河南省洛阳市2016-2017学年高一下学期期中考试数学
- 格式:pdf
- 大小:562.41 KB
- 文档页数:7
绝密★启用前【全国市级联考】河南省洛阳市2016-2017学年高一下学期期末考试数学试题试卷副标题考试范围:xxx ;考试时间:66分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、已知集合,集合,且,则满足条件的实数的个数有( )A .个B . 个C . 个D . 个2、下列函数中,既是奇函数又存在零点的是( ) A . B .C .D .3、已知平行四边形中,则,( )A .B .C .D .4、执行如图的程序框图,若输入的分别为,则输出的 ( )A .B .C .D .5、为了解某服装厂某种服装的年产量 (单位:千件)对价格 (单位:千元/千件)的影响,对近五年该产品的年产量和价格统计情况如下表:如果关于的线性回归方程,且,则( )A.B.C.D.6、设直线与交于点,若一条光线从点射出,经轴反射后过点,则人射光线所在的直线方程为( )A .B .C .D .7、一个几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .8、已知曲线,则下面结论正确的是( )A .把上各点的横坐标缩短到原来的倍, 纵坐标不变,再把得到的曲线向左平移个单位长度, 得到曲线B .把上各点的横坐标缩短到原来的倍 ,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C .把上各点的横坐标伸长到原来的倍 ,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线D .把上各点的横坐标伸长到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线9、在直三棱柱中,,若此三棱柱外接球的半径为,则该三棱柱的表面积为( ) A .B .C .D .10、一位同学家里订了一份报纸,送报人每天都在早上6 : 20〜7 : 40之间将报纸送达,该同学需要早上7 : 00〜8 : 00之间出发上学,则这位同学在离开家之前能拿到报纸的概率为( )A .B .C .D .11、在平面直角坐标系中,已知,曲线上任一点满足,点在直线上,如果曲线上总存在两点到点的距离为,那么点的横坐标的范围是( )A .B .C .D .12、已知两条直线,与函数的图象从左到右交于两点,与函数的图象从左到右交于两点,若,当变化时,的范围是( )A .B .C .D .第II卷(非选择题)二、填空题(题型注释)13、若,则角__________.(用弧度表示)14、某公司为了解用户对其产品的满意度,随机调查了一些客户,得到了满意度评分的茎叶图,则这组评分数据的中位数是____.15、执行程序框图,如果输入时,输出,则整数的值为_________.16、已知锐角满足,当取得最大值时,_________.三、解答题(题型注释)17、已知点在函数的图象上.(1)求函数的解析式;(2)求不等式的解集.18、已知向量,,函数.(1)求函数图象的对称中心;(2)若,求函数的最大值和最小值,并求出函数取得最值时的大小.19、学校高一数学考试后,对分(含分)以上的成绩进行统计,其頻率分布直方图如图所示,分数在分的学生人数为人.(1)求这所学校分数在分的学生人数;(2)请根据频率发布直方图估计这所学校学生分数在分的学生的平均成绩;(3)为进一步了解学生的学习情况,按分层抽样方法从分数在分和分的学生中抽出人,从抽出的学生中选出人分别做问卷和问卷,求分的学生做问卷,分的学生做问卷的概率.20、在四棱锥中,底面为矩形,,其中.(1)点分别为线段中点,求证:平面;(2)设为线段上一点,且,求证:平面.21、已知函数在区间上单调,当时,取得最大值,当时,取得最小值.(1)求的解析式;(2)当时,函数有个零点,求实数的取值范围.22、在平面直角坐标系中,满足,设点的轨迹为,从上一点向圆作两条切线,切点分别为,且.(1)求点的轨迹方程和; (2)当点在第一象限时,连接切点,分别交轴于点,求面积最小时点的坐标.参考答案1、B2、D3、B4、D5、C6、A7、C8、B9、A10、D11、A12、C13、14、15、116、17、(1);(2)或.18、(1);(2)时,函数取得最小值,时,函数取得最大值.19、(1)200人;(2)113分;(3).20、(1)见解析;(2)见解析.21、(1);(2).22、(1),;(2).【解析】1、,且,则有或.或-2. 当时,,此时,不满足题意;当时,,满足题意;当时,,此时,不满足题意,所以满足条件的实数只有1个.故选B.2、四个选项中,和非奇非偶,排除A,C;B. 为偶函数,排除B;,有,故为奇函数,且有有零点,故选D.3、平行四边形中,..故选B.4、输入的,不满足输入的,不满足输入的,有;此时,不满足输入的,不满足输入的,有;此时,不满足输入的,满足输入的,有;此时,不满足输入的,满足输入的,有.此时,满足,输出.故选D.5、由表格知,代入,得.有.解得.故选C.6、,解得,即.关于轴对称得,连接即为所求..,即.故选A.7、由三视图可知,此几何体为四棱锥A-BCFE,.故选C.8、,,将上各点的横坐标缩短到原来的倍,纵坐标不变,得到,再向左平移个单位长度,得,即曲线,所以到的变换过程为把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线.故选B.9、∵在直三棱锥中,,,∴面,把直三棱柱补成正四棱柱,则正四棱柱的体对角线是其外接球的直径,即有:,即.解得:.故表面积为.故选:A.10、如图所示,设送报人到达的时间为,这位同学在离开家为;则可以看成平面中的点,试验的全部结果所构成的区域为,其矩形区域的面积为.事件A所构成的区域为.即图中的阴影部分,其中.且△ABC的面积为.则阴影部分的面积为.所求对应的概率为.故选D.由于随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件。
2016-2017学年河南省洛阳市高一(下)期末数学试卷一、选择题(共12小题,每小题5分,满分60分在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知集合A={0,5,10},集合B={a+2,a2+1},且A∩B={5},则满足条件的实数a的个数有()A.0个B.1个C.2个D.3个2.(5分)下列函数中,既是奇函数又存在零点的是()A.y=2+sin x B.y=cos x C.y=lnx D.y=e x﹣e﹣x3.(5分)已知平行四边形ABCD中,∠ABC=60°,AB=1,BC=2,则=()A.1B.2C.1D.﹣24.(5分)执行如图的程序框图,若输入的a,b分别为78,182,则输出的a=()A.0B.2C.13D.265.(5分)为了解某服装厂某种服装的年产量x(单位:千件)对价格y(单位:千元/千件)的影响,对近五年该产品的年产量和价格统计情况如下表:如果y关于x的线性回归方程为=﹣12.3x+86.9,且y1=70,y2=65则y3+y4+y5=()A.50B.113C.115D.2386.(5分)设直线3x﹣2y﹣12=0与直线4x+3y+1=0交于点M,若一条光线从点P(3,2)射出,经y轴反射后过点M,则人射光线所在的直线方程为()A.x﹣y﹣1=0B.x﹣y+1=0C.x﹣y﹣5=0D.x+y﹣5=0 7.(5分)一个几何体的三视图如图所示,则该几何体的体积为()A.12B.9C.6D.368.(5分)已知曲线C1:y=sin x,C2:y=sin(2x+),则下面结论正确的是()A.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2B.把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2C.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2D.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C29.(5分)在直三棱柱ABC﹣A1B1C1中,AB⊥BC,AB=6,BC=8,若此三棱柱外接球的半径为13,则该三棱柱的表面积为()A.624B.576C.672D.72010.(5分)一位同学家里订了一份报纸,送报人每天早上6:20﹣7:40之间将报纸送达,该同学需要早上7:00﹣8:00之间出发上学,则这位同学在离开家之前能拿到报纸的概率为()A.B.C.D.11.(5分)在平面直角坐标系xOy中,已知O(0,0),A(,0),曲线C上任一点M 满足|OM|=4|AM|,点P在直线y=(x﹣1)上,如果曲线C上总存在两点到点P的距离为2,那么点P的横坐标t的范围是()A.1<t<3B.1<t<4C.2<t<3D.2<t<412.(5分)已知两条直线l1:y=3,l2:y=(2≤m≤6),l1与函数y=|log2x|的图象从左到右交于A,B两点,l2与函数y=|log2x|的图象从左到右交于C,D两点,若a=||,b=||,当m变化时,的范围是()A.(,4)B.[,4]C.[,32]D.(,32)二、填空题(共4小题,每小题5分,满分20分)13.(5分)若cosα=﹣,﹣π<α<0,则角α=.(用弧度表示)14.(5分)某公司为了解用户对其产品的满意度,随机调查了一些用户,得到了满意度评分的茎叶图,则这组评分数据的中位数是.15.(5分)执行程序框图,如果输入x=9时,输出y=,则整数a值为.16.(5分)已知锐角α,β满足sin(α+β)cosβ=2cos(α+β)sinβ,当α取得最大值时,tan2α=.三、解答题(共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知点(8,3),(﹣3,6)在函数f(x)=的图象上(1)求函数f(x)的解析式(2)求不等式f(x)>0的解集.18.(12分)已知向量=(cos(x﹣),﹣1),=(cos(x﹣),cos2x),x∈R,函数f(x)=(1)求函数f(x)图象的对称中心(2)若x∈[﹣,],求函数f(x)的最大值和最小值,并求出f(x)取得最值时x 的大小.19.(12分)学校高一数学考试后,对90分(含90分)以上的成绩进行统计,其频率分布直方图如图所示,分数在120﹣130分的学生人数为30人(1)求这所学校分数在90﹣140分的学生人数(2)请根据频率分布直方图估计这所学校学生分数在90﹣140分的学生的平均成绩(3)为进一步了解学生的学习情况,按分层抽样方法从分数在90﹣100分和120﹣130分的学生中抽出5人,从抽出的学生中选出2人分别做问卷A和问卷B,求90﹣100分的学生做问卷A,120﹣130分的学生做问卷B的概率.20.(12分)在四棱锥P﹣ABCD中,底面ABCD为矩形,AB⊥PC,其中BP=BC=3,PC =(1)点E,F分别为线段BP,DC中点,求证:EF∥平面APD(2)设G为线段BC上的一点,且BG=2GC,求证:PG⊥平面ABCD.21.(12分)已知函数f(x)=A sin(ωx+φ)+B,(A>0,ω>0,|φ|<,x∈R)在区间(,)上单调,当x=时,f(x)取得最大值5,当x=时,f(x)取得最小值﹣1,(1)求f(x)的解析式(2)当x∈[0,4π]时,函数g(x)=2x|f(x)|﹣(a+1)2x+1有8个零点,求实数a的取值范围.22.(12分)在平面直角坐标系中,A(﹣2,0),B(2,0),P(x,y)满足=16,设点P的轨迹为C1,从C1上一点Q向圆C2:x2+y2=r2(r>0)作两条切线,切点分别为M,N且∠MQN=60°(1)求点P的轨迹方程r(2)当点Q在第一象限时,连接切点M,N,分别交x,y轴于点C,D,求△OCD面积最小时点Q的坐标.2016-2017学年河南省洛阳市高一(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分在每小题给出的四个选项中,只有一项是符合题目要求的)1.【考点】1E:交集及其运算.【解答】解:∵集合A={0,5,10},集合B={a+2,a2+1},且A∩B={5},∴a+2=5或a2+1=5,解得:a=3或a=2或a=﹣2,经检验a=3与a=﹣2不合题意,舍去,即a=2,则满足条件的实数a的个数有1个,故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【考点】52:函数零点的判定定理.【解答】解:y=2+sin x是非奇非偶函数,y=cos x是偶函数;y=lnx是非奇非偶函数;排除选项A,B,C;y=e x﹣e﹣x是奇函数.并且x=0时,y=0,存在零点.故选:D.【点评】本题考查函数的奇偶性以及函数的零点的求法,考查计算能力.3.【考点】9O:平面向量数量积的性质及其运算.【解答】解:如图,平行四边形ABCD中,∠ABC=60°,AB=1,BC=2,∴===.故选:B.【点评】本题考查平面向量的数量积运算,考查了平面向量的加法法则,是基础题.4.【考点】EF:程序框图.【解答】解:由题意,执行如图的程序框图,输入的a,b分别为78,182,显然a≠b,并且满足a<b,此时b=182﹣78=104,继续判断a≠b,并且a<b,此时b=104﹣78=26,此时a≠b,并且a>b,执行a=78﹣26=52,此时a≠b,满足a>b,所以b=52﹣26=26,则满足a=b输出的a=26;故选:D.【点评】本题考查了程序框图;根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中既要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.5.【考点】BK:线性回归方程.【解答】解:根据表中数据,计算=×(1+2+3+4+5)=3,=×(70+65+y3+y4+y5),代入线性回归方程=﹣12.3x+86.9中,得×(135+y3+y4+y5)=﹣12.3×3+86.9,解得y3+y4+y5=115.故选:C.【点评】本题考查了线性回归方程的计算问题,是基础题.6.【考点】IK:待定系数法求直线方程.【解答】解:由,求得,可得M(2,﹣3).由题意,人射光线所在的直线存在斜率,设人射光线所在的直线的斜率为k,则人射光线所在的直线的方程为y﹣2=k(x﹣3),即kx﹣y+2﹣3k=0.由反射定律可得M关于y轴的对称点M′(﹣2,﹣3)在直线kx﹣y+2﹣3k=0上,故有﹣2k+3+2﹣3k=0,求得k=1,故人射光线所在的直线方程为x﹣y﹣1=0,故选:A.【点评】本题主要考查求两条直线的交点,反射定律的应用,用待定系数法求直线的方程,属于中档题.7.【考点】L!:由三视图求面积、体积.【解答】解:由三视图可知几何体的直观图如图:几何体的体积为:=6.故选:C.【点评】本题考查三视图求解集合体的体积,判断集合体的形状是解题的关键.8.【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【解答】解:∵曲线C1:y=sin x,C2:y=sin(2x+),∴把C1上各点的横坐标缩短到原来的倍,纵坐标不变,可得y=sin2x的图象;再把得到的曲线向左平移个单位长度,得到y=sin(2x+),即得到曲线C2,故选:B.【点评】本题主要考查函数y=A sin(ωx+φ)的图象变换规律,属于基础题.9.【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【解答】解:在直三棱柱ABC﹣A1B1C1中,AB⊥BC,AB=6,BC=8,∴AC==10,构造长方体ABCD﹣A1B1C1D1,∴长方体ABCD﹣A1B1C1D1的外接球就是直三棱柱ABC﹣A1B1C1的外接球,∵直三棱柱ABC﹣A1B1C1外接球的半径为13,∴A1C=2×13=26,∴AA1==24,∴直三棱柱ABC﹣A1B1C1的表面积为:S=2S △ABC+++=2×+8×24+6×24+10×24=624.故选:A.【点评】本题考查三棱柱的表面积的求法,考查直三棱锥及外接球、勾股定理、构造法等基础知识,考查推量论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.10.【考点】CF:几何概型.【解答】解:如图所示,设送报人到达的时间为x,这位同学在离开家为y;则(x,y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(x,y)|≤x≤,且7≤y≤8},其矩形区域的面积为SΩ=(﹣)×(8﹣7)=;事件A所构成的区域为A={(x,y)|≤x≤,且7≤y≤8,且x≤y},即图中的阴影部分,其中A(7,7),C(,7),B(,),且△ABC的面积为S′=×(﹣7)×(﹣7)=,则阴影部分的面积为S A=﹣=.所求对应的概率为P==.故选:D.【点评】本题考查了几何概型的概率计算问题,也考查了二元一次不等式组表示平面区域的问题,是中档题.11.【考点】KH:直线与圆锥曲线的综合.【解答】解:设M(x,y),∵M满足|OM|=4|AM|,∴化简得:(x﹣4)2+y2=1∴曲线C:(x﹣4)2+y2=1设点P(t,(t﹣1)),只需点P到圆心(4,0)的距离小于2+r即可.∴(t﹣4)2+2(t﹣1)2<(2+1)2.解得:1<t<3.故选:A【点评】本题考查圆的方程的应用,直线与圆的位置关系,考查分析问题解决问题的能力.属于中档题,12.【考点】9S:数量积表示两个向量的夹角.【解答】解:令|log2x|=3,解得x1=,x2=8,即A(,3),B(8,3),设=t,则,令|log2x|=t,解得x1=2﹣t,x2=2t,∴C(2﹣t,t),D(2t,t),∵表示在上的投影,表示在上的投影,∴a=||=2﹣t﹣,b=||=|2t﹣8|=8﹣2t,∴==2t+3.∵,∴≤2t+3≤32.故选:C.【点评】本题考查了平面向量在几何中的应用,属于中档题.二、填空题(共4小题,每小题5分,满分20分)13.【考点】G9:任意角的三角函数的定义;GO:运用诱导公式化简求值.【解答】解:∵,∴,又∵﹣π<α<0,∴,故答案为:﹣.【点评】本题主要考查特殊件的三角函数值,根据三角函数的值求角,属于基础题.14.【考点】BA:茎叶图.【解答】解:由已知茎叶图得到个数据的顺序为:68,69,72,76,78,80,82,83,84,88,91,93关于12个,所以中间两个数为80,82,所以平均数为(80+82)÷2=81;故答案为:81.【点评】本题考查了茎叶图中数据的平均数;关键是明确中位数的定义.15.【考点】EF:程序框图.【解答】解:x=9,y=5,4>a,x=5,y=,>a,x=,y=,<a,此时输出y的值是,故a的整数值是1,故答案为:1.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论.16.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【解答】解:由题意可知:sinα=cos(α+β)sinβ,∴sinα=cosαcosβsinβ﹣sinαsin2β,∴sinα(1+sin2β)=cosαcosβsinβ∴,∴当α取得最大值时,tanα取得最大.,当时,tanα有最大值为.∴.故答案为:.【点评】本题考查三角函数的化简求值,基本不等式的应用,考查计算能力.三、解答题(共6小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.【考点】5B:分段函数的应用.【解答】解:(1)由题意可知,,解得,所以函数f(x)的解析式为f(x)=;(2)当x>0时,由log2x>0,解得x>1;当x≤0时,由,解得x<﹣1.可得不等式f(x)>0的解集为{x|x>1或x<﹣1}.【点评】本题考查函数的解析式的求法,注意运用待定系数法,考查指数不等式、对数不等式的解法,以及运算能力,属于中档题.18.【考点】9O:平面向量数量积的性质及其运算;HW:三角函数的最值.【解答】解:(1)=.令,得.∴函数f(x)的对称中心为.(2)∵∴.当,即时,函数f(x)取得最小值.当,即时,函数f(x)取得最大值.【点评】本题考查平面的数量积的应用,三角函数的化简求值,考查计算能力.19.【考点】B8:频率分布直方图;CC:列举法计算基本事件数及事件发生的概率.【解答】解:(1)∵分数在120~130分的学生人数为30人,且分数在120~130分频率为0.15,∴分数在90~140分的学生人数为(2)估计这所学校学生分数在90~140分的学生的平均成绩为:95×0.1+105×0.25+115×0.45+125×0.15+135×0.05=113分.(3)∵分数在90~100分的学生人数为20人,分数在120~130分的学生人数为30人,∴按照分层抽样方法抽出5人时,从分数在90~100分的学生抽出2人,记为A1,A2从分数在120~13(0分)的学生抽出3人,记为B1,B2,B3从抽取的5人中选出2人分别做问卷A和问卷B,共有20种情况,分别为:A1A2,A1B1,A1B2,A1B3,A2A1,A2B1,A2B2,A2B3,B1A1,B1A2,B1B2,B1B3,B2A1,B2A2,B2B1,B2B3,B3A1,B3A2,B3A2,B3B1,B3B1,设事件A:“90~100分的学生做问卷A,120~13(0分)的学生做问卷B”,则事件A共有6中情况,分别是:A1B1,A1B2,A1B3,A2B1,A2B2,A2B3∴90﹣100分的学生做问卷A,120﹣130分的学生做问卷B的概率:.【点评】本题考查频率分布直方图的应用,考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.20.【考点】LS:直线与平面平行;LW:直线与平面垂直.【解答】证明:(1)取P A中点M,连接EM,MD,在△PBA中,E,M分别为PB,P A的中点,∴,在矩形ABCD中,F为DC中点,∴,∴,∴EFDM为平行四边形,∴EF∥MD,又EF⊄平面APD,MD⊂平面APD,∴EF∥平面APD.(2)取PC中点N,连接NB,由,∴,过P点作PG'⊥BC,垂足为G',则,∴,由G为线段BC上一点,BG=2,可知G,G'重合.即PG⊥BC,∵AB⊥BC,AB⊥PC,BC∩PC=C,BC⊂平面PBC,PC⊂平面PBC,∴AB⊥平面PBC,AB⊂平面ABCD,∴平面PBC⊥平面ABCD,∵平面PBC∩平面ABCD=BC,且PG⊥BC,∴PG⊥平面ABCD.【点评】本题考查线面平行、线面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.21.【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【解答】(1)解:由题意可知,A+B=5,﹣A+B=﹣1,∴A=3,B=2∵∴ω=1∴f(x)=3sin(x+φ)+2又∵∴f(x)的解析式为f(x)=3sin x+2(2)当x∈[0,4π]时,函数g(x)有8个零点,∵2x>0,∴原方程等价于当x∈[0,4π]时,方程|f(x)|=2(a+1)有8个不同的解.即y=|f(x)|与y=2(a+1)有8个不同的交点.画出对应的图象,如图所示:则0<2(a+1)<1,解得所以实数a的取值范围时【点评】本题主要考查三角函数解析式的求解以及函数与方程的应用,求出函数的解析式以及利用数形结合是解决本题的关键.22.【考点】7F:基本不等式及其应用;J3:轨迹方程;J7:圆的切线方程.【解答】解(1)由题意=16,即(x+2)2+y2+(x﹣2)2+y2=16,整理得:x2+y2=4,∴点P的轨迹方程为x2+y2=4,在Rt△OMQ中,∠MQO=30°,|OQ|=2∴|OM|=2sin30°=1,即圆C的半径r=1.(2)设点Q(x0,y0),M(x1,y1),N(x2,y2)(x0>0,y0>0)∵QM,QN为圆的切线.∴QM方程为x1x+y1y=1,QN方程为x2x+y2y=1.∵Q点在直线QM.QN上,∴MN直线方程为x0x+y0y=1.此时,MN与x轴的交点C坐标为,与y轴交点的坐标为(0,),则S△OCD=,分析可得2x0y0≤x02+y02=4,当且仅当x0=y0=等号成立,此时△OCD面积最小,点Q的坐标为(,).【点评】本题考查直线与圆的位置关系,涉及基本不等式的应用,关键是求出点P的轨迹方程.。
洛阳市2016——2017学年度第一学期期中考试高一数学试卷第Ⅰ卷(选择题,共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=x +3+1x +2的定义域为 A .{x |x ≥-3,且x ≠-2} B .{x |x ≥-3,且x ≠2}C .{x |x ≥-3}D .{x |x ≥-2,且x ≠-3}2.已知集合M ={1,2,m 2-3m -1},N ={-1,3},M ∩N ={3},则m 的值为A .4,-1B .-1C .1,-4D .43.若函数f (x )=4x 2-kx -8在[5,10]上为单调函数,则实数k 的取值范围是( )A .(-∞,40]B .[160,+∞)C .(-∞,40)∪(160,+∞)D .(-∞,40]∪[160,+∞)4.若函数f (x )=8x 2-2kx -7在[1,5]上为单调函数,则实数k 的取值范围是( )A .(-∞,8]B .[40,+∞)C .(-∞,8]∪[40,+∞)D .[8,40]4.已知函数f (x )=⎩⎪⎨⎪⎧x +2 x ≤-1x 2 -1<x <12x x ≥1,若f (x )=1,则x 的值为 A .1,-1 B .-1 C .1 D .125.函数f (x )=2x +12x -1的图象一定 A .关于y 轴对称 B .关于原点对称 C .关于x 轴对称 D .关于y =x 轴对称6.设a =40.6,b =80.34,c =(12)-0.9,则a ,b ,c 的大小关系为A .a >b >cB . b >a >cC . c >a >bD .c >b >a7.在同一平面直角坐标系中,函数f (x )=x a ,g (x )=log a x 的图象可能是8.要得到函数y =8·2-x 的图象只需要将函数y =(12)x 的图象 A .向左平移3个单位 B .向右平移3个单位C .向左平移8个单位D .向右平移8个单位9.函数y =x -3x -2的值域为A .[23,+∞)B .(23,+∞)C .[-112,+∞)D .(-112,+∞) 10.若函数y =2+ln 1+x 1-x,x ∈[-12,12]的最大值与最小值分别为M , m ,则M +m = A .2 B .-4 C .0 D .411.已知定义在R 上的函数f (x )满足f (1)=0,当x ≠1时,f (x )=|ln|x -1||,设函数g (x )=f (x )-m (m 为常数)的零点个数为n ,则n 的所有可能值构成的集合为A .{0,4}B .{3,4}C .{0,3,4}D .{0,1,3,4}12. 已知函数F (x )=g (x )+h (x ) =e x ,且g (x ), h (x )分别是R 上的偶函数和奇函数,若对任意的x >0,不等式g (2x )≥ah (x )恒成立,则实数a 的取值范围是A .(-∞,22]B .(-∞,22)C .(-∞,2]D .(-∞,2)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
2016-2017学年河南省洛阳市高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.函数f(x)=+的定义域为()A.{x|x≥﹣3且x≠﹣2}B.{x|x≥﹣3且x≠2}C.{x|x≥﹣3}D.{x|x≥﹣2且x≠3}2.已知集合M={1,2,m2﹣3m﹣1},N={﹣1,3},M∩N={3},则m的值为()A.4,﹣1 B.﹣1 C.1,﹣4 D.43.已知函数f(x)=4x2﹣kx﹣8在[5,20]上具有单调性,则实数k的取值范围是()A.(﹣∞,40]B.[160,+∞)C.(﹣∞,40)∪D.(﹣∞,40]∪[160,+∞)4.已知函数f(x)=,若f(x)=1,则x的值为()A.1,﹣1 B.﹣1 C.1 D.5.函数f(x)=的图象一定()A.关于y轴对称 B.关于原点对称C.关于x轴对称 D.关于y=x轴对称6.设a=40.6,b=80.34,c=()﹣0.9,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.c>b>a7.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.8.要得到函数y=8•2﹣x的图象,只需将函数的图象()A.向右平移3个单位长度 B.向左平移3个单位长度C.向右平移8个单位长度 D.向左平移8个单位长度9.函数y=x﹣的值域为()A.B.C.D.10.若函数y=2+ln,x∈[﹣,]的最大值与最小值分别为M,m,则M+m=()A.2 B.﹣4 C.0 D.411.已知定义在R上的函数f(x)满足f(1)=0,当x≠1时,f(x)=|ln|x﹣1||,设函数g(x)=f(x)﹣m(m为常数)的零点个数为n,则n的所有可能值构成的集合为()A.{0,4}B.{3,4}C.{0,3,4}D.{0,1,3,4}12.已知函数F(x)=g(x)+h(x)=e x,且g(x),h(x)分别是R上的偶函数和奇函数,若对任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(﹣∞,2]D.(﹣∞,2)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.已知集合A={1,2},集合B满足A∪B=A,则集合B有个.14.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差元.15.已知函数f(x)=,则f(log23)=.16.已知函数f(x)=log a(x2﹣2ax)(a>0且a≠1)满足对任意的x1,x2∈[3,4],且x1≠x2时,都有>0成立,则实数a的取值范围是.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.计算下列各式的值:(1)0.0625+[(﹣3)4]﹣(﹣)0+;(2)(lg2)2+lg2•lg5++log45•log54.18.已知集合A={x|0<ax+1≤5},B={x|﹣<x≤2}.(1)当a=1时,判断集合B⊆A是否成立?(2)若A⊆B,求实数a的取值范围.19.已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f(1)=1.(1)求函数f(x)的解析式;(2)判断并证明f(x)在(﹣1,1)上的单调性.20.某消费品专卖店的经营资料显示如下:①这种消费品的进价为每件14元;②该店月销售量Q(百件)与销售价格P(元)满足的函数关系式为Q=,点(14,22),(20,10),(26,1)在函数的图象上;③每月需各种开支4400元.(1)求月销量Q(百件)与销售价格P(元)的函数关系;(2)当商品的价格为每件多少元时,月利润最大?并求出最大值.21.已知函数f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x﹣)(a>0,x>1).(1)证明函数f(x)为偶函数;(2)若函数f(x)﹣g(x)只有一个零点,求实数a的取值范围.22.已知函数f(x)=1+a•()x+()x.(1)当a=﹣2,x∈[1,2]时,求函数f(x)的最大值与最小值;(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,求实数a的取值范围.2016-2017学年河南省洛阳市高一(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.函数f(x)=+的定义域为()A.{x|x≥﹣3且x≠﹣2}B.{x|x≥﹣3且x≠2}C.{x|x≥﹣3}D.{x|x≥﹣2且x≠3}【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,分式的分母不为0联立不等式组求解.【解答】解:由,解得x≥﹣3且x≠﹣2.∴函数f(x)=+的定义域为{x|x≥﹣3且x≠﹣2}.故选:A.2.已知集合M={1,2,m2﹣3m﹣1},N={﹣1,3},M∩N={3},则m的值为()A.4,﹣1 B.﹣1 C.1,﹣4 D.4【考点】交集及其运算.【分析】利用交集定义和集合中元素的性质求解.【解答】解:∵集合M={1,2,m2﹣3m﹣1},N={﹣1,3},M∩N={3},∴,解得m=﹣1或m=4.故选:A.3.已知函数f(x)=4x2﹣kx﹣8在[5,20]上具有单调性,则实数k的取值范围是()A.(﹣∞,40]B.[160,+∞)C.(﹣∞,40)∪D.(﹣∞,40]∪[160,+∞)【考点】二次函数的性质.【分析】已知函数f(x)=4x2﹣kx﹣8,求出其对称轴,要求f(x)在[5,20]上具有单调性,列出不等式,从而求出k的范围;【解答】解:∵函数f(x)=4x2﹣kx﹣8的对称轴为:x=,∵函数f(x)=4x2﹣kx﹣8在[5,20]上具有单调性,根据二次函数的性质可知对称轴x=≤5,或x=≥20,解得:k≤40,或k≥160;∴k∈(﹣∞,40]∪[160,+∞),故选:D.4.已知函数f(x)=,若f(x)=1,则x的值为()A.1,﹣1 B.﹣1 C.1 D.【考点】函数的值.【分析】当x≤﹣1时,f(x)=x+2=1;当﹣1<x<1时,f(x)=x2=1;当x≥1时,2x=1.由此能求出x的值.【解答】解:∵函数f(x)=,f(x)=1,∴当x≤﹣1时,f(x)=x+2=1,解得x=﹣1;当﹣1<x<1时,f(x)=x2=1,解得x=±1,不成立;当x≥1时,2x=1,解得x=,不成立.∴x的值为﹣1.故选:B.5.函数f(x)=的图象一定()A.关于y轴对称 B.关于原点对称C.关于x轴对称 D.关于y=x轴对称【考点】函数奇偶性的判断.【分析】求得函数f(x)的定义域,计算f(﹣x)与f(x)的关系,得到奇偶性,进而可得图象特点.【解答】解:函数f(x)=的定义域为{x|x≠0},关于原点对称,f(﹣x)===﹣f(x),则f(x)为奇函数,它的图象关于原点对称.故选:B.6.设a=40.6,b=80.34,c=()﹣0.9,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.c>b>a【考点】指数函数的图象与性质.【分析】化简a,b,c,根据指数函数的性质判断其大小即可.【解答】解:∵a=40.6=21.2,b=80.34=21.02,c=()﹣0.9=20.9,且f(x)=2x在R递增,∴a>b>c,故选:A.7.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.【考点】函数的图象.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D,故选:D.8.要得到函数y=8•2﹣x的图象,只需将函数的图象()A.向右平移3个单位长度 B.向左平移3个单位长度C.向右平移8个单位长度 D.向左平移8个单位长度【考点】函数的图象与图象变化.【分析】根据指数的运算性质,把函数y=8•2﹣x化为y=23﹣x,函数y=()x的解析式化为y=2﹣x的形式,根据平移前后函数解析式的关系,利用平移方法判断结果即可.【解答】解:∵函数y=()x=(2﹣1)x=2﹣x,函数y=8•2﹣x=23﹣x将以y=2﹣x向右平移3个单位长度后,得到函数y=2﹣(x﹣3)=23﹣x的图象,故将函数y=()x的图象向右平移3个单位可以得到函数y=23﹣x的图象,故选:A.9.函数y=x﹣的值域为()A.B.C.D.【考点】函数的值域.【分析】利用换元法转化为二次函数求值域.【解答】解:由题意:函数y=x﹣.设=t,(t≥0),则x=.那么函数y=x﹣转化为:f(t)=.开口向上,对称轴t=;∵t≥0,∴当t=时,函数f (t )取得最小值为f ()min =,即函数y=x ﹣的最小值为.所以值域为[,+∞). 故选C ,10.若函数y=2+ln,x ∈[﹣,]的最大值与最小值分别为M ,m ,则M +m=( ) A .2 B .﹣4 C .0D .4 【考点】函数的最值及其几何意义.【分析】令g (x )=ln,则g (x )为奇函数,可得g (x )max +g (x )min =0,从而可求M +m 的值.【解答】解:令g (x )=ln,x ∈[﹣,],则g (﹣x )=ln =﹣ln =﹣g (x ), 即g (x )为奇函数,∴g (x )max +g (x )min =0,∵2+ln ,x ∈[﹣,]的最大值与最小值分别为M ,m ,∴M +m=4.故选:D11.已知定义在R 上的函数f (x )满足f (1)=0,当x ≠1时,f (x )=|ln |x ﹣1||,设函数g (x )=f (x )﹣m (m 为常数)的零点个数为n ,则n 的所有可能值构成的集合为( ) A .{0,4} B .{3,4} C .{0,3,4} D .{0,1,3,4}【考点】函数的图象;对数函数的图象与性质.【分析】画出函数f (x )的图象,数形结合,分析不同情况下n 的值,综合可得答案.【解答】解:∵f (1)=0,当x ≠1时,f (x )=|ln |x ﹣1||,∴函数f (x )的图象如下图所示:当m<0时,函数g(x)=f(x)﹣m有0个零点;当m=0时,函数g(x)=f(x)﹣m有3个零点;当m>0时,函数g(x)=f(x)﹣m有4个零点;故n的所有可能值构成的集合为{0,3,4},故选:C12.已知函数F(x)=g(x)+h(x)=e x,且g(x),h(x)分别是R上的偶函数和奇函数,若对任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(﹣∞,2]D.(﹣∞,2)【考点】函数恒成立问题;函数奇偶性的性质.【分析】根据函数奇偶性的性质利用方程组法即可求f(x)和g(x)的解析式;根据不等式恒成立进行转化,利用一元二次不等式的性质即可得到结论.【解答】解:∵函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,∴g(﹣x)=g(x),h(﹣x)=﹣h(x)∴e x =g(x)+h(x),e﹣x=g(x)﹣h(x),∴g(x)=,h(x)=.∵∀x∈(0,+∞),使得不等式g(2x)≥ah(x)恒成立,即≥a•恒成立,∴a≤=(e x﹣e﹣x)+,设t=e x﹣e﹣x,则函数t=e x﹣e﹣x在(0,+∞)上单调递增,∴0<t,此时不等式t+≥2,当且仅当t=,即t=时,取等号,∴a≤2,故选:A.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.已知集合A={1,2},集合B满足A∪B=A,则集合B有4个.【考点】并集及其运算.【分析】由已知得B⊆A,从而B=∅,B={1},B={2},B={1,2}.【解答】解:∵集合A={1,2},集合B满足A∪B=A,∴B⊆A,∴B=∅,B={1},B={2},B={1,2}.∴满足条件的集合B有4个.故答案为:414.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差10元.【考点】函数模型的选择与应用.【分析】欲求两种方式电话费相差的数字,结合函数的图象可得,只须求出当x=150时,图中BD的长度即可,利用平面几何中的相似三角形的性质即可.【解答】解:如题图,当打出电话150分钟时,这两种方式电话费差为线段BD的长度,根据相似三角形的性质可得:,∴BD=10.故答案为:10元.15.已知函数f(x)=,则f(log23)=12.【考点】函数的值.【分析】由函数性质得f(log23)=f(log23+2)=×22,由此能求出结果.【解答】解:∵函数f(x)=,∴f(log23)=f(log23+2)=×22=3×4=12.故答案为:12.16.已知函数f(x)=log a(x2﹣2ax)(a>0且a≠1)满足对任意的x1,x2∈[3,4],且x1≠x2时,都有>0成立,则实数a的取值范围是(1,).【考点】函数恒成立问题;复合函数的单调性;对数函数的图象与性质.【分析】由已知可得函数f(x)=log a(x2﹣2ax)(a>0且a≠1)在[3,4]上为增函数,进而可得t=x2﹣2ax,x∈[3,4]为增函数,且恒为正,解得答案.【解答】解:∵对任意的x1,x2∈[3,4],且x1≠x2时,都有>0成立,∴函数f(x)=log a(x2﹣2ax)(a>0且a≠1)在[3,4]上为增函数,当a∈(0,1)时,y=log a t为减函数,t=x2﹣2ax,x∈[3,4]为增函数,此时函数f(x)=log a(x2﹣2ax)(a>0且a≠1)不可能为增函数,当a∈(1,+∞)时,y=log a t为增函数,若函数f(x)=log a(x2﹣2ax)(a>0且a≠1)在[3,4]上为增函数,则t=x2﹣2ax,x∈[3,4]为增函数,且恒为正,即,解得:a∈(1,),故答案为:(1,)三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.计算下列各式的值:(1)0.0625+[(﹣3)4]﹣(﹣)0+;(2)(lg2)2+lg2•lg5++log45•log54.【考点】对数的运算性质.【分析】(1)根据指数幂的运算性质计算即可,(2)根据对数的运算性质计算即可.【解答】解:(1)原式=+﹣0+=+3﹣1+=4,(2)原式=lg2(lg2+lg5)+(1﹣lg2)+1=218.已知集合A={x|0<ax+1≤5},B={x|﹣<x≤2}.(1)当a=1时,判断集合B⊆A是否成立?(2)若A⊆B,求实数a的取值范围.【考点】集合的包含关系判断及应用.【分析】(1)当a=1时,集合A={x|0<x+1≤5}={x|﹣1<x+1≤4},根据集合包含关系的定义,可得结论;(2)根据集合包含关系的定义,对a进行分类讨论,最后综合,可得满足条件的实数a的取值范围.【解答】解:(1)当a=1时,集合A={x|0<x+1≤5}={x|﹣1<x+1≤4},B={x|﹣<x≤2}.∴B⊆A成立;(2)当a=0时,A=R,A⊆B不成立;当a <0时,A={x |0<ax +1≤5}={x |≤x <},若A ⊆B ,则,解得:a <﹣8;当a >0时,A={x |0<ax +1≤5}={x |<x ≤},若A ⊆B ,则,解得:a ≥2;综上可得:a <﹣8,或a ≥219.已知函数f (x )=是定义在(﹣1,1)上的奇函数,且f (1)=1.(1)求函数f (x )的解析式;(2)判断并证明f (x )在(﹣1,1)上的单调性.【考点】利用导数研究函数的单调性;函数解析式的求解及常用方法;函数单调性的判断与证明.【分析】(1)根据奇函数的特性,可得f (0)=0,结合f (1)=1,构造方程组,解得函数f (x )的解析式;(2)利用导数法,可证得f (x )在(﹣1,1)上单调递增.【解答】解:(1)∵函数f (x )=是定义在(﹣1,1)上的奇函数,∴f (0)=0,又∵f (1)=1.∴,解得:,∴函数f (x )=, (2)f (x )在(﹣1,1)上单调递增,理由如下:∵f ′(x )=,当x ∈(﹣1,1)时,f ′(x )≥0恒成立,故f (x )在(﹣1,1)上单调递增.20.某消费品专卖店的经营资料显示如下:①这种消费品的进价为每件14元;②该店月销售量Q(百件)与销售价格P(元)满足的函数关系式为Q=,点(14,22),(20,10),(26,1)在函数的图象上;③每月需各种开支4400元.(1)求月销量Q(百件)与销售价格P(元)的函数关系;(2)当商品的价格为每件多少元时,月利润最大?并求出最大值.【考点】分段函数的应用.【分析】(1)利用带待定系数法即可求出函数的解析式,再根据销售量Q(百件)与销售价格P(元)满足的函数关系式,即可月销量Q(百件)与销售价格P(元)的函数关系,(2)设该店月利润为L元,则由题设得L=Q(P﹣14)×100﹣100,得到函数的解析式,分段求出函数的最值,比较即可.【解答】解:(1)∵点(14,22),(20,10),(26,1)在函数的图象上,∴,解得.同理可得,∴Q=,(2)设该店月利润为L元,则由题设得L=Q(P﹣14)×100﹣100,由(1)得L=,=,当14≤p≤20时,Lmax=1650元,此时P=元,当20<p≤26时,Lmax=元,此时P=元,故当P=时,月利润最大,为1650元.21.已知函数f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x﹣)(a>0,x>1).(1)证明函数f(x)为偶函数;(2)若函数f(x)﹣g(x)只有一个零点,求实数a的取值范围.【考点】对数函数的图象与性质;函数奇偶性的判断.【分析】(1)求解定义域,利用定义进行判断即可.(2)函数f(x)﹣g(x)只有一个零点,即f(x)=g(x)只有一个零点,化简计算,转化成二次方程问题求解.【解答】解:(1)证明:f(x)的定义域是R,f(﹣x)=log2(4﹣x+1)+x=log2+x=log2(4x+1)﹣log222x+x=log2(4x+1)﹣2x+x=f(x),故f(x)在R是偶函数;(2)由题意:函数f(x)﹣g(x)只有一个零点,即f(x)=g(x)只有一个零点,可得:log2(4x+1)﹣x=log2a+log2(2x﹣)(a>0)整理得:.即:令2x=t∵x>1,∴t>2转化为f(t)=(t>2)与x轴的交点问题.当a﹣1=0,即a=1时,f(t)=∵t>2,∴f(t)恒小于0,与x轴没有交点.当a﹣1>0,即a>1时,f(t)与x轴有一个交点,需那么f(2)<0.解得:,所以:.当a﹣1<0,即0<a<1时,f(t)与x轴有一个交点,需那么f(2)>0,此时无解.综上所得:函数f(x)﹣g(x)只有一个零点,求实数a的取值范围是(1,).22.已知函数f(x)=1+a•()x+()x.(1)当a=﹣2,x∈[1,2]时,求函数f(x)的最大值与最小值;(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,求实数a的取值范围.【考点】函数恒成立问题;函数的最值及其几何意义.【分析】令t=()x,则y=f(x)=1+at+t2,(1)当a=﹣2,x∈[1,2]时,y=f(x)=1﹣2t+t2,t∈[,],结合二次函数的图象和性质,可得函数f(x)的最大值与最小值;(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,y=1+at+t2,在(0,]上都有﹣2≤y≤3,结合二次函数的图象和性质,可得实数a的取值范围.【解答】解:令t=()x,则y=f(x)=1+at+t2,(1)当a=﹣2,x∈[1,2]时,y=f(x)=1﹣2t+t2,t∈[,],当t=,即x=2时,函数f(x)的最大值为,当t=,即x=1时,函数f(x)的最小值为,(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,则y=1+at+t2,在(0,]上都有﹣2≤y≤3,由函数y=1+at+t2的图象是开口朝上,且以直线t=为对称轴的直线,故当≤0,即a≥0时,1+a+≤3,解得:a∈[0,]当0<<,即<a<0时,,解得:a∈(,0),当≥,即a≤时,1+a+≥﹣2,解得:a∈[﹣,]综相可得a∈[﹣,].2016年12月3日。
1.B 【解析】{}22,1B a a =++,且{}5A B ⋂=,则有25a +=或215a +=. 32a =,或-2. 当3a =时, {}5,10B =,此时{}510A B ⋂=,,不满足题意; 当2a =时, {}54B =,,满足题意; 当2a =-时, {}0,5B =,此时{}50A B ⋂=,,不满足题意, 所以满足条件的实数a 只有1个. 故选B .2.D 【解析】四个选项中, 2y sinx =+和ln y x =非奇非偶,排除A,C; B . cos y x =为偶函数,排除B ;()x x y e e f x -=-=,有()()x x f x e e f x --=-=-,故为奇函数,且有()0000f e e =-=有零点,故选D .3.B 【解析】平行四边形ABCD 中, BD BA BC =+.()2··112602BA BD BA BA BC BA BA BC cos =+=+=+⨯=.故选B .5.C 【解析】由表格知1234535x ++++==,代入12.386.ˆ9yx =-+,得12.386.950y x =-+=. 有123453457065505y y y y y y y y ++++=++++=⨯. 解得345115y y y ++=.故选C .7.C 【解析】由三视图可知,此几何体为四棱锥A-BCFE ,111V 3323326232A BCFE ABC DEF A DEF V V ---=-=⨯⨯⨯-⨯⨯⨯⨯=. 故选C .8.B 【解析】22:2233C y sin x sin x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭,1:C y sinx =,将1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,得到2y sin x =, 再向左平移3π个单位长度,得23y sin x π⎛⎫=+ ⎪⎝⎭,即曲线2C , 所以1C 到2C 的变换过程为把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移3π个单位长度,得到曲线2C .故选B . 9.A 【解析】∵在直三棱锥111ABC A B C -中, AB BC ⊥, 6,8AB BC ==, ∴AB ⊥面11BCC B ,把直三棱柱111ABC A B C -补成正四棱柱,则正四棱柱的体对角线是其外接球的直径, 即有:2R =,26=.解得: 124BB =.故表面积为()16826810246242S =⨯⨯⨯+++⨯=. 故选:A .事件A 所构成的区域为()1923{|78,}33A x y x y x y =≤≤≤≤≤,且且. 即图中的阴影部分,其中()23232377,7,,333A C B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,. 且△ABC 的面积为123232772339S ⎛⎫⎛⎫=⨯-⨯-= ⎪ ⎪⎝⎭'⎝⎭. 则阴影部分的面积为4210399A S =-=. 所求对应的概率为1059463P ==.故选D .由于随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示小明在离开家前能得到报纸,即事件A 发生, 所以()1111217822P A =-⨯⨯=, 故选:D .点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.设点)()P 1t -,只需点P 到圆心(4,0)的距离小于2r +即可. ∴222(4)2(1)(21)t t -+-<+. 解得: 13t <<. 故选:A点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x ,y 之间的关系F (x ,y )=0. (2)待定系数法:已知所求曲线的类型,求曲线方程.(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程.(4)代入(相关点)法:动点P (x ,y )依赖于另一动点Q (x 0,y 0)的变化而运动,常利用代入法求动点P (x ,y )的轨迹方程.∴3822128t t t b a +--==-. ∵225t 剟, ∴17352232t +剟. 故选C .点睛:理解数量积的集合意义,熟悉AC AB AB ⋅表示AC 在AB 上的投影,将要求的标了转化为与21m -的关系,简化变量将2,1m -设为t ,进而可得函数式求最值即可. 13.23π-【解析】1cos ,02x απ=--<<,所以23πα=-.14.81【解析】将这组数据按着从小到大排序得:68,69,72,76,78,80,82,83, 84,88,91,93共12个数,位于中间的有80和82,故中位数为8082812+=.点睛:解决此类问题的关键是读懂程序框图,明确顺序结构、条件结构、循环结构的真正含义.本题巧妙地设置了未知量需要确定,所以需要抓住循环的重点,一次循环即可得解. 16由题意可知: ()sin cos sin ααββ=+, ∴()22,1sin cos cos sin sin sin sin sinsin cos cos sin ααββαβαβαββ=-∴+= ∴()21sin cos sin cos sin αββαβ=+. 22221221cos sin cos sin tan tan sin sin cos tan βββββαββββ∴===+++. 当α取得最大值时, tan α取得最大. 211212tan tan tan tan tan βαβββ==++,当tan β=时, tan α.∴2221tan tan tan ααα==-. 故答案为:17.【解析】试题分析:(1)分别代入点()()8,3,3,6-,解方程可得a b ,,进而得到()f x 的解析式; (2)讨论当0x >时,当0x ≤时,由对数不等式和指数不等式的解法,即可得到所求解集.试题解析:(1)由题意知, 3log 83,26a b -=-=,解得 12,2a b ==, ∴函数()f x 的解析式为 ()2log ,0{ 12,02x x x f x x >=⎛⎫-≤ ⎪⎝⎭.(2)当0x >时,由2log 0x >,解得1x >;当0x ≤时,由1202x⎛⎫-> ⎪⎝⎭,解得1x <-, ∴不等式()0f x >的解集为{| 1 x x <-或}1x >.(2)25,242366x x πππππ-≤≤∴-≤-≤,当262x ππ-=-,即6x π=-时,函数()f x 取得最小值12-, 当262x ππ-=,即3x π=时,函数()f x 取得最大值12.19.【解析】试题分析:(1)由分数在120~130分的学生人数为30人,且分数在120~130分频率为0.15,能求出分数在90~140分的学生人数.(2)由频率分布直方图能估计这所学校学生分数在90~140分的学生的平均成绩.(3)分数在90~100分的学生人数为20人,分数在120~130分的学生人数为30人,按照分层抽样方法抽出5人时,从分数在90~100分的学生抽出2人,记为A 1,A 2,从分数在120130~分的学生抽出3人,记为B 1,B 2,B 3,从抽取的5人中选出2人分别做问卷A 和问卷B ,利用列举法能求出90-100分的学生做问卷A ,120-130分的学生做问卷B 的概率.试题解析:(1) 分数在120130~分的学生人数为30人,且分数在120130~分频率为0.15 , ∴分数在90140~分的学生人数为302000.15= 人.(2)估计这所学校学生分数在90140~分的学生的平均成绩为950.11050.251150.451250.151350.05113⨯+⨯+⨯+⨯+⨯= 分.点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20.【解析】试题分析:(1)由中位线定理得1//2EM BA ,1//2FD BA ,可得//EM FD ,进而得//EF MD 即可证得;(2)分析条件可证得AB ⊥平面PBC ,进而有平面PBC ⊥平面ABCD ,再结合PG BC ⊥即可证得. 试题解析:(1)取PA 中点M ,连接,EM MD .在PBA ∆中, ,E M 分别为,PB PA 中点, 1//2EM BA ∴.在矩形ABCD 中, F 为DC 中点, 1//2FD BA ∴,//,EM FD EFDM ∴∴为平行四边形, //EF MD ∴,又EF ⊄平面,APD MD ⊂平面APD ,所以EF 平面APD . (2)取PC 中点N ,连接BN .由3,BP BC PC ===得BN ==.过P 点作'PG BC ⊥,垂足为'G ,则''2BN PCPG BG BC⋅==∴==, 由G 为线段BC 上一点, 2BG =知'GG 重合.即PG BC ⊥.,,,AB BC AB PC BC PC C BC ⊥⊥⋂=⊂ 平面,PBC PC ⊂平面PBC ,AB ∴⊥平面,PBC AB ⊂平面ABCD , ∴平面PBC ⊥平面ABCD ,平面PBC ⋂平面ABCD BC =,且,PG BC PG ⊥∴⊥平面ABCD .21.【解析】试题分析:(1)由函数的最大值和最小值求出,A B ,由周期求出ω,由特殊点的坐标出φ的值,可得函数的解析式.(2)20,x>∴等价于[]0,4x π∈时,方程()()21f x a =+有8个不同的解.即()y f x =与()21y a =+有8个不同交点,画图数形结合即可解得.(2)当[]0,4x π∈时,函数()g x 有8个零点,20,x >∴ 等价于[]0,4x π∈时,方程()()21f x a =+有8个不同的解.即()y f x =与()21y a =+有8个不同交点.∴由图知必有()0211a <+<,即112a -<<-.∴实数a 的取值范围是11,2⎛⎫-- ⎪⎝⎭. 点睛:已知函数有零点求参数常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解. 22.【解析】试题分析:(1)根据2216PA PB += ,由两点坐标运算即可解得;(2)写出切线,QM QN 的方程,解得与x 轴的交点C ,与y 轴的交点D 的坐标,写出面积公式进而求解即可.试题解析:(1)由题知 ()()22222216x y x y +++-+=,整理得224x y +=, ∴点P 的轨迹方程是224x y +=, 在Rt OMQ ∆中, 30,2,2sin301MQO OQ OM ∠==∴== ,即圆C 的半径1r =.。
A •关c •关6•设 a= ^\b =B ・关于原点对称-0.9,则⑦处的大小关系为(<2>C ・(—,4D ・(-S ,40]U[160,T4•已知函数/W=<x + 2,x<\ D •丄22工+15.函数/(尤)=的图象一定( 洛阳市2016—2017学年第一学期期中考试高一数学试卷本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,考生作答时,须将答案答答 题卡上,在本试卷、草稿纸上答题无效。
满分150分,考试时间120分钟。
第I 卷(选择题,共60分)注意事项:1. 必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.2. 考试结束后,将本试题卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分•在每小题给出的四个选项中,只有一 项是符合题目要求的.1.函数/(0=府5 + 亠 的定义域为( )A. {x\x> 一3,H A -H -2}B. {x\x> 一3,工 2}C. {x\x> -3}D. {x\x> -2,M% 3}2•已知集合 M = {1,2, m 2- 3加—1}, N = {-1,3}, M Cl N = {3},则 m 的值为( ) A. 4,-1B.-lC.1,-4D.43•已知函数/W = 4X 2-^Y -8在[5,20]上具有单调性,则实数k 的取值范围是( )A ・(-s,40]B ・[160, + s )A.a>b>c8.要得到函数,y = 8-2-¥的图象,只需将函数y = 的图象()A・向左平移3个单位 B.向左平移3个单位C・向左平移3个单位 D.向左平移3个单位9.函数y = x-y/3^2的值域为()10.若函数尸2 + 111岂,"的最大值与最小值分别为M,加,则M+m=()A. 2B.-4C.OD.411•已知定义在R上的函数/⑴满足/(1) = 0 ,当心1时,/M =卜卜T||,设函数A = /⑴-加(m 为常数)的零点个数为〃,则”的所有可能的取值构成的集合为()A・{0,4} B.{3,4}C・{0,3,4} D.{0,l,3,4}12.已知函数F(Q=g(Q+心)=以,且g(x)丿心)分别是R上的偶函数和奇函数,若对任意的xw(0,*o),不等式g(2x)"心)恒成立,则实数。
2016-2017学年河南省洛阳市高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数f(x)=+的定义域为()A.{x|x≥﹣3且x≠﹣2}B.{x|x≥﹣3且x≠2}C.{x|x≥﹣3}D.{x|x≥﹣2且x≠3}2.(5分)已知集合M={1,2,m2﹣3m﹣1},N={﹣1,3},M∩N={3},则m 的值为()A.4,﹣1 B.﹣1 C.1,﹣4 D.43.(5分)已知函数f(x)=4x2﹣kx﹣8在[5,20]上具有单调性,则实数k的取值范围是()A.(﹣∞,40]B.[160,+∞)C.(﹣∞,40)∪(160,+∞)D.(﹣∞,40]∪[160,+∞)4.(5分)已知函数f(x)=,若f(x)=1,则x的值为()A.1,﹣1 B.﹣1 C.1 D.5.(5分)函数f(x)=的图象一定()A.关于y轴对称B.关于原点对称C.关于x轴对称D.关于y=x轴对称6.(5分)设a=40.6,b=80.34,c=()﹣0.9,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.c>b>a7.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.8.(5分)要得到函数y=8•2﹣x的图象,只需将函数的图象()A.向右平移3个单位长度B.向左平移3个单位长度C.向右平移8个单位长度D.向左平移8个单位长度9.(5分)函数y=x﹣的值域为()A.B.C.D.10.(5分)若函数y=2+ln,x∈[﹣,]的最大值与最小值分别为M,m,则M+m=()A.2 B.﹣4 C.0 D.411.(5分)已知定义在R上的函数f(x)满足f(1)=0,当x≠1时,f(x)=|ln|x ﹣1||,设函数g(x)=f(x)﹣m(m为常数)的零点个数为n,则n的所有可能值构成的集合为()A.{0,4}B.{3,4}C.{0,3,4}D.{0,1,3,4}12.(5分)已知函数F(x)=g(x)+h(x)=e x,且g(x),h(x)分别是R上的偶函数和奇函数,若对任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(﹣∞,2]D.(﹣∞,2)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.(5分)已知集合A={1,2},集合B满足A∪B=A,则集合B有个.14.(5分)某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差元.15.(5分)已知函数f(x)=,则f(log23)=.16.(5分)已知函数f(x)=log a(x2﹣2ax)(a>0且a≠1)满足对任意的x1,x2∈[3,4],且x1≠x2时,都有>0成立,则实数a的取值范围是.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.(10分)计算下列各式的值:(1)﹣(﹣)0+;(2)(lg2)2+lg2•lg5++log45•log54.18.(12分)已知集合A={x|0<ax+1≤5},B={x|﹣<x≤2}.(1)当a=1时,判断集合B⊆A是否成立?(2)若A⊆B,求实数a的取值范围.19.(12分)已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f(1)=1.(1)求函数f(x)的解析式;(2)判断并证明f(x)在(﹣1,1)上的单调性.20.(12分)某消费品专卖店的经营资料显示如下:①这种消费品的进价为每件14元;②该店月销售量Q(百件)与销售价格P(元)满足的函数关系式为Q=,点(14,22),(20,10),(26,1)在函数的图象上;③每月需各种开支4400元.(1)求月销量Q(百件)与销售价格P(元)的函数关系;(2)当商品的价格为每件多少元时,月利润最大?并求出最大值.21.(12分)已知函数f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x﹣)(a >0,x>1).(1)证明函数f(x)为偶函数;(2)若函数f(x)﹣g(x)只有一个零点,求实数a的取值范围.22.(12分)已知函数f(x)=1+a•()x+()x.(1)当a=﹣2,x∈[1,2]时,求函数f(x)的最大值与最小值;(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,求实数a的取值范围.2016-2017学年河南省洛阳市高一(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数f(x)=+的定义域为()A.{x|x≥﹣3且x≠﹣2}B.{x|x≥﹣3且x≠2}C.{x|x≥﹣3}D.{x|x≥﹣2且x≠3}【解答】解:由,解得x≥﹣3且x≠﹣2.∴函数f(x)=+的定义域为{x|x≥﹣3且x≠﹣2}.故选:A.2.(5分)已知集合M={1,2,m2﹣3m﹣1},N={﹣1,3},M∩N={3},则m 的值为()A.4,﹣1 B.﹣1 C.1,﹣4 D.4【解答】解:∵集合M={1,2,m2﹣3m﹣1},N={﹣1,3},M∩N={3},∴,解得m=﹣1或m=4.故选:A.3.(5分)已知函数f(x)=4x2﹣kx﹣8在[5,20]上具有单调性,则实数k的取值范围是()A.(﹣∞,40]B.[160,+∞)C.(﹣∞,40)∪(160,+∞)D.(﹣∞,40]∪[160,+∞)【解答】解:∵函数f(x)=4x2﹣kx﹣8的对称轴为:x=,∵函数f(x)=4x2﹣kx﹣8在[5,20]上具有单调性,根据二次函数的性质可知对称轴x=≤5,或x=≥20,解得:k≤40,或k≥160;∴k∈(﹣∞,40]∪[160,+∞),故选:D.4.(5分)已知函数f(x)=,若f(x)=1,则x的值为()A.1,﹣1 B.﹣1 C.1 D.【解答】解:∵函数f(x)=,f(x)=1,∴当x≤﹣1时,f(x)=x+2=1,解得x=﹣1;当﹣1<x<1时,f(x)=x2=1,解得x=±1,不成立;当x≥1时,2x=1,解得x=,不成立.∴x的值为﹣1.故选:B.5.(5分)函数f(x)=的图象一定()A.关于y轴对称B.关于原点对称C.关于x轴对称D.关于y=x轴对称【解答】解:函数f(x)=的定义域为{x|x≠0},关于原点对称,f(﹣x)===﹣f(x),则f(x)为奇函数,它的图象关于原点对称.故选:B.6.(5分)设a=40.6,b=80.34,c=()﹣0.9,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.c>b>a【解答】解:∵a=40.6=21.2,b=80.34=21.02,c=()﹣0.9=20.9,且f(x)=2x在R递增,∴a>b>c,故选:A.7.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.【解答】解:当0<a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D,故选:D.8.(5分)要得到函数y=8•2﹣x的图象,只需将函数的图象()A.向右平移3个单位长度B.向左平移3个单位长度C.向右平移8个单位长度D.向左平移8个单位长度【解答】解:∵函数y=()x=(2﹣1)x=2﹣x,函数y=8•2﹣x=23﹣x将以y=2﹣x向右平移3个单位长度后,得到函数y=2﹣(x﹣3)=23﹣x的图象,故将函数y=()x的图象向右平移3个单位可以得到函数y=23﹣x的图象,故选:A.9.(5分)函数y=x﹣的值域为()A.B.C.D.【解答】解:由题意:函数y=x﹣.设=t,(t≥0),则x=.那么函数y=x﹣转化为:f(t)=.开口向上,对称轴t=;∵t≥0,∴当t=时,函数f(t)取得最小值为f()min=,即函数y=x﹣的最小值为.所以值域为[,+∞).故选:C.10.(5分)若函数y=2+ln,x∈[﹣,]的最大值与最小值分别为M,m,则M+m=()A.2 B.﹣4 C.0 D.4【解答】解:令g(x)=ln,x∈[﹣,],则g(﹣x)=ln=﹣ln=﹣g(x),即g(x)为奇函数,∴g(x)max+g(x)min=0,∵2+ln,x∈[﹣,]的最大值与最小值分别为M,m,∴M+m=4.故选:D.11.(5分)已知定义在R上的函数f(x)满足f(1)=0,当x≠1时,f(x)=|ln|x ﹣1||,设函数g(x)=f(x)﹣m(m为常数)的零点个数为n,则n的所有可能值构成的集合为()A.{0,4}B.{3,4}C.{0,3,4}D.{0,1,3,4}【解答】解:∵f(1)=0,当x≠1时,f(x)=|ln|x﹣1||,∴函数f(x)的图象如下图所示:当m<0时,函数g(x)=f(x)﹣m有0个零点;当m=0时,函数g(x)=f(x)﹣m有3个零点;当m>0时,函数g(x)=f(x)﹣m有4个零点;故n的所有可能值构成的集合为{0,3,4},故选:C.12.(5分)已知函数F(x)=g(x)+h(x)=e x,且g(x),h(x)分别是R上的偶函数和奇函数,若对任意的x∈(0,+∞),不等式g(2x)≥ah(x)恒成立,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(﹣∞,2]D.(﹣∞,2)【解答】解:∵函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,∴g(﹣x)=g(x),h(﹣x)=﹣h(x)∴e x =g(x)+h(x),e﹣x=g(x)﹣h(x),∴g(x)=,h(x)=.∵∀x∈(0,+∞),使得不等式g(2x)≥ah(x)恒成立,即≥a•恒成立,∴a≤=(e x﹣e﹣x)+,设t=e x﹣e﹣x,则函数t=e x﹣e﹣x在(0,+∞)上单调递增,∴0<t,此时不等式t+≥2,当且仅当t=,即t=时,取等号,∴a≤2,故选:A.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上..13.(5分)已知集合A={1,2},集合B满足A∪B=A,则集合B有4个.【解答】解:∵集合A={1,2},集合B满足A∪B=A,∴B⊆A,∴B=∅,B={1},B={2},B={1,2}.∴满足条件的集合B有4个.故答案为:414.(5分)某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间(分钟)与打出电话费s(元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差10元.【解答】解:如题图,当打出电话150分钟时,这两种方式电话费差为线段BD 的长度,根据相似三角形的性质可得:,∴BD=10.故答案为:10元.15.(5分)已知函数f(x)=,则f(log23)=12.【解答】解:∵函数f(x)=,∴f(log23)=f(log23+2)=×22=3×4=12.故答案为:12.16.(5分)已知函数f(x)=log a(x2﹣2ax)(a>0且a≠1)满足对任意的x1,x2∈[3,4],且x1≠x2时,都有>0成立,则实数a的取值范围是(1,).【解答】解:∵对任意的x1,x2∈[3,4],且x1≠x2时,都有>0成立,∴函数f(x)=log a(x2﹣2ax)(a>0且a≠1)在[3,4]上为增函数,当a∈(0,1)时,y=log a t为减函数,t=x2﹣2ax,x∈[3,4]为增函数,此时函数f(x)=log a(x2﹣2ax)(a>0且a≠1)不可能为增函数,当a∈(1,+∞)时,y=log a t为增函数,若函数f(x)=log a(x2﹣2ax)(a>0且a≠1)在[3,4]上为增函数,则t=x2﹣2ax,x∈[3,4]为增函数,且恒为正,即,解得:a∈(1,),故答案为:(1,)三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤17.(10分)计算下列各式的值:(1)﹣(﹣)0+;(2)(lg2)2+lg2•lg5++log45•log54.【解答】解:(1)原式=+﹣1+=+3﹣1+=4,(2)原式=lg2(lg2+lg5)+(1﹣lg2)+1=218.(12分)已知集合A={x|0<ax+1≤5},B={x|﹣<x≤2}.(1)当a=1时,判断集合B⊆A是否成立?(2)若A⊆B,求实数a的取值范围.【解答】解:(1)当a=1时,集合A={x|0<x+1≤5}={x|﹣1<x+1≤4},B={x|﹣<x≤2}.∴B⊆A成立;(2)当a=0时,A=R,A⊆B不成立;当a<0时,A={x|0<ax+1≤5}={x|≤x<},若A⊆B,则,解得:a<﹣8;当a>0时,A={x|0<ax+1≤5}={x|<x≤},若A⊆B,则,解得:a≥2;综上可得:a<﹣8,或a≥219.(12分)已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f(1)=1.(1)求函数f(x)的解析式;(2)判断并证明f(x)在(﹣1,1)上的单调性.【解答】解:(1)∵函数f(x)=是定义在(﹣1,1)上的奇函数,∴f(0)=0,又∵f(1)=1.∴,解得:,∴函数f(x)=,(2)f(x)在(﹣1,1)上单调递增,理由如下:∵f′(x)=,当x∈(﹣1,1)时,f′(x)≥0恒成立,故f(x)在(﹣1,1)上单调递增.20.(12分)某消费品专卖店的经营资料显示如下:①这种消费品的进价为每件14元;②该店月销售量Q(百件)与销售价格P(元)满足的函数关系式为Q=,点(14,22),(20,10),(26,1)在函数的图象上;③每月需各种开支4400元.(1)求月销量Q(百件)与销售价格P(元)的函数关系;(2)当商品的价格为每件多少元时,月利润最大?并求出最大值.【解答】解:(1)∵点(14,22),(20,10),(26,1)在函数的图象上,∴,解得.同理可得,∴Q=,(2)设该店月利润为L元,则由题设得L=Q(P﹣14)×100﹣100,由(1)得L=,=,当14≤p≤20时,Lmax=1650元,此时P=元,当20<p≤26时,Lmax=元,此时P=元,故当P=时,月利润最大,为1650元.21.(12分)已知函数f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x﹣)(a >0,x>1).(1)证明函数f(x)为偶函数;(2)若函数f(x)﹣g(x)只有一个零点,求实数a的取值范围.【解答】解:(1)证明:f(x)的定义域是R,f(﹣x)=log2(4﹣x+1)+x=log2+x=log2(4x+1)﹣log222x+x=log2(4x+1)﹣2x+x=f(x),故f(x)在R是偶函数;(2)由题意:函数f(x)﹣g(x)只有一个零点,即f(x)=g(x)只有一个零点,可得:log2(4x+1)﹣x=log2a+log2(2x﹣)(a>0)整理得:.即:令2x=t∵x>1,∴t>2转化为f(t)=(t>2)与x轴的交点问题.当a﹣1=0,即a=1时,f(t)=∵t>2,∴f(t)恒小于0,与x轴没有交点.当a﹣1>0,即a>1时,f(t)与x轴有一个交点,需那么f(2)<0.解得:,所以:.当a﹣1<0,即0<a<1时,f(t)与x轴有一个交点,需那么f(2)>0,此时无解.综上所得:函数f(x)﹣g(x)只有一个零点,求实数a的取值范围是(1,).22.(12分)已知函数f(x)=1+a•()x+()x.(1)当a=﹣2,x∈[1,2]时,求函数f(x)的最大值与最小值;(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,求实数a的取值范围.【解答】解:令t=()x,则y=f(x)=1+at+t2,(1)当a=﹣2,x∈[1,2]时,y=f(x)=1﹣2t+t2,t∈[,],当t=,即x=2时,函数f(x)的最大值为,当t=,即x=1时,函数f(x)的最小值为,(2)若函数f(x)在[1,+∞)上都有﹣2≤f(x)≤3,则y=1+at+t2,在(0,]上都有﹣2≤y≤3,由函数y=1+at+t2的图象是开口朝上,且以直线t=为对称轴的直线,故当≤0,即a ≥0时,1+a +≤3,解得:a ∈[0,]当0<<,即<a <0时,,解得:a ∈(,0),当≥,即a ≤时,1+a +≥﹣2,解得:a ∈[﹣,]综相可得a ∈[﹣,].赠送初中数学几何模型【模型二】半角型:图形特征:A1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DFE-a1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.F。
洛阳市2016——2017学年度第一学期期中考试高一数学试卷第Ⅰ卷(选择题,共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数()12f x x =+的定义域为 A .{}|32x x x ≥-≠-且B .{}|32x x x ≥-≠且 C .{}|3x x ≥- D .{}|23x x x ≥-≠且2.已知集合{}{}{}21,2,31,1,3,3M m m N M N =--=-= ,则m 的值为 A .4,1- B .1- C .1,4- D .43.已知函数()248f x x kx =--在[]5,20上具有单调性,则实数k 的取值范围是 A .(],40-∞ B .[)160,+∞ C .()(),40160,-∞+∞ D .(][),40160,-∞+∞4.已知函数()22,1,,112,1x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()1f x =,则x 的值为A .1,1-B .1-C .1D .125.函数()2121x x f x +=-的图象一定 A .关于y 轴对称 B .关于原点对称 C .关于x 轴对称 D .关于y x =轴对称6.设0.90.60.3414,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c a b >>D .c b a >>7.在同一平面直角坐标系中,函数()(),log aa f x x g x x ==的图象可能是8.要得到函数82x y -=⋅的图象只需要将函数12x y ⎛⎫= ⎪⎝⎭的图象 A .向左平移3个单位 B .向右平移3个单位C .向左平移8个单位D .向右平移8个单位9.函数y x =的值域为A .2,3⎡⎫+∞⎪⎢⎣⎭ B .2,3⎛⎫+∞ ⎪⎝⎭ C .1,12⎡⎫-+∞⎪⎢⎣⎭ D .1,12⎛⎫-+∞ ⎪⎝⎭10.若函数1112ln ,,122x y x x +⎡⎤=+∈-⎢⎥-⎣⎦的最大值与最小值分别为,M m ,则M m += A .2 B .4- C .0 D .411.已知定义在R 上的函数()f x 满足()10f =,当1x ≠时,()ln 1f x x =-,设函数()()g x f x m =-(m 为常数)的零点个数为n ,则n 的所有可能值构成的集合为A . {}0,4B .{}3,4C .{}0,3,4D .{}0,1,3,412. 已知函数()()()xF x g x h x e =+=,且()(),g x h x 分别是R 上的偶函数和奇函数,若对任意的()0,x ∈+∞,不等式()()2g x ah x ≥恒成立,则实数a 的取值范围是A.(-∞ B.(,-∞ C .(],2-∞ D .(),2-∞第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
洛阳市2016——2017学年高一年级质量检测数学试卷第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合{}0,5,10A =,集合{}22,1B a a =++,且{}5AB =,则满足条件的实数a 的个数有A. 0个B. 1个C. 2个D. 3个2.下列函数中,既是奇函数又存在零点的是A.2sin y x =+B. cos y x =C. ln y x =D. x x y e e -=- 3.已知平行四边形ABCD 中,60,1,2ABC AB BC ∠===,则BA BD ⋅=A. 1B. 2C. 1+D.2-4.执行如图所示的程序框图,若输入a,b 的分别为78,182,则输出的a =A. 0B. 2C. 13D. 265.为了了解某服装厂某种服装的年产量x (单位:千件)对价格y (单位:千元/千件)的影响,对近五年该产品的年产量和价格统计情况如下表:如果y 关于x 的线性回归方程为ˆ12.386.9yx =-+,且1270,65y y ==,则345y y y ++=A. 50B. 113C. 115D. 2386.设直线32120x y --=与直线4310x y ++=交于点M,若一条光线从点()2,3P 射出,经y 轴反射后过点M,则入射光线所在直线的方程为A.10x y --=B.10x y -+=C.50x y --=D.50x y +-=7.一个几何体的三视图如图所示,则该几何体的体积为A. 12B. 9C. 6D. 368.已知曲线11:sin ,:sin 23C y x C y x π⎛⎫==+⎪⎝⎭,则下列结论正确的是 A. 把1C 上个点的横坐标缩短为原的12倍,纵坐标不变,再把所得的曲线向左平移23π个单位长度,得到曲线2C B.把1C 上个点的横坐标伸长为原的2倍,纵坐标不变,再把所得的曲线向左平移3π个单位长度,得到曲线2CC.把1C 上个点的横坐标伸长为原的2倍,纵坐标不变,再把所得的曲线向左平移23π个单位长度,得到曲线2C D. 把1C 上个点的横坐标伸长为原的2倍,纵坐标不变,再把所得的曲线向左平移3π个单位长度,得到曲线2C 9.在直三棱柱111ABC A B C -中,,6,8AB BC AB BC ⊥==若此三棱柱外接球的半径为13,则该三棱柱的表面积为A. 624B.576C. 672D.72010.一位同学家里定了一份报纸,送报人每天都在早上620—740之间将报纸送达,该同学需要早上700——800之间出发上学,则该同学在离开家之前能拿到报纸的概率为A. 16B. 13C. 23D.5611.在平面直角坐标系xoy 中,已知()150,0,,04O A ⎛⎫⎪⎝⎭,曲线C 上任一点M 满足4OM AM =,点P在直线)1y x =-上,如果曲线C 上总存在两点到P 的距离为2,那么点P 的横坐标t 的范围是A. 13t <<B. 14t <<C. 23t <<D. 24t <<12.已知两条直线()122:3,:261l y l y m m ==≤≤-,1l 与函数2log y x =的图象从左到右交于A,B 两点,2l 与函数2log y x =的图象从左到右交于C,D 两点,若,AC ABBD CDa B AB CD ⋅⋅==,当m 变化时,b a的范围是A. 352,4⎛⎫ ⎪⎝⎭B.352,4⎡⎤⎢⎥⎣⎦C. 172,32⎡⎤⎣⎦D.()172,32二、填空题:本大题共4小题,每小题5分,共20分.13.若1cos ,02απα=--<<,则角α= .(用弧度表示)14.某公司为了解用户对其产品的满意度,随机调查了一些客户,得到了满意度评分的茎叶图,则这组评分数据的中位数为.15.执行如图所示的程序框图,如果输入9x =时,299y =,则整数a 的值为 . 16.已知锐角,αβ满足()()sin cos 2cos sin αββαββ+=+,当α取得最大值时,tan 2α= .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分10分)已知点()()8,3,3,6-在函数()log ,02,0a x x x f x b x >⎧=⎨-≤⎩的图象上. (1)求函数()f x 的解析式;(2)求不等式()0f x >的解集.18.(本题满分12分)已知向量2cos ,1,cos ,cos ,66a x b x x x R ππ⎛⎫⎛⎫⎛⎫⎛⎫=--=-∈ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,函数().f x a b =⋅(1)求函数()f x 的图象的对称中心;(2)若,42x ππ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的最大值和最小值,并求出()f x 取得最值时x 的大小.19.(本题满分12分)学校高一数学考试后,对90分(含90分)以上的成绩进行统计,其频率分布直方图如图所示,分数在120—130分的学生人数为30人.(1)求这所学校分数在90—140分的学生人数;(2)请根据频率分布直方图估计这所学校学生分数在90—140分的学生的平均成绩;(3)为进一步了解学生的学习情况,按分层抽样方法从分数子啊90—100分和120—130分的学生中抽出5人,从抽取的学生中选出2人分别做问卷A 和问卷B,求90—100分的学生做问卷A,120—130分的学生做问卷B 的概率.20.(本题满分12分)在四棱锥P ABCD -中,底面ABCD 是矩形,AB PC ⊥,其中3,BP BC PC ===(1)点,E F 分别为线段,BP DC 的中点,求证://EF 平面APD ;(2)设G 为线段BC 上一点,且2BG GC =,求证:PG ⊥平面ABCD .21.(本题满分12分)已知函数()()sin 0,0,,2f x A x B A x R πωϕωϕ⎛⎫=++>><∈ ⎪⎝⎭在区间3,22ππ⎛⎫ ⎪⎝⎭上单调,当2x π=时,()f x 取得最大值5,当32x π=时,()f x 取得最小值-1.(1)求()f x 的解析式;(2)当[]0,4x π∈时,函数()()()1212x x g x f x a +=-+有8个零点,求实数a 的取值范围.22.(本题满分12分)在平面直角坐标系中,()()()2,0,2,0,,A B P x y -满足2216PA PB +=,设点P 的轨迹为1C ,从1C 上一点Q 向圆()2222:0C x y r r +=>做两条切线,切点分别为,M N ,且60.MQN ∠=(1)求点P 的轨迹方程和;(2)当点Q 在第一象限时,连接切点,M N ,分别交,x y 轴于点,C D ,求OCD ∆面积最小时点Q 的坐标.。