.abov.i.t.allo.surfac.drainag.and.wher.necessary.t.permi.th.win.t.clea.d riftin.snow.Wher.th.roa.approache.o.follow.alon.streams.th.heigh.o.th.grad.lin.ma.b.di ctate.b.th.expecte.leve.o.floo.water.Unde.al.conditions.smooth.flowin.grad.line.ar.pref erabl.t.chopp.one.o.man.shor.straigh.section.connecte.wit.shor.vertica.curves.Change.o.grad.fro.plu.t.minu.shoul.b.place.i.cuts.an.change.fro..minu.grad.t..plu. grad.shoul.b.place.i.fills.Thi.wil.generall.giv..goo.design.an.man.time.i.wil.avoi.th.appn d.Othe.consideration.fo.determinin.th.grad.lin.ma.b.o.mor.importanc.tha.th.balancin.o. cut.an.fills.uall.requir..mor.detaile.stud.o.th.control.an.fine.adjustmen.o.elev ation.tha.d.rura.projects.I.i.ofte.bes.t.adjus.th.grad.t.mee.existin.condition.becaus.o.th. additiona.expens.o.doin.otherwise.I.th.analysi.o.grad.an.grad.control.on.o.th.mos.importan.consideration.i.th.effec. o.grade.o.th.operatin.cost.o.th.moto.vehicle.A.increas.i.gasolin.consumptio.an..reducti o.i.spee.ar.apparen.whe.grade.ar.increas.i.gasolin.consumptio.an..reductio.i.spee.i.app aren.whe.grade.ar.increased.A.economica.approac.woul.b.t.balanc.th.adde.annua.cos.o .grad.reductio.agains.th.adde.annua.cos.o.vehicl.operatio.withou.grad.reduction.A.acc urat.solutio.t.th.proble.depend.o.th.knowledg.o.traffi.volum.an.type.whic.ca.b.obtaine. onl.b.mean.o..traffi.survey.Whil.maximu.grade.var..grea.dea.i.variou.states.AASHT.recommendation.mak.m aximu.grade.dependen.o.desig.spee.an.topography.Presen.practic.limit.grade.t..percen. o..desig.spee.o.7.mph.Fo..desig.spee.o.3.mph.maximu.grade.typicall.rang.fro..t.1.perc ed.th.designe.shoul.no.su ne.fo.slow-movi n.vehicles.Critica.grad.length.var.fro.170.f.fo...percen.grad.t.50.f.fo.a..percen.grade.Lon.sustaine.grade.shoul.b.les.tha.th.maximu.grad.o.an.particula.sectio.o..highwa y.I.i.ofte.preferre.t.brea.th.lon.sustaine.unifor.grad.b.placin.steepe.grade.a.th.botto.an.l ightenin.th.grad.nea.th.to.o.th.ascent.Dip.i.th.profil.grad.i.whic.vehicle.ma.b.hidde.fro. vie.shoul.als.b.avoided.Maximu.grad.fo.highwa.i..percent.Standard.settin.minimu.gra de.ar.o.importanc.onl.whe.surfac.drainag.i..proble.a.whe.wate.mus.b.carrie.awa.i..gutte.o.roadsid.ditch.I.suc.instance.th.AASHT.suggest..minimu.o.0.35%.3.Sigh.DistanceFo.saf.vehicl.operation.highwa.mus.b.designe.t.giv.driver..sufficien.distanc.o.clea. versio.ahea.s.tha.the.ca.avoi.unexpecte.obstacle.an.ca.pas.slowe.vehicle.withou.danger .Sigh.distanc.i.th.lengt.o.highwa.visibl.ahea.t.th.drive.o..vehicle.Th.concep.o.saf.sigh. distanc.ha.tw.facets.“stopping.(o.“n.passing”.an.“passing”.rg.object.ma.dro.int..roadwa.an.wil.d.seriou.damag.t..moto.vehicl.tha.strn.i.th.pat.o.followin.vehicles.I.dit he.instance.prope.desig.require.tha.suc.hazard.becom.visibl.a.distance.grea.enoug.tha. driver.ca.sto.befor.hittin.them.Furthe.more.i.i.unsaf.t.assum.tha.on.oncomin.vehicl.ma. n.i.whic.i.i.traveling.fo.thi.migh.resul.i.los.o.contro.o.collisio. wit.anothe.vehicle.Stoppin.sigh.distanc.i.mad.u.o.tw.elements.Th.firs.i.th.distanc.travele.afte.th.obstr e.int.vie.bu.befor.th.drive.applie.hi.brakes.Durin.thi.perio.o.perceptio.an.rea ction.th.vehicl.travel.a.it.initia.velocity.Th.secon.distanc.i.consume.whil.th.drive.brake .th.vehicl.t..stop.Th.firs.o.thes.tw.distance.i.dependen.o.th.spee.o.th.vehicl.an.th.perce ptio.tim.an.brake-reactio.tim.o.th.operator.Th.secon.distanc.depend.o.th.spee.o.th.vehi cle.th.conditio.o.brakes.times.an.roadwa.surface.an.th.alignmen.an.grad.o.th.highway.O.two-lan.highways.opportunit.t.pas.slow-movin.vehicle.mus.b.provide.a.interval s.Otherwis.capacit.decrease.an.accident.increas.a.impatien.driver.ris.head-o.collision.b .passin.whe.i.i.unsaf.t.d.so.Th.minimu.distanc.ahea.tha.mus.b.clea.t.permi.saf.passin.i. calle.th.passin.sigh.distance.I.decidin.whethe.o.no.t.pas.anothe.vehicle.th.drive.mus.w eig.th.clea.distanc.availabl.t.hi.agains.th.distanc.require.t.carr.ou.th.sequenc.o.event.th a.mak.u.th.passin.maneuver.Amon.th.factor.tha.wil.influenc.hi.decisio.ar.th.degre.o.ca utio.tha.h.exercise.an.th.acceleratin.abilit.o.hi.vehicle.Becaus.human.diffe.markedly.p w.o.mec hanics.var.considerabl.amon.drivers.Th.geometri.desig.i.t.ensur.highwa.traffi.safet.foundation.th.highwa.constructio.p roject.aroun.th.othe.highwa.o.geometri.design.therefore.i.th.geometr.o.th.highwa.desig binatio.o.design.wil.affec.th. whol.highwa.geometri.desig.quality.an.th.safet.o.th.traffi.t.brin.advers.impact.So.o.th.geometr.o.th.highwa.desig.mus.b.focu.on.公路几何设计公路是供汽车或其他车辆行驶的一种线形带状结构体。
本科毕业设计外文翻译混凝土桥梁的结构形式院(系、部)名称:专业名称:学生姓名:学生学号:指导教师:The Structure of Concrete BridgePre-stressed concrete has proved to be technically advantageous, economically competitive, and esthetically superior bridges, from very short span structures using standard components to cable-stayed girders and continuous box girders with clear spans of nearly 100aft .Nearly all concrete bridges, even those of relatively short span, are now pre-stressed. Pre-casting, cast-in-place construction, or a combination of the two methods may be used .Both pre-tensioning and post tensioning are employed, often on the same project.In the United States, highway bridges generally must-meet loading ,design ,and construction requirements of the AASHTO Specification .Design requirements for pedestrian crossings and bridges serving other purposes may be established by local or regional codes and specifications .ACI Code provisions are often incorporated by reference .Bridges spans to about 100ft often consist of pre-cast integral-deck units ,which offer low initial cost ,minimum ,maintenance ,and fast easy construction ,with minimum traffic interruption .Such girders are generally pre-tensioned .The units are placed side by side ,and are often post-tensioned laterally at intermediate diaphragm locations ,after which shear keys between adjacent units are filled with non-shrinking mortar .For highway spans ,an asphalt wearing surface may be applied directly to the top of the pre-cast concrete .In some cases ,a cast-in-place slab is placed to provide composite action .The voided slabs are commonly available in depths from 15 to 21 in .and widths of 3 to 4 ft .For a standard highway HS20 loading, they are suitable for spans to about 50 ft, Standard channel sections are available in depths from 21 to 35 in a variety of widths, and are used for spans between about 20 and 60 ft .The hollow box beams-and single-tee girders are intended for longer spans up to about 100 ft.For medium-span highway bridges ,to about 120 ft ,AASHTO standard I beams are generally used .They are intended for use with a composite cast-in-place roadway slab .Such girders often combine pre-tensioning of the pre-cast member with post-tensioning of the composite beam after the deck is placed .In an effort to obtain improved economy ,some states have adopted more refined designs ,such as the State of Washington standard girders.The specially designed pre-cast girders may be used to carry a monorail transit system .The finished guide way of Walt Disney World Monorail features a series of segments, each consisting of six simply supported pre-tensioned beams ,together to from a continuous structure .Typical spans are 100 to 110 ft . Approximately half of the 337 beams used have some combination of vertical and horizontal curvatures and variable super elevation .Allbeams are hollow, a feature achieved by inserting a styro-foam void in the curved beams and by a moving mandrel in straight beam production.Pre-cast girders may not be used for spans much in excess of 120 ft because of the problems of transporting and erecting large, heavy units.On the other hand ,there is a clear trend toward the use of longer spans for bridges .For elevated urban expressways ,long spans facilitate access and minimize obstruction to activities below .Concern for environmental damage has led to the choice of long spans for continuous viaducts . For river crossings, intermediate piers may be impossible because of requirements of navigational clearance.In typical construction of this type, piers are cast-in-place, often using the slip-forming technique .A “hammerhead” section of box girder is often cast at the top of the pier, and construction proceeds in each direction by the balanced cantilever method. Finally, after the closing cast-in-place joint is made at mid-span, the structure is further post-tensioned for full continuity .Shear keys may be used on the vertical faces between segments, and pre-cast are glued with epoxy resin.The imaginative engineering demonstrated by many special techniques has extended the range of concrete construction for bridges far beyond anything that could be conceived just a few years ago .In the United States, twin curved cast-in –place segmental box girders have recently been completed for of span of 310 ft over the Eel River in northern California .Preliminary design has been completed for twin continuous box girders consisting of central 550 ft spans flanked by 390 ft side spans.Another form of pre-stressed concrete bridge well suited to long spans is the cable-stayed box girder .A notable example is the Chaco-Corrientes Bridge in Argentina .The bridges main span of 804 ft is supported by two A-frame towers, with cable stays stretching from tower tops to points along the deck .The deck itself consists of two parallel box girders made of pre-cast sections erected using the cantilever method .The tensioned cables not only provide a vertical reaction component to support the deck ,but also introduce horizontal compression to the box girders ,adding to the post-tensioning force in those members .Stress-ribbon Bridge pioneered many years ago by the German engineer Ulrich Finsterwalder. The stress-ribbon bridge carries a pipeline and pedestrians over the Rhine River with a span of 446 ft .The superstructure erection sequence was to (a) erect two pairs of cables, (b) place pre-cast slabs forming a sidewalk deck and a U under each of the sets of cables, and (c) cast-in-place concrete within the two Us. The pipeline is placed atop supports at railing height, off to one side, which greatly increases the wind speed of the structure.It is appropriate in discussing bridge forms to mention structural esthetics .The time ispast when structures could be designed on the basis of minimum cost and technical advantages alone .Bridge structures in particular are exposed for all to see .To produce a structure that is visually offensive ,as has occurred all too often in the past, is an act professional irresponsibility .Particularly for major spans ,but also for more ordinary structures ,architectural advice should be sought early in conceptual stage of the design process.混凝土梁桥的结构形式事实证明,预应力混凝土结构是在技术上先进、经济上有竞争力、符合审美学的一种先进技术。
西南交通大学本科毕业设计(论文)外文资料翻译年级:学号:姓名:专业:指导老师:2013年 6 月外文资料原文:13Box girders13.1 GeneralThe box girder is the most flexible bridge deck form。
It can cover a range of spans from25 m up to the largest non—suspended concrete decks built, of the order of 300 m。
Single box girders may also carry decks up to 30 m wide。
For the longer span beams, beyond about 50 m,they are practically the only feasible deck section. For the shorter spans they are in competition with most of the other deck types discussed in this book.The advantages of the box form are principally its high structural efficiency (5.4),which minimises the prestress force required to resist a given bending moment,and its great torsional strength with the capacity this gives to re—centre eccentric live loads,minimising the prestress required to carry them。
The box form lends itself to many of the highly productive methods of bridge construction that have been progressively refined over the last 50 years,such as precast segmental construction with or without epoxy resin in the joints,balanced cantilever erection either cast in—situ or coupled with precast segmental construction, and incremental launching (Chapter 15)。
附录一英文翻译原文AUTOMATIC DEFLECTION AND TEMPERATURE MONITORING OFA BALANCED CANTILEVER CONCRETE BRIDGEby Olivier BURDET, Ph.D.Swiss Federal Institute of Technology, Lausanne, SwitzerlandInstitute of Reinforced and Prestressed Concrete SUMMARYThere is a need for reliable monitoring systems to follow the evolution of the behavior of structures over time.Deflections and rotations are values that reflect the overall structure behavior. This paper presents an innovative approach to the measurement of long-term deformations of bridges by use of inclinometers. High precision electronic inclinometers can be used to follow effectively long-term rotations without disruption of the traffic. In addition to their accuracy, these instruments have proven to be sufficiently stable over time and reliable for field conditions. The Mentue bridges are twin 565 m long box-girder post-tensioned concrete highway bridges under construction in Switzerland. The bridges are built by the balanced cantilever method over a deep valley. The piers are 100 m high and the main span is 150 m. A centralized data acquisition system was installed in one bridge during its construction in 1997. Every minute, the system records the rotation and temperature at a number of measuring points. The simultaneous measurement of rotations and concrete temperature at several locations gives a clear idea of the movements induced by thermal conditions. The system will be used in combination with a hydrostatic leveling setup to follow the long-term behavior of the bridge. Preliminary results show that the system performs reliably and that the accuracy of the sensors is excellent.Comparison of the evolution of rotations and temperature indicate that the structure responds to changes in air temperature rather quickly.1.BACKGROUNDAll over the world, the number of structures in service keeps increasing. With the development of traffic and the increased dependence on reliable transportation, it is becoming more and more necessary to foresee and anticipate the deterioration of structures. In particular,for structures that are part of major transportation systems, rehabilitation works need to be carefully planned in order to minimize disruptions of traffic. Automatic monitoring of structures is thus rapidly developing.Long-term monitoring of bridges is an important part of this overall effort to attempt to minimize both the impact and the cost of maintenance and rehabilitation work of major structures. By knowing the rate of deterioration of a given structure, the engineer is able to anticipate and adequately define the timing of required interventions. Conversely, interventions can be delayed until the condition of the structure requires them, without reducing the overall safety of the structure.The paper presents an innovative approach to the measurement of long-term bridge deformations. The use of high precision inclinometers permits an effective, accurate and unobtrusive following of the long-term rotations. The measurements can be performed under traffic conditions. Simultaneous measurement of the temperature at several locations gives a clear idea of the movements induced by thermal conditions and those induced by creep and shrinkage. The system presented is operational since August 1997 in the Mentue bridge, currently under construction in Switzerland. The structure has a main span of 150 m and piers 100 m high.2. LONG-TERM MONITORING OF BRIDGESAs part of its research and service activities within the Swiss Federal Institute of Technology in Lausanne (EPFL), IBAP - Reinforced and Prestressed Concrete has been involved in the monitoring of long-time deformations of bridges and other structures for over twenty-five years [1, 2, 3, 4]. In the past, IBAP has developed a system for the measurement of long-term deformations using hydrostatic leveling [5, 6]. This system has been in successful service in ten bridges in Switzerland for approximately ten years [5,7]. The system is robust, reliable and sufficiently accurate, but it requires human intervention for each measurement, and is not well suited for automatic data acquisition. One additional disadvantage of this system is that it is only easily applicable to box girder bridges with an accessible box.Occasional continuous measurements over periods of 24 hours have shown that the amplitude of daily movements is significant, usually amounting to several millimeters over a couple of hours. This is exemplified in figure 1, where measurements of the twin Lutrive bridges, taken over a period of several years before and after they were strengthened by post-tensioning, areshown along with measurements performed over a period of 24 hours. The scatter observed in the data is primarily caused by thermal effects on the bridges. In the case of these box-girder bridges built by the balanced cantilever method, with a main span of 143.5 m, the amplitude of deformations on a sunny day is of the same order of magnitude than the long term deformation over several years.Instantaneous measurements, as those made by hydrostatic leveling, are not necessarily representative of the mean position of the bridge. This occurs because the position of the bridge at the time of the measurement is influenced by the temperature history over the past several hours and days. Even if every care was taken to perform the measurements early in the morning and at the same period every year, it took a relatively long time before it was realized that the retrofit performed on the Lutrive bridges in 1988 by additional post-tensioning [3, 7,11] had not had the same effect on both of them.Figure 1: Long-term deflections of the Lutrive bridges, compared to deflections measured in a 24-hour period Automatic data acquisition, allowing frequent measurements to be performed at an acceptable cost, is thus highly desirable. A study of possible solutions including laser-based leveling, fiber optics sensors and GPS-positioning was performed, with the conclusion that, provided that their long-term stability can be demonstrated, current types of electronic inclinometers are suitable for automatic measurements of rotations in existing bridges [8].3. MENTUE BRIDGESThe Mentue bridges are twin box-girder bridges that will carry the future A1 motorway from Lausanne to Bern. Each bridge, similar in design, has an overall length of approximately 565 m, and a width of 13.46 m, designed to carry two lanes of traffic and an emergency lane. The bridges cross a deep valley with steep sides (fig. 2). The balanced cantilever design results from a bridge competition. The 100 m high concrete piers were built using climbing formwork, after which the construction of the balanced cantilever started (fig. 3).4. INCLINOMETERSStarting in 1995, IBAP initiated a research project with the goal of investigating the feasibility of a measurement system using inclinometers. Preliminary results indicated that inclinometers offer several advantages for the automatic monitoring of structures. Table 1 summarizes the main properties of the inclinometers selected for this study.One interesting property of measuring a structure’s rotations, is that, for a given ratio of maximum deflection to span length, the maximum rotation is essentially independent from its static system [8]. Since maximal allowable values of about 1/1,000 for long-term deflections under permanent loads are generally accepted values worldwide, developments made for box-girder bridges with long spans, as is the case for this research, are applicable to other bridges, for instance bridges with shorter spans and other types of cross-sections. This is significant because of the need to monitor smaller spans which constitute the majority of all bridges.The selected inclinometers are of type Wyler Zerotronic ±1°[9]. Their accuracy is 1 microradian (μrad), which corresponds to a rotation of one millimeter per kilometer, a very small value. For an intermediate span of a continuous beam with a constant depth, a mid-span deflection of 1/20,000 would induce a maximum rotation of about 150 μrad, or 0.15 milliradians (mrad).One potential problem with electronic instruments is that their measurements may drift overtime. To quantify and control this problem, a mechanical device was designed allowing the inclinometers to be precisely rotated of 180° in an horizontal plane (fig. 4). The drift of each inclinometer can be very simply obtained by comparing the values obtained in the initial and rotated position with previously obtained values. So far, it has been observed that the type of inclinometer used in this project is not very sensitive to drifting.5. INSTRUMENTATION OF THE MENTUE BRIDGESBecause a number of bridges built by the balanced cantilever method have shown an unsatisfactory behavior in service [2, 7,10], it was decided to carefully monitor the evolution of the deformations of the Mentue bridges. These bridges were designed taking into consideration recent recommendations for the choice of the amount of posttensioning [7,10,13]. Monitoring starting during the construction in 1997 and will be pursued after the bridges are opened to traffic in 2001. Deflection monitoring includes topographic leveling by the highway authorities, an hydrostatic leveling system over the entire length of both bridges and a network of inclinometers in the main span of the North bridge. Data collection iscoordinated by the engineer of record, to facilitate comparison of measured values. The information gained from these observations will be used to further enhance the design criteria for that type of bridge, especially with regard to the amount of post-tensioning [7, 10, 11, 12, 13].The automatic monitoring system is driven by a data acquisition program that gathers and stores the data. This system is able to control various types of sensors simultaneously, at the present time inclinometers and thermal sensors. The computer program driving all the instrumentation offers a flexible framework, allowing the later addition of new sensors or data acquisition systems. The use of the development environment LabView [14] allowed to leverage the large user base in the field of laboratory instrumentation and data analysis. The data acquisition system runs on a rather modest computer, with an Intel 486/66 Mhz processor, 16 MB of memory and a 500 MB hard disk, running Windows NT. All sensor data are gathered once per minute and stored in compressed form on the hard disk. The system is located in the box-girder on top of pier 3 (fig. 5). It can withstand severe weather conditions and will restart itself automatically after a power outage, which happened frequently during construction.6. SENSORSFigure 5(a) shows the location of the inclinometers in the main span of the North bridge. The sensors are placed at the axis of the supports (①an d⑤), at 1/4 and 3/4 (③an d④) of the span and at 1/8 of the span for②. In the cross section, the sensors are located on the North web, at a height corresponding to the center of gravity of the section (fig.5a). The sensors are all connected by a single RS-485 cable to the central data acquisition system located in the vicinity of inclinometer ①. Monitoring of the bridge started already during its construction. Inclinometers①,②and③were installed before the span was completed. The resulting measurement were difficult to interpret, however, because of the wide variations of angles induced by the various stages of this particular method of construction.The deflected shape will be determined by integrating the measured rotations along the length of the bridge (fig.5b). Although this integration is in principle straightforward, it has been shown [8, 16] that the type of loading and possible measurement errors need to be carefully taken into account.Thermal sensors were embedded in concrete so that temperature effects could be taken into account for the adjustment of the geometry of the formwork for subsequent casts. Figure 6 shows the layout of thermal sensors in the main span. The measurement sections are located at the same sections than the inclinometers (fig. 5). All sensors were placed in the formwork before concreting and were operational as soon as the formwork was removed, which was required for the needs of the construction. In each section, seven of the nine thermal sensor (indicated in solid black in fig. 6) are now automatically measured by the central data acquisition system.7. RESULTSFigure 7 shows the results of inclinometry measurements performed from the end ofSeptember to the third week of November 1997. All inclinometers performed well during that period. Occasional interruptions of measurement, as observed for example in early October are due to interruption of power to the system during construction operations. The overall symmetry of results from inclinometers seem to indicate that the instruments drift is not significant for that time period. The maximum amplitude of bridge deflection during the observed period, estimated on the basis of the inclinometers results, is around 40 mm. More accurate values will be computed when the method of determination ofdeflections will have been further calibrated with other measurements. Several periods of increase, respectively decrease, of deflections over several days can be observed in the graph. This further illustrates the need for continuous deformation monitoring to account for such effects. The measurement period was .busy. in terms of construction, and included the following operations: the final concrete pours in that span, horizontal jacking of the bridge to compensate some pier eccentricities, as well as the stressing of the continuity post-tensioning, and the de-tensioning of the guy cables (fig. 3). As a consequence, the interpretation of these measurements is quite difficult. It is expected that further measurements, made after the completion of the bridge, will be simpler to interpret.Figure 8 shows a detail of the measurements made in November, while figure.9 shows temperature measurements at the top and bottom of the section at mid-span made during that same period. It is clear that the measured deflections correspond to changes in the temperature. The temperature at the bottom of the section follows closely variations of the air temperature(measured in the shade near the north web of the girder). On the other hand, the temperature at the top of the cross section is less subject to rapid variations. This may be due to the high elevation of the bridge above ground, and also to the fact that, during the measuring period, there was little direct sunshine on the deck. The temperature gradient between top and bottom of the cross section has a direct relationship with short-term variations. It does not, however, appear to be related to the general tendency to decrease in rotations observed in fig. 8.8. FUTURE DEVELOPMENTSFuture developments will include algorithms to reconstruct deflections from measured rotations. To enhance the accuracy of the reconstruction of deflections, a 3D finite element model of the entire structure is in preparation [15]. This model will be used to identify the influence on rotations of various phenomena, such as creep of the piers and girder, differential settlements, horizontal and vertical temperature gradients or traffic loads.Much work will be devoted to the interpretation of the data gathered in the Mentue bridge. The final part of the research project work will focus on two aspects: understanding the very complex behavior of the structure, and determining the most important parameters, to allow a simple and effective monitoring of the bridges deflections.Finally, the research report will propose guidelines for determination of deflections from measured rotations and practical recommendations for the implementation of measurement systems using inclinometers. It is expected that within the coming year new sites will be equipped with inclinometers. Experiences made by using inclinometers to measure deflections during loading tests [16, 17] have shown that the method is very flexible and competitive with other high-tech methods.As an extension to the current research project, an innovative system for the measurement of bridge joint movement is being developed. This system integrates easily with the existing monitoring system, because it also uses inclinometers, although from a slightly different type.9. CONCLUSIONSAn innovative measurement system for deformations of structures using high precision inclinometers has been developed. This system combines a high accuracy with a relatively simple implementation. Preliminary results are very encouraging and indicate that the use of inclinometers to monitor bridge deformations is a feasible and offers advantages. The system is reliable, does not obstruct construction work or traffic and is very easily installed. Simultaneous temperature measurements have confirmed the importance of temperature variations on the behavior of structural concrete bridges.10. REFERENCES[1] ANDREY D., Maintenance des ouvrages d’art: méthodologie de surveillance, PhD Dissertation Nr 679, EPFL, Lausanne, Switzerland, 1987.[2] BURDET O., Load Testing and Monitoring of Swiss Bridges, CEB Information Bulletin Nr 219, Safety and Performance Concepts, Lausanne, Switzerland, 1993.[3] BURDET O., Critères pour le choix de la quantitéde précontrainte découlant de l.observation de ponts existants, CUST-COS 96, Clermont-Ferrand, France, 1996.[4] HASSAN M., BURDET O., FAVRE R., Combination of Ultrasonic Measurements and Load Tests in Bridge Evaluation, 5th International Conference on Structural Faults and Repair, Edinburgh, Scotland, UK, 1993.[5] FAVRE R., CHARIF H., MARKEY I., Observation à long terme de la déformation des ponts, Mandat de Recherche de l’OFR 86/88, Final Report, EPFL, Lausanne, Switzerland, 1990.[6] FAVRE R., MARKEY I., Long-term Monitoring of Bridge Deformation, NATO Research Workshop, Bridge Evaluation, Repair and Rehabilitation, NATO ASI series E: vol. 187, pp. 85-100, Baltimore, USA, 1990.[7] FAVRE R., BURDET O. et al., Enseignements tirés d’essais de charge et d’observations à long terme pour l’évaluation des ponts et le choix de la précontrainte, OFR Report, 83/90, Zürich, Switzerland, 1995.[8] DAVERIO R., Mesures des déformations des ponts par un système d’inclinométrie,Rapport de maîtrise EPFL-IBAP, Lausanne, Switzerland, 1995.[9] WYLER AG., Technical specifications for Zerotronic Inclinometers, Winterthur, Switzerland, 1996.[10] FAVRE R., MARKEY I., Generalization of the Load Balancing Method, 12th FIP Congress, Prestressed Concrete in Switzerland, pp. 32-37, Washington, USA, 1994.[11] FAVRE R., BURDET O., CHARIF H., Critères pour le choix d’une précontrainte: application au cas d’un renforcement, "Colloque International Gestion des Ouvrages d’Art: Quelle Stratégie pour Maintenir et Adapter le Patrimoine, pp. 197-208, Paris, France, 1994. [12] FAVRE R., BURDET O., Wahl einer geeigneten Vorspannung, Beton- und Stahlbetonbau, Beton- und Stahlbetonbau, 92/3, 67, Germany, 1997.[13] FAVRE R., BURDET O., Choix d’une quantité appropriée de précontrain te, SIA D0 129, Zürich, Switzerland, 1996.[14] NATIONAL INSTRUMENTS, LabView User.s Manual, Austin, USA, 1996.[15] BOUBERGUIG A., ROSSIER S., FAVRE R. et al, Calcul non linéaire du béton arméet précontraint, Revue Français du Génie Civil, vol. 1 n° 3, Hermes, Paris, France, 1997. [16] FEST E., Système de mesure par inclinométrie: développement d’un algorithme de calcul des flèches, Mémoire de maîtrise de DEA, Lausanne / Paris, Switzerland / France, 1997.[17] PERREGAUX N. et al., Vertical Displacement of Bridges using the SOFO System: a Fiber Optic Monitoring Method for Structures, 12th ASCE Engineering Mechanics Conference, San Diego, USA, to be published,1998.译文平衡悬臂施工混凝土桥挠度和温度的自动监测作者Olivier BURDET博士瑞士联邦理工学院,洛桑,瑞士钢筋和预应力混凝土研究所概要:我们想要跟踪结构行为随时间的演化,需要一种可靠的监测系统。
外文资料The Tenth East Asia-Pacific Conference on Structural Engineering and ConstructionAugust 3-5, 2006, Bangkok, ThailandStructural Rehabilitation of Concrete Bridges with CFRPComposites-Practical Details and ApplicationsRiyad S. ABOUTAHA1, and Nuttawat CHUTARAT2 ABSTRACT: Many old existing bridges are still active in the various highway transportation networks, carrying heavier and faster trucks, in all kinds of environments. Water, salt, and wind have caused damage to these old bridges, and scarcity of maintenance funds has aggravated their conditions. One attempt to restore the original condition; and to extend the service life of concrete bridges is by the use of carbon fiber reinforced polymer (CFRP) composites. There appear to be very limited guides on repair of deteriorated concrete bridges with CFRP composites. In this paper, guidelines for nondestructive evaluation (NDE), nondestructive testing (NDT), and rehabilitation of deteriorated concrete bridges with CFRP composites are presented. The effect of detailing on ductility and behavior of CFRP strengthened concrete bridges are also discussed and presented.KEYWORDS: Concrete deterioration, corrosion of steel, bridge rehabilitation, CFRP composites.1 IntroductionThere are several destructive external environmental factors that limit the service life of bridges. These factors include but not limited to chemical attacks, corrosion of reinforcing steel bars, carbonation of concrete, and chemical reaction of aggregate. If bridges were not well maintained, these factors may lead to a structural deficiency, which reduces the margin of safety, and may result in structural failure. In order to rehabilitate and/or strengthen deteriorated existing bridges, thorough evaluation should be conducted. The purpose of the evaluation is to assess the actual condition of any existing bridge, and generally to examine the remaining strength and load carry capacity of the bridge.1 Associate Professor, Syracuse University, U.S.A.2 Lecturer, Sripatum University, Thailand.One attempt to restore the original condition, and to extend the service life of concrete bridges is by the use of carbon fiber reinforced polymer (CFRP) composites.In North America, Europe and Japan, CFRP has been extensively investigated and applied. Several design guides have been developed for strengthening of concrete bridges with CFRP composites. However, there appear to be very limited guides on repair of deteriorated concrete bridges with CFRP composites. This paper presents guidelines for repair of deteriorated concrete bridges, along with proper detailing. Evaluation, nondestructive testing, and rehabilitation of deteriorated concrete bridges with CFRP composites are presented. Successful application of CFRP composites requires good detailing as the forces developed in the CFRP sheets are transferred by bond at the concrete-CFRP interface. The effect of detailing on ductility and behavior of CFRP strengthened concrete bridges will also be discussed and presented.2 Deteriorated Concrete BridgesDurability of bridges is of major concern. Increasing number of bridges are experiencing significant amounts of deterioration prior to reaching their design service life. This premature deterioration considered a problem in terms of the structural integrity and safety of the bridge. In addition, deterioration of a bridge has a considerable magnitude of costs associated with it. In many cases, the root of a deterioration problem is caused by corrosion of steel reinforcement in concrete structures. Concrete normally acts to provide a high degree of protection against corrosion of the embedded reinforcement. However, corrosion will result in those cases that typically experience poor concrete quality, inadequate design or construction, and harsh environmental conditions. If not treated a durability problem, e.g. corrosion, may turn into a strength problem leading to a structural deficiency, as shown in Figure1.Figure1 Corrosion of the steel bars is leading to a structural deficiency3 Non-destructive Testing of Deteriorated Concrete Bridge PiersIn order to design a successful retrofit system, the condition of the existing bridge should be thoroughly evaluated. Evaluation of existing bridge elements or systems involves review of the asbuilt drawings, as well as accurate estimate of the condition of the existing bridge, as shown in Figure2. Depending on the purpose of evaluation, non-destructive tests may involve estimation of strength, salt contents, corrosion rates, alkalinity in concrete, etc.Figure2 Visible concrete distress marked on an elevation of a concrete bridge pier Although most of the non-destructive tests do not cause any damage to existing bridges, some NDT may cause minor local damage (e.g. drilled holes & coring) that should be repaired right after the NDT. These tests are also referred to as partial destructive tests but fall under non-destructive testing.In order to select the most appropriate non-destructive test for a particular case, thepurpose of the test should be identified. In general, there are three types of NDT to investigate: (1) strength, (2) other structural properties, and (3) quality and durability. The strength methods may include; compressive test (e.g. core test/rebound hammer/ ultrasonic pulse velocity), surface hardness test (e.g. rebound hammer), penetration test (e.g. Windsor probe), and pullout test (anchor test).Other structural test methods may include; concrete cover thickness (cover-meter), locating rebars (rebar locator), rebar size (some rebar locators/rebar data scan), concrete moisture (acquameter/moisture meter), cracking (visual test/impact echo/ultrasonic pulse velocity), delamination (hammer test/ ultrasonic pulse velocity/impact echo), flaws and internal cracking (ultrasonic pulse velocity/impact echo), dynamic modulus of elasticity (ultrasonic pulse velocity), Possion’s ratio (ultrasonic pulse velocity), thickness of concrete slab or wall (ultrasonic pulse velocity), CFRP debonding (hammer test/infrared thermographic technique), and stain on concrete surface (visual inspection).Quality and durability test methods may include; rebar corrosion rate –field test, chloride profile field test, rebar corrosion analysis, rebar resistivity test, alkali-silica reactivity field test, concrete alkalinity test (carbonation field test), concrete permeability (field test for permeability).4 Non-destructive Evaluation of Deteriorated Concrete Bridge PiersThe process of evaluating the structural condition of an existing concrete bridge consists of collecting information, e.g. drawings and construction & inspection records, analyzing NDT data, and structural analysis of the bridge. The evaluation process can be summarized as follows: (1) Planning for the assessment, (2) Preliminary assessment, which involves examination of available documents, site inspection, materials assessment, and preliminary analysis, (3) Preliminary evaluation, this involves: examination phase, and judgmental phase, and finally (4) the cost-impact study.If the information is insufficient to conduct evaluation to a specific required level, then a detailed evaluation may be conducted following similar steps for the above-mentioned preliminary assessment, but in-depth assessment. Successful analytical evaluation of an existing deteriorated concrete bridge should consider the actual condition of the bridge and level of deterioration of various elements. Factors, e.g. actual concrete strength, level of damage/deterioration, actual size of corroded rebars, loss of bond between steel and concrete, etc. should be modeled into a detailed analysis. If such detailed analysis is difficult to accomplish within a reasonable period of time, thenevaluation by field load testing of the actual bridge in question may be required.5 Bridge Rehabilitation with CFRP CompositesApplication of CFRP composite materials is becoming increasingly attractive to extend the service life of existing concrete bridges. The technology of strengthening existing bridges with externally bonded CFRP composites was developed primarily in Japan (FRP sheets), and Europe (laminates). The use of these materials for strengthening existing concrete bridges started in the 1980s, first as a substitute to bonded steel plates, and then as a substitute for steel jackets for seismic retrofit of bridge columns. CFRP Composite materials are composed of fiber reinforcement bonded together with a resin matrix. The fibers provide the composite with its unique structural properties. The resin matrix supports the fibers, protect them, and transfer the applied load to the fibers through shearing stresses. Most of the commercially available CFRP systems in the construction market consist of uniaxial fibers embedded in a resin matrix, typically epoxy. Carbon fibers have limited ultimate strain, which may limit the deformability of strengthened members. However, under traffic loads, local debonding between FRP sheets and concrete substrate would allow for acceptable level of global deformations before failure.CFRP composites could be used to increase the flexural and shear strength of bridge girders including pier cap beams, as shown in Figure3. In order to increase the ductility of CFRP strengthened concrete girders, the longitudinal CFRP composite sheets used for flexural strengthening should be anchored with transverse/diagonal CFRP anchors to prevent premature delamination of the longitudinal sheets due to localized debonding at the concrete surface-CFRP sheet interface. In order to prevent stress concentration and premature fracture of the CFRP sheets at the corners of concrete members, the corners should be rounded at 50mm (2.0 inch) radius, as shown in Figure3.Deterioration of concrete bridge members due to corrosion of steel bars usually leads in loss of steel section and delamination of concrete cover. As a result, such deterioration may lead to structural deficiency that requires immediate attention. Figure4 shows rehabilitation of structurally deficient concrete bridge pier using CFRP composites.Figure3 Flexural and shear strengthening of concrete bridge pier with FRP compositesFigure4 Rehabilitation of deteriorated concrete bridge pier with CFRP composites6 Summary and ConclusionsEvaluation, non-destructive testing and rehabilitation of deteriorated concrete bridges were presented. Deterioration of concrete bridge components due to corrosion may lead to structural deficiencies, e.g. flexural and/or shear failures. Application of CFRP composite materials is becoming increasingly attractive solution to extend the service life of existing concrete bridges. CFRP composites could be utilized for flexural and shear strengthening, as well as for restoration of deteriorated concrete bridge components. The CFRP composite sheets should be well detailed to prevent stress concentration and premature fracture or delamination. For successful rehabilitation of concrete bridges in corrosive environments, a corrosion protection system should be used along with the CFRP system.第十届东亚太结构工程设计与施工会议2006年8月3-5号,曼谷,泰国碳纤维复合材料修复混凝土桥梁结构的详述及应用Riyad S. ABOUTAHA1, and Nuttawat CHUTARAT2摘要:在各式各样的公路交通网络中,许多现有的古老桥梁,在各种恶劣的环境下,如更重的荷载和更快的车辆等条件下,依然在被使用着。
桥梁工程毕业论文英文Title: Analysis and Design of Bridge StructuresAbstract:Bridge engineering is an integral part of civil engineering and plays a crucial role in connecting communities and facilitating transportation. The purpose of this thesis is to analyze and design bridge structures, focusing on key components such as foundations, superstructures, and substructures. The analysis includes evaluating the structural behavior and load carrying capacity through the utilization of various analytical tools. Furthermore, the design phase encompasses selecting suitable materials and designing components to meet safety and durability requirements. The study serves as a comprehensive guide to understanding the principles and processes involved in bridge engineering.1. IntroductionBridges are vital infrastructure that connects people, places, and economies. The study of bridge engineering involves the application of core principles like physics, materials science, and mathematics todesign and construct safe and efficient bridge structures. This thesis aims to provide an overview of the analysis and design principles involved in bridge engineering.2. Structural AnalysisThe analysis of bridge structures is crucial to ensure their safety and functionality. This chapter presents various analytical techniques for evaluating bridge behavior. The use of finite element analysis, structural modeling, and computer-aided design software is discussed in detail. Different load types and load combinations are also considered to determine the resilience and load carrying capacity of the bridge.3. Foundation DesignThe foundation is a critical component of any bridge structure, as it transfers the loads from the superstructure to the underlying ground. This chapter explores various foundation types, such as shallow foundations, deep foundations, and pile foundations. Design considerations, including soil mechanics, bearing capacity, settlement analysis, and groundwater conditions, are discussed. The use ofgeotechnical engineering software to simulate and optimize foundation design is also explored.4. Superstructure DesignThe superstructure refers to the portion of the bridge that supports the traffic loads and transfers them to the substructure. This chapter discusses the different types of superstructures, including beam bridges, truss bridges, and arch bridges. The selection of materials, such as concrete, steel, and composite materials, is analyzed based on their structural properties and cost-effectiveness. The design process incorporates the calculation of load distribution, structural stability, and deflection limits.5. Substructure DesignThe substructure comprises the bridge piers, abutments, and retaining walls, which provide support to the superstructure. This chapter focuses on the design considerations for substructures, including the selection of suitable materials, analysis of load distribution, and evaluation of stability against various forces and environmental conditions. Design principles for reinforced concrete and masonry substructures are explored, along with mitigationstrategies for potential issues such as scour and seismic activity.6. Safety and DurabilityEnsuring safety and durability is of utmost importance in bridge engineering. This chapter discusses the necessary steps for evaluating the safety of bridge structures, including factor of safety calculations, failure mode analysis, and risk assessment procedures. The discussion also includes guidelines for maintenance and inspection to ensure long-term performance and durability.7. ConclusionThis thesis provides an in-depth analysis and design framework for bridge structures. By comprehensively exploring the key components of bridges, including foundations, superstructures, and substructures, it provides valuable insights into the principles and processes involved in bridge engineering. The knowledge gained from this study will contribute to the safe and efficient design and construction of future bridge projects.。
土木工程桥梁方向毕业设计外文及翻译(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--学生姓名:学号:班级:专业:土木工程(桥梁方向)指导教师:2010 年 3 月What is traffic engineeringTraffic engineering is still a relatively new discipline within the overall bounds of civil engineering. it has nevertheless already been partially planning. the disciplines are not synonymous though. transportation planning is concerned with the planning, functional design, operation and management of facilities for any mode of transportation in order to provide for the safe, rapid, comfortable, convenient, economical and enviromenally-comparible movement of people and goods. within that broad scope, traffic engineering deals with those functions in respect of roads, road networks, terminal points , about lands and their relationships with other modes of transportation.Those definitions, based on the 1976 ones of the of transportation engineers are complete than, the British instituting of civil engineering which deals with traffic planning and design of roads, of frontage development and of parking facilities and with the control of traffic to provide safe, convenient and economical movement of vehicles and pedestrians.The definitions of the disicipline are becoming clearer: the methodology is developing continuously and becoming increasingly scientific. the early rule-of-thumb techniques are disappearing.Traffic problemThe discipline is young: the problem is large and still growing. in 1920 the total number of motor vehicles, licensed in great Britain was,650, year later the comparable figure was 14,950,000-a growth factor of 23 times. in recent years the rate of growth has slackened somewhat, but it is still considerable: 1955 6,466,0001960 9,439,0001965 12,938,0001970 14,950,0001974 17,247,000In order to see the problem in every day terms ,consider high street. anywhere. assuming that present trends continue, it is expected that within the next fifteen years of so the traffic on this road will increase by around forty to fifty persent. if this increased volume of traffic were to be accommodated at the same standard as today, the road might need to be widened by a similar forty to fifty percent-perhaps extra lane of traffic for the pedestrian to cross. In man cases, to accommodate the foreseeable future demand would destroy the character of the whole urban environment, and is clearly unacceptable.the traffic problem is of world-wide concern, but different countries are obviously at different stages in the traffic escalation-with America in the lead, while a county has few roads and a relatively low problem, as soon as the country is opened up by a road system, the standard of living and the demand for motor transport both rise, gathering momentum rapidly. eventually-and the stage at which this happens is open to considerable debate-the demand for cars, buses and lorries become satiated. the stage is known as saturation level.For comparison ,car ownership figures in different countries in 1970 were:India cars/personIsrael personJapan cars/personIreland cars/personNetherlands cars/personGreat Britain cars/personWest Germany cars/personAustralia cars/personUSA cars/personBut the growth in vehicle ownership is only part of the overall traffic problem. obviously,if a country has unlimited roads of extreme width, the traffic problem would not rise. no country in the world could meet this requirement: apart from anything else, it would not make economic for each vehicle using the roads. This figure is decreasing steadily.Three possible solutionsThe basic problem of traffic is therefore simple-an ever-increasing number of vehicles seeking to use too little roade space. the solution to the problem-is else a not-too-difficult choice from three possiblilities:build, sufficient roads of sufficient size to cope with the demand.Restrict the demand for roads by restricting the numbers of licensed vehicles.A compromise between (a) and (b) build some extra roads, using the and the existing road network to their full potential, and at the same time apply some restraint measures, limiting, the increase in demand as far as possible.With no visible end to the demand yet in sight, and 216 with modern road-making costs ranging around £1 million per kilometer cost of building roads in Britain to cope with an unrestricted demand would be far too great. added to this, such clossal use of space in a crowed island cannot be, seriously considered. in Los Angeles, a city built around the parking space for, the automobile. our citie are already largely built-and no one would consider ruining their character by pulling them down and rebuilding around the car, thus the first possible soluting is rule out.Even today,in an age of at least semi-affluence in most of the Western World, the car is still to some extent a status symbol, a symbol of family wants to own one, and takes steps saving or borrowing-to get one. as incomes and standards rise thesecond car becomes the target. any move to restrict the acquisition of the private car would be most unpopular-and politically unlikely.For many purpose the flexibility of the private car-conceptually affording door-to-door personal transport is ideal, and its use can be accommodate. for the mass, movement of people along specific corridors within a limited period of .. particularly the journey to work it may be less easily accommodated. other transport mode may be more efficient. some sort of compromise solution is the inevitable answer to the basic traffic problem .it is in the execution of the compromise solution that, traffic engineering comes into its own. traffic engineering ensures that any new facilities are not over-deigned and are correctly located to meet the demand. it ensures that the existing facilities are fully used, in the most efficient manner. the fulfillment of these duties may entail the selective throttling of demand: making the use of the car less attractive in the peak periods in order that the limited road space can be more efficiently used by public transport.Such restraint measures will often be accompanied by improvements in the public transport services, to accommodate the extra demand for them.Prestressed Concrete BridgesPrestressed concrete has been used extensively in . bridge construction since its first Introduction from Europe in the late 1940s. Literally thousands of highway bridges of both precast, prestressed concrete and cast-in-place post-tensioned concrete has been constructed in the United States. Railroad bridges utilizing prastressed concrete have become common as well. The use and evolution of prastressed concrete bridges is expected to continue in the years ahead.Short-span BridgesShort-span bridges will be assumed to have a maximum of 45 ft .It should be understood that this is an arbitrary figure, and there is no definite line of demarcation between short, moderate, and long spans in highway bridges. Short-span bridges are most efficiently made of precast ,prestressed-concrete hollow slabs, I-beams, solid slabs or cast-place solid slabs. and T-beams of relatively generous proportions.Precast solid slabs are most economical when used on very short spans. The slabs can be made in any convenient width,but widths of 3 or 4 ft to have been frequently are cast in the longitudinal sides of the precast units. After the slabs have been erected and the joints between the slabs have been filled with concrete, the keys transfer live load shear forces between the adjacent slabs.Precast hollow slabs used in short-span bridges may have round or square voids. They too are generally made in units 3 to 4 ft to m) wide with thicknesses from 18 to 27 in to . Precast hollow slabs can be made in any convenient width and depth, and frequently are used in bridges having spans from 20 to 50 ft to . Longitudinal shear keys are used in the joints between adjacent hollow slabs in the same way as with solid slabs. Hollow slabs may or may not be used with a composite, cast-in-place concrete topping an accecptable appearance and levelness.Transverse reinforcement normally is provided in precast concrete bridge superstructures for the purpose of tying the structure together in the transverse direction. Well-designed ties ensure that the individual longitudinal members forming the superstructure will act as a unit under the effects of the live load. In slab bridge construction, transverse ties most frequently consist of threaded steel bars placed through small holes formed transversely through the member during fabrication. Nuts frequently are used as fasteners at each end of the bars. In some instances, the transverse ties consist of post tensionedtendons placed, stressed, and grouted after the slabs have been erected. The transverse tie usually extends from one side of the bridge to the other.The shear forces imposed on the stringers in short-span bridges frequently are too large to be resisted by the concrete alone. Hence, shear reinforcement normally is required. The amount of shear reinforcement required may be relatively large if the webs of the stringers are relatively thin.Concrete diaphragms, reinforced with post-tensioned reinforcement or nonprestressed reinforcement, normally are provided transversely at the ends and at intermediate locations along the span in stringer-type bridges. The disaphragms ensure the lateral-distribution of the live load to the various stringers and prevent individual stringers from displacing or rotating significantly with respect to the adjacent stringers.No generalities will be made here about the relative cost of each of the above types of construction; construction costs are a function of many variables which prohibit meaningful generalizations. However, it should be noted that the stringer type of construction requires a considerably greater construction depth that is required for solid, hollow, or channel slab bridge superstructures. Stringer construction does not require a separate wearing surface, as do the precast slab types of construction, unless precast slabs are used to span between the stringers in lieu of the more commonly used cast-in-place reinforced concrete deck. Stringer construction frequently requires smaller quantities of superstructure materials than do slab bridges (unless the spans are very short). The construction time needed to complete a bridge after the precast members have been erected is greater with stringer framing than with the slab type of framing.Bridges Of Moderate SpanAgain for the purpose of this discussion only, moderate spans for bridges of prestressed concrete are defined as beingfrom 45 to 80 ft to . Prestressed concrete bridges in this span range generally can be divided into two types: stringer-type bridges and slab-type bridges. The majority of the precast prestressed concrete bridges constructed in the United States have been stringer bridges using I-shaped stringers, but a large number of precast prestressed concrete bridges have been constructed with precast hollow-box girders (sometimes also called stringers). Cast-in-place post-tensioned concrete has been used extensively in the construction of hollow-box girder bridges-a form of construction that can be considered to be a slab bridge.Stringer bridges, which employ a composite, cast-in-place deck slab, have been used in virtually all parts of the United States. These stringers normally are used at spacing s of about 5 to 6 ft to . The cast-in-place deck is generally from to in to in thickness. This type of framing is very much the same as that used on composite-stringer construction for short-span bridges.Diaphram details in moderate-span bridges are generally similar to those of the short spans, with the exception that two or three interior diaphragms sometime are used, rather than just one at midspan as in the short-span bridge.As in the case of short-span bridges, the minimum depth of construction in bridges of moderate span is obtained by using slab construction, which may be either solid – or hollow – box in cross section. Average construction depths are requires when stringers with large flanges are used in composite construction, and large construction depths are required when stringers with small bottom flanges are used. Composite construction may be developed through the use of cast-in-place concrete decks or with precast concrete decks. Lower quantities of materials normally are required with composite construction , and the dead weight of the superstructure normally is less for stringer construction than for slab construction.Long-Span BridgesPrestressed concrete bridges having spans of the order of 100ft are of the same general types of construction as structures having moderate span lengths, with the single exception that solid slabs are not used for long spans. The stringer spacings are frequently greater (with stringers at 7 to 9 ft) as the span lengths of bridges increase. Because of dead weight considerations, precast hollow-box construction generally is employed for spans of this length only when the depth of construction must be minimized. Cast-in-place post-tensioned hollow-box bridges with simple and continuous spans frequently are used for spans on the order of 100 ft and longer.Simple, precast, prestressed stringer construction would be economical in the United States in the spans up to 300 ft under some conditions. However, only limited use has been made of this type of construction on spans greater than 100 ft. For very long simple spans, the advantage of precasting frequently is nullified by the difficulties involved in handling, transporting, and erecing the girders, which may have depths as great as 10 ft and weigh over 200 tons. The exceptions to this occur on large projects where all of the spans are over water of sufficient depth and character that precast beams can be handled with floating equipment, when custom girder launchers can be used, and when segmental construction techniques can be used.The use of cast-in-place , post-tensioned, box-girder bridges has been extensive. Although structures of these types occasionally are used for spans less than 100ft, they more often are used for spans in excess of 100 ft and have been used in structuresHaving spans in excess of 300 ft. Structurally efficient in flexure, especially for continuous bridges, the box girder is torsionally stiff and hence an excellent type of structure for use on bridges that have horizontal curvature. Some governmental agencies use this form of construction almost exclusively in urban areas where appearance from underneath the superstructure,as well as from the side, is considered important.交通工程介绍什么是交通工程交通工程仍然是在土木工程的总的界限内的一种相对新的训练。
本桥为跨狮狸沟而设,本桥上部结构为二联2-40m+一联3-50mT梁,T梁采用先简支后连续结构。
本桥位于直线上,纵向位于+0.8%上坡段,设计荷载为一级,桥面宽度为净9附2×2.0m人行道,设计洪水频率为1/100,基本地震烈度为Ⅶ级。
墩台方向均按路线方向布置。
桥面采用15cm混凝土铺装,FYT-1防水层,9cm沥青混凝土。
上部结构进行了截面尺寸的拟定,梁桥自重和二期恒载的横载内力计算,活载内力计算,最不利荷载组合等,为下部结构的检算奠定基础。
下部结构采用钢筋混凝土柱式墩,板式空心墩。
基础采用挖孔灌注桩和钻孔灌柱桩。
本设计采用容许应力法对此桥下部结构进行设计并检算。
对基础,承台按刚性承台板进行设计计算,对桩分别按土的阻力和桩身材料强度计算单桩轴向容许承载力,检算外荷载作用下桩身稳定性和材料强度,检算桩的抗裂性。
并对桥墩进行基础沉降和墩顶水平位移检算。
最终的计算结果表明,上述所有各项检算均符合各相关规定要求。
关键词:桥梁下部结构桥墩桩
This bridge supposes for the cross lion fox ditch, The bridge structure for the combined 2-40m + a joint 3 - 50m beam,T-beam used in simple and continuous support structure. The bridge is located in straight line, vertical +0.8% at the uphill, Design of a load, the bridge deck width of the net with two 9 ×2.0m sidewalks, design flood frequency of 1 / 100, for the basic seismic intensity Ⅶ level. A pillar direction presses the route direction arrangement. The bridge floor uses the 15cm concrete paving, the FYT-1 waterproof layer, the9cm asphalt concrete.
The superstructure carried on section size drawing up, the beam bridge has been self-possessed with two issue of dead loads lateral load endogen force computations, the live load endogen force computation, the most disadvantageous load combination and so on ,examined for the substructure calculated laid the foundation。
The substructure uses the reinforced concrete pillar, the board style hollow pillar. The foundation uses bored piles and bored piling irrigation. This design uses allowed the stress law bridge the substructure carries on the design regarding this and examines calculated. To the foundation, receives to receive the platen according to the rigidity to carry on the design calculation, separately presses the earth to the pile the resistance and the pile body material strength calculates the single pile axial to allow the supporting capacity, examines outside calculated under the load function the pile body stability and the material strength, examine calculates the pile the crack resistance. And carries on the foundation settlement and the pillar to the bridge pier goes against the horizontal departure to examine calculated. The final computed result indicated that, the above all each item examines calculated conforms to each correlation stipulation requirement.
Keywords : Bridge ,Substructure,Pier ,Pile。