数项级数经典例题大全
- 格式:docx
- 大小:1.12 MB
- 文档页数:38
级数典型例题典型例题1:计算以下级数的和:1 + 2 + 3 + 4 + ...解答:这是一个等差数列,首项a=1,公差d=1,因此可以使用等差数列的求和公式来计算和。
等差数列的求和公式为:Sn = (n/2)(2a + (n-1)d),其中n表示项数,Sn表示和。
代入a=1,d=1,得到Sn = (n/2)(2(1) + (n-1)(1)) = (n/2)(n+1)。
因此,1 + 2 + 3 + 4 + ...的和为Sn = (n/2)(n+1)。
典型例题2:计算以下级数的和:1 + 1/2 + 1/4 + 1/8 + ...解答:这是一个等比数列,首项a=1,公比r=1/2,因此可以使用等比数列的求和公式来计算和。
等比数列的求和公式为:Sn = a(1-r^n)/(1-r),其中n表示项数,Sn表示和。
代入a=1,r=1/2,得到Sn = 1(1-(1/2)^n)/(1-(1/2)) = 2 (1-(1/2)^n)。
因此,1 + 1/2 + 1/4 + 1/8 + ...的和为Sn = 2 (1-(1/2)^n)。
典型例题3:计算以下级数的和:1 + 1/3 + 1/9 + 1/27 + ...解答:这是一个等比数列,首项a=1,公比r=1/3,因此可以使用等比数列的求和公式来计算和。
等比数列的求和公式为:Sn = a(1-r^n)/(1-r),其中n表示项数,Sn表示和。
代入a=1,r=1/3,得到Sn = 1(1-(1/3)^n)/(1-(1/3)) = 3/2 (1-(1/3)^n)。
因此,1 + 1/3 + 1/9 + 1/27 + ...的和为Sn = 3/2 (1-(1/3)^n)。
数项级数的敛散性的练习题及解析一、单项选择题(每小题4分,共24分) 1.若lim 0n n U →∞=则常数项级数1nn U∞=∑( D )A .发散 B.条件收敛 C .绝对收敛 D .不一定收敛解:1lim 0n n →∞=,但11n n ∞=∑发散;21lim 0n n →∞=,但211n n∞=∑收敛 选D2.设1nn U∞=∑收敛,则下列级数一定收敛的是( B )A .1nn U∞=∑ B.()12008nn U ∞=∑C .()10.001n n U ∞=+∑ D .11n uU ∞=∑解:()12008nn U ∞=∑=20081nn U∞=∑1nn U ∞=∑收敛∴由性质()12008nn U ∞=∑收敛3.下列级数中一定收敛的是…( A )A .21014n n ∞=-∑ B .10244n n nn ∞=-∑ C .101nn n n ∞=⎛⎫⎪+⎝⎭∑ D+… 解:214n U n =-0n ≥21n=lim 1n n nU V →∞=,且2101n n ∞=∑收敛,由比较法21014n n ∞=-∑收敛 4.下列级数条件收敛的是……( C )A .11n n n ∞=+∑n(-1) B .()211nn n ∞=-∑C .1nn ∞=- D .()1312nnn ∞=⎛⎫- ⎪⎝⎭∑ 解:(1)n ∞∞=n=1发散(112p =<)(2)11nn ∞=-为莱布尼兹级数收敛,选C5.级数()111cos nn k n ∞=⎛⎫-- ⎪⎝⎭∑ (k>0)…( B )A .发散B .绝对收敛C .条件收敛D .敛散性与K 相关解:11(1)(1cos )1cos nn n k k n n ∞∞-=⎛⎫--=- ⎪⎝⎭∑∑1cos n kU n=-222k n =lim 1n n nU V →∞=且1n n V ∞=∑收敛,故选B 6.设正项极数!1lim n nn n nU U p U∞+→∞==∑若则(D )A..当0<p<+∞时,级数收敛B.当p<1时级数收敛,p ≥1时级数发散C.当p ≤1时级数收敛,p>1时级数发散D.当p<1时级数收敛,p>1时级数发散解:当P<1时级数收敛,当P>1时级数发散,当P =1时失效。
( —— 学年度第 学期)课程名称:数学分析(二) 试卷类型:数项级数一、填空题(每小题2分,共30分)1、交错级数()∑∞=-11n n。
2、若级数∑∞=1n n u 收敛,则nn u∞→lim = 。
3、级数∑∞=11n p n ,当p 时收敛,当p 时发散。
4、交错级数()∑∞=-21n xnn,当x 时绝对收敛,当x 时条件收敛。
5、若级数∑∞=1n n a 绝对收敛,数列{}n b 有界,则级数∑∞=1n n n b a(绝对收敛或条件收敛或发散)。
试卷不允许拆开6、若数列{}n a 收敛于a ,则级数()=-∑∞=+11n n n a a 。
7、当正数a 时,∑∞=+111n n a 收敛;当正数a 时,∑∞=+111n na发散。
8、级数()()∑∞=+-112121n n n = 。
9、级数∑∞=-1132n n = 。
10、级数nn n x n ∑∞=⎪⎭⎫⎝⎛1!,当11、若∑∑∞=∞=1212,n nn n v u 收敛,则∑∞=1n nn vu (绝对收敛或条件收敛或发散)。
12、级数∑∞=1!n nn a (绝对收敛或条件收敛或发散)(0>a )。
13、级数()n n 11∑∞=-。
14、由正项级数收敛的必要条件知=+∞>-2)!(limn n nn 。
15、若级数∑∞=1n n a 收敛,∑∞=1n n b 发散,则级数()∑∞=+1n n n b a 。
二、 计算题(共28分)1、判别下列级数的收敛性:(14分)(1)∑∞=03sin 2n n nπ; (2)nn n n ∑∞=⎪⎭⎫ ⎝⎛+112; (3)∑∞=1!n nnn ;(4)∑∞=⎪⎭⎫ ⎝⎛-11cos 1n n ;(5)∑∞=+-12121n n n ;(6)()()0111>+-∑∞=x x x n n n n n ;(7)()()0,2,0,sin 1>∈∑∞=απαx n nxn 。
第十二章数项级数1 讨论几何级数∑∞=0n n q 的敛散性.解当1||<q 时, ) ( , 11110∞→-→--==∑=n q q q q S n nk kn . 级数收敛;当1||>q 时, , =n S 级数发散 ;当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, ()n n S )1(121-+=, ) (∞→n , 级数发散 . 综上, 几何级数∑∞=0n n q 当且仅当1||<q 时收敛, 且和为q-11( 注意n 从0开始 ).2讨论级数∑∞=+1)1(1n n n 的敛散性.解用链锁消去法求.3讨论级数∑∞=12n nn 的敛散性.解设∑=-+-++++==nk n n k n n n k S 11322212322212 , =n S 211432221 232221++-++++n n nn , 1322212121212121+-++++=-=n n n n n n S S S 12211211211→--⎪⎭⎫ ⎝⎛-=+n n n , ) (∞→n . ⇒n S →2, ) (∞→n .因此, 该级数收敛.4、讨论级数∑∞=-1352n n n 的敛散性.解52, 5252352⋅>⇒=>-n S n n n n n →∞+, ) (∞→n . 级数发散.5、证明2-p 级数∑∞=121n n 收敛 .证显然满足收敛的必要条件.令21nu n =, 则当2≥n 时,有 ∑∑==+++<+-=+-+<+=+++pk pk p n n n n p n n k n k n k n u u u 11221 ,111))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 |∑=+pk kn u1|不失真地放大成只含n 而不含p 的式子,令其小于ε,确定N .6、判断级数∑∞=11sinn n n 的敛散性.(验证0→/n u . 级数判敛时应首先验证是否满足收敛的必要条件)7、证明调和级数∑∞=11n n 发散.证法一(用Cauchy 准则的否定进行验证) 证法二(证明{n S }发散.利用不等式n nn ln 1 1211 )1ln(+<+++<+ . 即得+∞→n S ,) (∞→n . )注: 此例为0→n u 但级数发散的例子.8、考查级数∑∞=+-1211n n n的敛散性.解有 , 2 11 012222nn n n n <+-⇒>+- 9、判断级数()() +-+⋅⋅-+⋅⋅++⋅⋅⋅⋅+⋅⋅+)1(41951)1(32852951852515212n n的敛散性.解1 434132lim lim1<=++=∞→+∞→n n u u n nn n ⇒∑+∞<.10、讨论级数∑>-)0( 1x nxn 的敛散性.解因为) ( , 1)1(11∞→→+⋅+=-+n x n n x nxx n u u n n n n . 因此, 当10<<x 时,∑+∞<; 1>x 时, ∑+∞=; 1=x 时, 级数成为∑n , 发散.11、判断级数∑+nn n n !21的敛散性.注:对正项级数∑n u ,若仅有11<+nn u u ,其敛散性不能确定. 例如对级数∑n 1和∑21n , 均有11<+nn u u ,但前者发散, 后者收敛. 12、研究级数∑-+nn 2) 1 (3的敛散性 .解1212)1(3lim lim <=-+=∞→∞→nnn n n n u ⇒∑+∞<. 13、判断级数∑⎪⎭⎫⎝⎛+21n n n 和∑⎪⎭⎫⎝⎛+21n n n 的敛散性 .解前者通项不趋于零 , 后者用根值法判得其收敛 .14、讨论-p 级数∑∞=11n pn 的敛散性.解考虑函数>=p xx f p ,1)(0时)(x f 在区间) , 1 [∞+上非负递减. 积分⎰+∞1)(dx x f当1>p 时收敛, 10≤<p 时发散⇒级数∑∞=11n p n 当1>p 时收敛,当10≤<p 时发散,当0≤p 时,01→/pn , 级数发散. 综上,-p 级数∑∞=11n pn当且仅当1>p 时收敛.15、判别级数∑∞=>-1)0( ) 1 (n nnx n x 的敛散性.解当10≤<x 时, 由Leibniz 判别法 ⇒∑收敛;当1>x 时, 通项0→/,∑发散.16、设0n a →.证明级数∑nx a n sin 和∑nx a n cos 对)2 , 0(π∈∀x 收敛.证++⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛+∑= 2sin 23sin 2sin cos 212sin 21x x x kx x n kx n x n x n ) 21 sin() 21 sin() 21 sin(+=⎥⎦⎤⎢⎣⎡--++,) 2 , 0 (π∈x 时,02sin ≠x ⇒∑=+=+n k x xn kx 12sin2) 21sin(cos 21. 可见) 2 , 0 (π∈x 时, 级数∑kx cos 的部分和有界. 由Dirichlet 判别法推得级数∑nx ancos 收敛 . 同理可得级数数∑nx a n sin 收敛 .17、若∑∞=1n na 收敛,证明∑∞=12n n n a 也收敛。
数项级数经典例题大全(1)第十二章数项级数1 讨论几何级数∑∞=0n n q 的敛散性.解当1||110∞→-→--==∑=n q q q q S n nk kn . 级数收敛;当1||>q 时, , =n S 级数发散 ;当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, () n n S )1(121-+=, ) (∞→n , 级数发散 . 综上, 几何级数∑∞=0n n q 当且仅当 1||q-11( 注意n 从0开始 ).2 讨论级数∑∞=+1)1(1n n n 的敛散性.解用链锁消去法求.3讨论级数∑∞=12n nn 的敛散性.解设∑=-+-++++==nk n n k n n n k S 11322212322212 ,=n S 211432221 232221++-++++n n nn , 1322212121212121+-++++=-=n n n n n n S S S12211211211→--?-=+n n n ,) (∞→n . ? n S →2, ) (∞→n .因此, 该级数收敛.4、讨论级数∑∞=-1352n n n 的敛散性.解52, 5252352?>?=>-n S n n n n n →∞+, ) (∞→n . 级数发散.5、证明2-p 级数∑∞=121n n收敛 .证显然满足收敛的必要条件.令 21nu n =, 则当2≥n 时,有∑∑==+++<+-=+-+<+=+++pk pk p n n n n p n n k n k n k n u u u 11221 ,111))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 |∑=+pk kn u1|不失真地放大成只含n 而不含p 的式子,令其小于ε,确定N .6、判断级数∑∞=11s i n n n n 的敛散性.(验证0→/n u .级数判敛时应首先验证是否满足收敛的必要条件) 7、证明调和级数∑∞=11n n 发散.证法一 (用Cauchy 准则的否定进行验证) 证法二 (证明{n S }发散.利用不等式n nn ln 1 1211 )1ln(+<+++<+ . 即得+∞→n S ,) (∞→n . )注: 此例为0→n u 但级数发散的例子.8、考查级数∑∞=+-1211n n n的敛散性.解有 , 2 11 012222nn n n n <+-?>+- 9、判断级数()()+-+??-+??+++??+)1(41951)1(32852951852515212n n 的敛散性.解 1 434132lim lim1<=++=∞→+∞→n n u u n nn n ?∑+∞<.10、讨论级数∑>-)0( 1x nxn 的敛散性.解因为) ( , 1)1(11∞→→+?+=-+n x n n x nxx n u u n n n n . 因此, 当10<<="">∑+∞<; 1>x 时, ∑+∞=; 1=x 时, 级数成为∑n , 发散.11、判断级数∑+nn n n !21的敛散性.注: 对正项级数∑n u ,若仅有11<+nn u u ,其敛散性不能确定. 例如对级数∑n 1和∑21n , 均有 11<+nn u u ,但前者发散, 后者收敛. 12、研究级数∑-+nn 2) 1 (3的敛散性 .解 1212)1(3l i m l i m <=-+=∞→∞→nnn n nn u ?∑+∞<. 13、判断级数∑??+21n n n 和∑??+21n n n 的敛散性 .解前者通项不趋于零 , 后者用根值法判得其收敛 .14、讨论-p 级数∑∞=11n pn 的敛散性.解考虑函数>=p xx f p ,1)(0时)(x f 在区间) , 1 [∞+上非负递减. 积分+∞1)(dx x f当1>p 时收敛, 10≤∑∞=11n p n 当1>p 时收敛,当10≤01→/pn , 级数发散. 综上,-p 级数∑∞=11n pn当且仅当1>p 时收敛.15、判别级数∑∞=>-1)0( ) 1 (n nnx n x 的敛散性.解当10≤<="" p="" 判别法="" 时,="" 由leibniz=""> 收敛;当1>x 时, 通项0→/,∑发散.16、设0n a →.证明级数∑nx a n sin 和∑nx a n cos 对)2 , 0(π∈?x 收敛.证 ++??? ??-+=??+∑= 2s i n 23s i n 2s i n c o s 212s i n 21x x x kx x n kx n x n x n ) 21sin() 21sin() 21 sin(+=??--++,) 2 , 0 (π∈x 时,02sin ≠x ?∑=+=+n k x xn kx 12sin2) 21sin(cos 21. 可见) 2 , 0 (π∈x 时, 级数∑kx cos 的部分和有界. 由Dirichlet 判别法推得级数∑nx ancos 收敛 . 同理可得级数数∑nx a n sin 收敛 .17、若∑∞=1n na 收敛,证明∑∞=12n n n a 也收敛。
第十二章数项级数1 讨论几何级数∑∞=0n n q 的敛散性.解当1||<q 时, ) ( , 11110∞→-→--==∑=n q q q q S n nk kn . 级数收敛;当1||>q 时, , =n S 级数发散 ;当1=q 时, +∞→+=1n S n , ) (∞→n , 级数发散 ; 当1-=q 时, ()n n S )1(121-+=, ) (∞→n , 级数发散 . 综上, 几何级数∑∞=0n n q 当且仅当1||<q 时收敛, 且和为q-11( 注意n 从0开始 ).2讨论级数∑∞=+1)1(1n n n 的敛散性.解用链锁消去法求.3讨论级数∑∞=12n nn 的敛散性.解设∑=-+-++++==nk n n k n n n k S 11322212322212 , =n S 211432221 232221++-++++n n nn , 1322212121212121+-++++=-=n n n n n n S S S 12211211211→--⎪⎭⎫ ⎝⎛-=+n n n , ) (∞→n . ⇒n S →2, ) (∞→n .因此, 该级数收敛.4、讨论级数∑∞=-1352n n n 的敛散性.解52, 5252352⋅>⇒=>-n S n n n n n →∞+, ) (∞→n . 级数发散.5、证明2-p 级数∑∞=121n n 收敛 .证显然满足收敛的必要条件.令21nu n =, 则当2≥n 时,有 ∑∑==+++<+-=+-+<+=+++pk pk p n n n n p n n k n k n k n u u u 11221 ,111))(1(1 )(1 | | 注: 应用Cauchy 准则时,应设法把式 |∑=+pk kn u1|不失真地放大成只含n 而不含p 的式子,令其小于ε,确定N .6、判断级数∑∞=11sinn n n 的敛散性.(验证0→/n u . 级数判敛时应首先验证是否满足收敛的必要条件)7、证明调和级数∑∞=11n n 发散.证法一(用Cauchy 准则的否定进行验证) 证法二(证明{n S }发散.利用不等式n nn ln 1 1211 )1ln(+<+++<+ . 即得+∞→n S ,) (∞→n . )注: 此例为0→n u 但级数发散的例子.8、考查级数∑∞=+-1211n n n的敛散性.解有 , 2 11 012222nn n n n <+-⇒>+- 9、判断级数()() +-+⋅⋅-+⋅⋅++⋅⋅⋅⋅+⋅⋅+)1(41951)1(32852951852515212n n的敛散性.解1 434132lim lim1<=++=∞→+∞→n n u u n nn n ⇒∑+∞<.10、讨论级数∑>-)0( 1x nxn 的敛散性.解因为) ( , 1)1(11∞→→+⋅+=-+n x n n x nxx n u u n n n n . 因此, 当10<<x 时,∑+∞<; 1>x 时, ∑+∞=; 1=x 时, 级数成为∑n , 发散.11、判断级数∑+nn n n !21的敛散性.注:对正项级数∑n u ,若仅有11<+nn u u ,其敛散性不能确定. 例如对级数∑n 1和∑21n , 均有11<+nn u u ,但前者发散, 后者收敛. 12、研究级数∑-+nn 2) 1 (3的敛散性 .解1212)1(3lim lim <=-+=∞→∞→nnn n n n u ⇒∑+∞<. 13、判断级数∑⎪⎭⎫⎝⎛+21n n n 和∑⎪⎭⎫⎝⎛+21n n n 的敛散性 .解前者通项不趋于零 , 后者用根值法判得其收敛 .14、讨论-p 级数∑∞=11n pn 的敛散性.解考虑函数>=p xx f p ,1)(0时)(x f 在区间) , 1 [∞+上非负递减. 积分⎰+∞1)(dx x f当1>p 时收敛, 10≤<p 时发散⇒级数∑∞=11n p n 当1>p 时收敛,当10≤<p 时发散,当0≤p 时,01→/pn , 级数发散. 综上,-p 级数∑∞=11n pn当且仅当1>p 时收敛.15、判别级数∑∞=>-1)0( ) 1 (n nnx n x 的敛散性.解当10≤<x 时, 由Leibniz 判别法 ⇒∑收敛;当1>x 时, 通项0→/,∑发散.16、设0n a →.证明级数∑nx a n sin 和∑nx a n cos 对)2 , 0(π∈∀x 收敛.证++⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛+∑= 2sin 23sin 2sin cos 212sin 21x x x kx x n kx n x n x n ) 21 sin() 21 sin() 21 sin(+=⎥⎦⎤⎢⎣⎡--++,) 2 , 0 (π∈x 时,02sin ≠x ⇒∑=+=+n k x xn kx 12sin2) 21sin(cos 21. 可见) 2 , 0 (π∈x 时, 级数∑kx cos 的部分和有界. 由Dirichlet 判别法推得级数∑nx ancos 收敛 . 同理可得级数数∑nx a n sin 收敛 .17、若∑∞=1n na 收敛,证明∑∞=12n n n a 也收敛。
证明:由于∑∞=1n n a 收敛,因而,{}n a 收敛于0,故,存在N ,使得n>N 时,||1n a £,因而,n>N 时,221nn a n ≤, 故,由比较判别法得:∑∞=12n nna 收敛。
18、证明:若∑∞=--11||n n n a a 收敛,则}{n a 收敛。
证明:由于∑∞=--11||n n n a a 收敛,则由Cauchy 收敛准则,对0e >,存在N ,当n>N 时,对任意的正整数p ,成立11||||n n n p n p a a a a e +++--++-<L ,因而,11||||||n p n n n n p n p a a a a a a e ++++--?++-<L ,再次用数列收敛的Cauchy 收敛准则得:}{n a 收敛。
19、若∑∞=1n n a 收敛,则∑∞=+1||11n n a 发散。
分析证明级数的发散性,首选工具是级数收敛的必要条件。
证明:由于∑∞=1n n a 收敛,故lim 0n n a ??=,因而,lim (1||)1n n a ??+=,故,∑∞=+1||11n n a 发散。
20、判断下列具体级数的敛散性1、0 , 111>+∑∞=a a n n ; 2、0, ][ln 11>∑∞=p n n p; 3、∑∞=-1!!)!12(n n n ; 4、∑∞=⎪⎭⎫ ⎝⎛+112n nn n ;5、∑∞=+110)!1(n nn ; 6、∑∞=122n n n 。
分析对具体的级数,按照判别敛散性的一般程序,先考察通项的极限,在通项极限为0的情形下,考虑比较判别法,常用的作为比较的级数的形式为11p n n ¥=å、1nn q ¥=å,通过对通项的结构分析,选择合适的对比级数,此时,已经学习过的数列的速度关系或阶的关系,有利于我们确定对比级数;对通项中含有n 幂次或n !形式的级数常用Cauchy 判别法或D ’Alembert 判别法,更复杂的题目则需选用更精细的判别法。
解、1)、]1,0(∈a ,}11{na +不收敛于0,此时,级数发散;1>a 时,nn a a 111<+,由比较判别法得收敛。
2、分析结构,发现对比级数为11kn n ¥=å的形式,只需比较通项收敛于0的速度。
由于对任意的p >0,(ln )lim 0pn n n??=, 故,由比较判别法可知:11[ln ]pn n ¥=å发散。
3)、通项含有阶层形式,故采用比值判别法。
记(21)!!!n n u n -=,则121lim lim 211n n n nu n u n +?ギ+?+==>+, 故,该级数发散。
4)、由通项结构为n 幂次形式,采用Cauchy 判别法。
记()21nnn u n =+,则1limlim 1212n n n n ?+?==<+,故,由Cauchy 判别法知该级数收敛。
5)、由通项结构可知用D ’Alembert 判别法。
记(1)!10n nn u +=,则12lim lim 10n n n nu n u +?ギ+?+==+?,故,该级数发散。
6)、用Cauchy 判别法。
记22n n n u =,则1lim 2n ??=,故,该级数收敛。
21、判断下列具体级数的敛散性。
1)、2(1)21s i n n n n xdx xpp¥+=åò2)、∑⎰∞=-111n n dx xx3)、∑⎰∞=+11)1l n (n n dx x分析通项为积分形式的级数敛散性的判别,通常有3种方法:1、利用积分判别法,转化为广义积分的敛散性,此时通项常具有形式} { , 0)( , )(1n a a n a x f dx x f u n n>=⎰+递增趋于∞+。
2、直接计算积分转化为一般形式的数项级数。
3、通过对积分进行估计,用比较判别法判断,此时通项常具有形式⎰=na n dx x f u 0)(,其中}{n a 单减趋于0。
在上述3种方法中,常用1、3两种方法,这是考点。
解:1)、从类型看,适用于第一种方法。
此级数与广义积分⎰∞+πdx x x22sin 具相同的敛散性,由于21dx xp+?ò收敛,因而由比较方法,⎰∞+πdx x x22sin 收敛,故,该级数也收敛。
2)、典型的第3种方法处理的题型。
由于积分上限趋于0,考察被积函数在0点附近的性质,由于0→x 时,x xx ~1-,因而, ⎰⎰-=n n n ndx x dx xx u 123101~~1,故此级数应收敛。
上述可以视为结构特征分析,知道了结构特征,具体的验证方法可以灵活选 择,下面的方法属于直接比较法。
对充分大的n ,当n x 10<<时,211≤-x,故 231013420n dx x u n n =≤≤⎰, 且级数3121n n+?=å收敛,因而,原级数收敛。
当然,用比较方法的极限形式更直接,如 由于3022limn n t u nt?ギ-=022332t t ®==, 因而,原级数收敛。