第2章 章末整合
- 格式:pptx
- 大小:513.63 KB
- 文档页数:11
[巩固层·知识整合][提升层·题型探究](教师独具)直线的倾斜角与斜率范围是()A.-3<k≤0B.k>- 3C.k≥0或k<- 3D.k≥0或k<-3 3(2)已知某直线l的倾斜角α=45°,又P1(2,y1),P2(x2,5),P3(3,1)是此直线上的三点,求x2,y1的值.(1)C[通过画图可知k<-3或k≥0.故选C.](2)[解]由α=45°,故直线l的斜率k=tan 45°=1,又P1,P2,P3都在此直线上,故kP1P2=kP2P3=k l,即5-y1x2-2=1-53-x2=1,解得x2=7,y1=0.求直线的倾斜角与斜率的注意点(1)求直线的倾斜角,关键是依据平面几何的知识判断直线向上方向与x轴正向之间所成的角,同时应明确倾斜角的范围.(2)当直线的倾斜角α∈[0°,90°)时,随着α的增大,直线的斜率k为非负值且逐渐变大;当直线的倾斜角α∈(90°,180°)时,随着α的增大,直线的斜率k为负值且逐渐变大.[跟进训练]1.已知直线ax+y+2=0及两点P(-2,1),Q(3,2),若直线与线段PQ相交,则实数a的取值范围是()A.a≤-43或a≥32B.a≤-32或a≥43C.-43≤a≤32D.-32≤a≤43A[因为直线ax+y+2=0过定点A(0,-2),根据题意画出几何图形如图所示:直线ax +y +2=0可化为y =-ax -2,因为P (-2,1),Q (3,2), 则k AP =1-(-2)-2-0=-32,k AQ =2-(-2)3-0=43.若直线y =-ax -2与线段PQ 相交, 即-a ≥43或-a ≤-32, 所以a ≤-43或a ≥32.]求直线的方程2x -y -5=0,AC 边上的高BH 所在的直线方程为x -2y -5=0.求:(1)AC 所在的直线的方程; (2)点B 的坐标.[思路探究] (1)直线AC 过A 点且与BH 垂直,可求直线方程.(2)B 点在直线BH 上,线段AB 的中点在中线CM 上,列方程组求得B 点坐标. [解] (1)因为AC ⊥BH ,所以设AC 所在的直线的方程为2x +y +t =0. 把A (5,1)代入直线方程2x +y +t =0中,解得t =-11. 所以AC 所在的直线的方程为2x +y -11=0. (2)设B (x 0,y 0),则AB 的中点为⎝ ⎛⎭⎪⎫x 0+52,y 0+12.联立得方程组⎩⎪⎨⎪⎧x 0-2y 0-5=0,2×x 0+52-y 0+12-5=0.化简得⎩⎨⎧ x 0-2y 0-5=0,2x 0-y 0-1=0.解得⎩⎨⎧x 0=-1,y 0=-3.故B (-1,-3).求直线方程的方法求直线方程的主要方法是待定系数法,要掌握直线方程五种形式的适用条件及相互转化,能根据条件灵活选用方程,当不能确定某种方程条件是否具备时要另行讨论条件不满足的情况.[跟进训练]2.已知△ABC 中,A (1,3),AB ,AC 边上中线所在直线方程分别为x -2y +1=0和y -1=0,求△ABC 各边所在的直线方程.[解] 设AB ,AC 边上的中线分别为CD ,BE ,其中D ,E 为中点, ∵点B 在中线y -1=0上, ∴设点B 的坐标为(x B,1).∵点D 为AB 的中点,又点A 的坐标为(1,3), ∴点D 的坐标为⎝ ⎛⎭⎪⎫x B +12,2.∵点D 在中线CD :x -2y +1=0上, ∴x B +12-2×2+1=0,∴x B =5. ∴点B 的坐标为(5,1).∵点C 在直线x -2y +1=0上, ∴设点C 的坐标为(2t -1,t ). ∴AC 的中点E 的坐标为⎝ ⎛⎭⎪⎫t ,t +32. ∵点E 在中线BE :y =1上, ∴t +32=1,∴t =-1. ∴点C 的坐标为(-3,-1),∴△ABC 各边所在直线的方程为AB :x +2y -7=0, BC :x -4y -1=0,AC :x -y +2=0.两直线的平行、垂直及距离问题12足下列条件的a ,b 的值.(1)直线l 1过点(-3,-1),并且直线l 1与直线l 2垂直; (2)直线l 1与直线l 2平行,并且坐标原点到l 1,l 2的距离相等.[思路探究] (1)把(-3,-1)代入l 1方程,同时运用垂直条件A 1A 2+B 1B 2=0;(2)利用好平行条件及距离公式列方程.[解] (1)∵l 1⊥l 2,∴a (a -1)+(-b )·1=0. 即a 2-a -b =0.① 又点(-3,-1)在l 1上, ∴-3a +b +4=0.② 由①②解得a =2,b =2. (2)∵l 1∥l 2且l 2的斜率为1-a , ∴l 1的斜率也存在,ab =1-a , 即b =a 1-a. 故l 1和l 2的方程可分别表示为 l 1:(a -1)x +y +4(a -1)a =0, l 2:(a -1)x +y +a1-a=0. ∵原点到l 1与l 2的距离相等,∴4⎪⎪⎪⎪⎪⎪a -1a =⎪⎪⎪⎪⎪⎪a 1-a ,解得a =2或a =23. 因此⎩⎨⎧a =2,b =-2,或⎩⎪⎨⎪⎧a =23,b =2.距离公式的运用(1)距离问题包含两点间的距离,点到直线的距离,两平行直线间的距离. (2)牢记各类距离的公式并能直接应用,解决距离问题时,往往将代数运算与几何图形的直观分析相结合.(3)这类问题是高考考查的热点,在高考中常以选择题、填空题出现,主要考查距离公式以及思维能力.[跟进训练]3.已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.[解] (1)经过两已知直线交点的直线系方程为2x +y -5+λ(x -2y )=0, 即(2+λ)x +(1-2λ)y -5=0,所以|10+5λ-5|(2+λ)2+(1-2λ)2=3,即2λ2-5λ+2=0,所以λ=12或λ=2. 所以l 的方程为x =2或4x -3y -5=0.(2)由⎩⎨⎧2x +y -5=0,x -2y =0,解得交点P (2,1),过P 作任一直线l (图略),设d 为点A到l 的距离,则d ≤|P A |(当l ⊥P A 时等号成立).所以d max =|P A |=10.对称问题1.怎样求点关于点的对称点?[提示] 设出所求点坐标,利用中点坐标公式求解. 2.怎样求点关于直线的对称点坐标?[提示] 设出所求点坐标(x, y ),利用中点坐标公式建立关于x, y 的第一个方程,再利用垂直关系建立x, y 的另一个方程,然后通过联立方程解二元一次方程组求解.【例4】 光线通过点A (2, 3),在直线l :x +y +1=0上反射,反射光线经过点B (1,1),试求入射光线和反射光线所在直线的方程.[解] 设点A (2,3)关于直线l 的对称点为A ′(x 0,y 0),则⎩⎪⎨⎪⎧2+x 02+3+y 02+1=0,y 0-3x 0-2=1.解之得,A ′(-4,-3).由于反射光线经过点A ′(-4,-3)和B (1,1), 所以反射光线所在直线的方程为y -1=(x -1)·1+31+4,即4x -5y +1=0.解方程组⎩⎨⎧4x -5y +1=0,x +y +1=0,得反射点P ⎝ ⎛⎭⎪⎫-23,-13.所以入射光线所在直线的方程为 y -3=(x -2)·3+132+23,即5x -4y +2=0.综上,入射光线和反射光线所在直线的方程分别为5x -4y +2=0,4x -5y +1=0.1.[变结论]在本例条件不变的情况下,求光线从A 经反射后到达B 点所经过的路程.[解] 由本例解析知,点A (2,3)关于直线l 的对称点为A ′(-4,-3).所以从A 发出光线经l 反射后到达B 的路程为|A ′B |.即|A ′B |=(-4-1)2+(-3-1)2=41.2.[变条件]把本例条件中“直线l :x +y +1=0”改为“直线l 为x 轴”,其他条件不变,试求入射光线和反射光线所在直线的方程.[解] 点A (2,3)关于x 轴对称点为A ′(2,-3). ∴反射光线方程为y +31+3=x -21-2,即4x +y -5=0. 又∵反射光线与x 轴交点为⎝ ⎛⎭⎪⎫54,0.∴入射光线方程为y -03-0=x -542-54, 即4x -y -5=0.对称问题的求解策略(1)点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解.熟练掌握和灵活运用中点坐标公式是处理这类问题的关键.(2)点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方面:①两点连线与已知直线斜率乘积等于-1;②两点的中点在已知直线上.(3)直线关于点的对称问题,可转化为直线上的点关于此点对称的问题,这里需要注意的是两对称直线是平行的.我们往往利用平行直线系去求解.求圆的方程得的弦长为27,求圆C的方程.[思路探究]设标准方程,由相切可得d=r,由圆心在直线上,可将(a,b)代入直线方程,由已知弦长可列出弦长公式.通过方程组求解,从而得到圆的方程.[解]设圆C的方程为(x-a)2+(y-b)2=r2.由圆C与y轴相切得|a|=r,①又圆心在直线x-3y=0上,∴a-3b=0,②圆心C(a,b)到直线y=x的距离为d=|a-b|2,由于弦心距d,半径r及弦的一半构成直角三角形,∴⎝⎛⎭⎪⎫|a-b|22+(7)2=r2.③联立①②③解方程组可得⎩⎨⎧a1=3,b1=1,r1=3或⎩⎨⎧a2=-3,b2=-1,r2=3.故圆C的方程为(x-3)2+(y-1)2=9或(x+3)2+(y+1)2=9.1.求圆的方程的方法求圆的方程主要是联立圆系方程、圆的标准方程和一般方程,利用待定系数法解题.2.采用待定系数法求圆的方程的一般步骤(1)选择圆的方程的某一形式.(2)由题意得a, b, r(或D, E, F)的方程(组).(3)解出a, b, r(或D, E, F).(4)代入圆的方程.[跟进训练]4.已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数且与直线4x+3y -29=0相切,求圆的方程.[解]设圆心为M(m,0)(m∈Z),由于圆与直线4x+3y-29=0相切,且半径为5,所以|4m-29|5=5,即|4m-29|=25,因为m为整数,故m=1,故所求圆的方程为(x-1)2+y2=25.直线与圆的位置关系y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程.[思路探究](1)根据圆与x轴相切确定圆心位置,再根据两圆外切建立等量关系求半径;(2)根据垂径定理确定等量关系,求直线方程.[解]圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为N与x轴相切,与圆M外切,所以0<y 0<7,于是圆N 的半径为y 0,从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1. (2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2. 设直线l 的方程为y =2x +m ,即2x -y +m =0, 则圆心M 到直线l 的距离 d =|2×6-7+m |5=|m +5|5. 因为BC =OA =22+42=25,而MC 2=d 2+⎝ ⎛⎭⎪⎫BC 22,所以25=(m +5)25+5,解得m =5或m =-15. 故直线l 的方程为2x -y +5=0或2x -y -15=0.判断直线和圆的位置关系,一般用代数法或几何法,为避免繁杂的运算,最好用几何法,其解题思路是:先求出圆心到直线的距离d ,然后比较所求距离d 与半径r 的大小关系,进而判断直线和圆的位置关系.[跟进训练]5.已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0. (1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短,求此弦长. [解] (1)证明:直线的方程可化为y +3=2m (x -4), 由点斜式可知,直线过点P (4, -3).由于42+(-3)2-6×4+12×(-3)+20=-15<0, 所以点P 在圆内,故直线l 与圆C 总相交.(2)如图,当圆心C (3, -6)到直线l 的距离最大时,线段AB 的长度最短.此时PC ⊥l ,所以直线l 的斜率为-13,所以m =-16. 在△APC 中,|PC |=10,|AC |=r =5, 所以|AP |2=|AC |2-|PC |2=25-10=15, 所以|AP |=15,所以|AB |=215, 即最短弦长为215.圆与圆的位置关系12(1)证明圆C 1与圆C 2相切,并求过切点的两圆公切线的方程; (2)求过点(2, 3)且与两圆相切于(1)中切点的圆的方程.[解] (1)把圆C 1与圆C 2都化为标准方程形式,得(x +2)2+(y -2)2=13,(x -4)2+(y +2)2=13.圆心与半径长分别为C 1(-2,2),r 1=13; C 2(4,-2),r 2=13.因为|C 1C 2|=(-2-4)2+(2+2)2=213=r 1+r 2, 所以圆C 1与圆C 2相切.由⎩⎨⎧x 2+y 2+4x -4y -5=0,x 2+y 2-8x +4y +7=0,得12x -8y -12=0, 即3x -2y -3=0,就是过切点的两圆公切线的方程. (2)由圆系方程,可设所求圆的方程为 x 2+y 2+4x -4y -5+λ(3x -2y -3)=0.点(2, 3)在此圆上,将点坐标代入方程解得λ=43.所以所求圆的方程为x 2+y 2+4x -4y -5+43(3x -2y -3)=0,即x 2+y 2+8x -203y -9=0.判断两圆位置关系的两种方法比较(1)几何法是利用两圆半径和或差与圆心距作比较,得到两圆位置关系. (2)代数法是把两圆位置关系的判断完全转化为代数问题,转化为方程组解的组数问题,从而体现了几何问题与代数问题之间的相互联系,但这种方法只能判断出不相交、相交和相切三种位置关系,而不能像几何法一样,能准确判断出外离、外切、相交、内切和内含五种位置关系.[跟进训练]6.在平面直角坐标系xOy 中,过点P (0,1)且互相垂直的两条直线分别与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .若AB =372,求CD 的长.[解] 因为AB =372,圆O 半径为2,所以点O 到直线AB 的距离为14,显然AB ,CD 都不平行于坐标轴. 可知AB :y =kx +1,即kx -y +1=0. 则点O 到直线AB 的距离d =1k 2+1=14,解得k =±15. 因为AB ⊥CD ,所以k CD =-1k , 所以CD :y =-1k x +1,即x +ky -k =0. 点M (2,1)到直线CD 的距离d ′=2k 2+1=12, 所以CD =21-d ′2=21-⎝ ⎛⎭⎪⎫122= 3. [培优层·素养升华]【例】 已知圆C :x 2+y 2+2x -7=0内一点P (-1,2),直线l 过点P 且与圆C 交于A ,B 两点.(1)求圆C的圆心坐标和面积;(2)若直线l的斜率为3,求弦AB的长;(3)若圆上恰有三点到直线l的距离等于2,求直线l的方程.[思路探究](1)化圆的一般式为标准方程,得出圆C的圆心坐标为(-1,0),半径r=22即可.(2)先求圆心到直线的距离为d,再利用半径r,距离d,半弦长构成直角三角形求解即可.(3)圆上恰有三点到直线l的距离等于2,等价于圆心(-1,0)到直线AB的距离为r2=2,利用点到直线的距离公式求解.[解](1)圆C的圆心坐标为(-1,0),半径r=22,面积为S=8π.(2)直线l的方程为y-2=3(x+1),即3x-y+2+3=0,圆心到直线l的距离为d=|-3+2+3|(3)2+1=1,|AB|=2r2-d2=2(22)2-1=27.(3)因圆上恰有三点到直线l的距离等于2,转化为圆心(-1,0)到直线AB的距离为r2=2,当直线l垂直于x轴时,显然不合题意;设直线l的方程为y-2=k(x+1),即kx-y+2+k=0,由d=|-k+2+k|k2+1=2k2+1=2,解得k=±1,故直线l的方程为x-y+3=0,或x+y-1=0.1.本题反映的是本章的重点热点问题,综合考查了圆的方程、直线的方程、距离公式、两直线的位置关系及直线与圆的位置关系.2.通过考查这些知识点和题型,培养了学生直观想象,逻辑推理,数学建模、数学运算的核心素养.3.本题考查知识点全面且基本,属中档题.[跟进训练]7.已知圆x 2+y 2-4ax +2ay +20a -20=0. (1)求证:对任意实数a ,该圆恒过一定点; (2)若该圆与圆x 2+y 2=4相切,求a 的值. [解] (1)证明:圆的方程可整理为 (x 2+y 2-20)+a (-4x +2y +20)=0,此方程表示过圆x 2+y 2-20=0和直线-4x +2y +20=0交点的圆系. 由⎩⎨⎧x 2+y 2-20=0,-4x +2y +20=0, 得⎩⎨⎧x =4,y =-2.∴已知圆过定点(4,-2).(2)圆的方程可化为(x -2a )2+(y +a )2=5(a -2)2. ①当两圆外切时,d =r 1+r 2, 即2+5(a -2)2=5a 2,解得a =1+55或a =1-55(舍去); ②当两圆内切时,d =|r 1-r 2|, 即|5(a -2)2-2|=5a 2,解得a =1-55或a =1+55(舍去). 综上所述,a =1±55.。
全新高中生物必修一课时检测试题(全册共136页附答案)目录第1节从生物圈到细胞第2节细胞的多样性和统一性第1章章末整合第2章组成细胞的分子第1节细胞中的元素和化合物第2节生命活动的主要承担者——蛋白质第3节遗传信息的携带者——核酸第4节细胞中的糖类和脂质第5节细胞中的无机物第2章章末整合第3章细胞的基本结构第1节细胞膜——系统的边界第2节细胞器——系统内的分工合作第1课时细胞器之间的分工第2课时细胞器之间的协调配合和细胞的生物膜系统第3节细胞核——系统的控制中心第3章章末整合第4章细胞的物质输入和输出第1节物质跨膜运输的实例第1章走近细胞第1节从生物圈到细胞1.2017诺如病毒流行,该病毒基因多样且高度变异,每隔数年就会出现新变异株,下列有关诺如病毒的说法正确的是( )A.能引发传染病,但无细胞结构,不是生物B.必须寄生在活细胞内C.可在人工配制的富含有机物的培养基上培养D.能够独立完成生命活动答案:B2.生命活动离不开细胞,对此理解不正确的是( )A.没有细胞结构的病毒必须寄生在活细胞内繁殖B.单细胞生物体具有生命的基本特征——新陈代谢、繁殖等C.多细胞生物体的生命活动由不同的细胞密切合作完成D.细胞是一切生物体结构和功能的基本单位答案:D3.禽流感病毒H7N9不能被称为生命系统的主要依据是( )A.仅由蛋白质和核酸组成B.不能繁殖C.没有细胞结构,不能独立生活D.能够致病答案:C4.考场中考生聚精会神地答题时,直接参与这一活动的最小结构层次是( )A.血液B.神经细胞C.大脑D.神经系统答案:B5.广州市计划未来打造15分钟社区步行生活圈,促进社区与城市山脉、文脉、商脉的连通融合,打造宜居、宜业、宜行、宜游都市,在生命系统的结构层次中“广州市”属于( ) A.群落B.种群C.生物圈D.生态系统解析:这里的广州市包括该地的所有生物及其生存环境,故属于生态系统。
答案:D6.“故人西辞黄鹤楼,烟花三月下扬州。
第2章匀变速直线运动的规律[巩固层·知识整合][提升层·能力强化]匀变速直线运动规律的理解与应用1常用方法规律特点一般公式法v t=v0+at;x=v0t+12at 2;v2t-v20=2ax. 使用时一般取v0方向为正方向平均速度法v=xt对任何直线运动都适用,而v=12(v0+v t)只适用于匀变速直线运动中间时刻速度法vt2=v=12(v0+v),适用于匀变速直线运动比例法对于初速度为零的匀加速直线运动与末速度为零的匀减速直线运动,可利用比例法解题图像法应用vt图像,可把较复杂的问题转变为较简单的数学问题解决巧用推论解题x n+1-x n=aT 2,若出现相等的时间问题,应优先考虑用Δx=aT 2求解逆向思维法(反演法)把运动过程的“末态”作为“初态”的反向研究问题的方法,一般用于末态已知情况(1)解题时首先选择正方向,一般以v 0方向为正方向. (2)刹车类问题一般先求出刹车时间.(3)对于有往返的匀变速直线运动(全过程加速度a 恒定),可对全过程应用公式v t =v 0+at 、x =v 0t +12at 2、…列式求解.(4)分析题意时要养成画运动过程示意图的习惯,特别是对多过程问题.对于多过程问题,要注意前后过程的联系——前段过程的末速度是后一过程的初速度;再要注意寻找位移关系、时间关系.【例1】 物体以一定的初速度冲上固定的光滑斜面,到达斜面最高点C 时速度恰好为零,如图所示,已知物体运动到斜面长度3/4处的B 点时,所用时间为t ,求物体从B 滑到C 所用的时间.[解析] 解法一:逆向思维法物体向上匀减速冲上斜面,相当于向下匀加速滑下斜面.故x BC =12at 2BC ,x AC =12a (t +t BC )2又x BC =x AC4,解得t BC =t .解法二:比例法对于初速度为零的匀变速直线运动,在连续相等的时间里通过的位移之比为x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1)现有x BC ∶x BA =x AC 4∶3x AC4=1∶3通过x AB 的时间为t ,故通过x BC 的时间t BC =t . 解法三:中间时刻速度法利用教材中的推论:中间时刻的瞬时速度等于这段位移的平均速度v AC =v A +v C 2=v 0+02=v 02又v 20=2ax AC ,v 2B =2ax BC ,x BC =x AC4由以上各式解得v B =v 02可以看出v B 正好等于AC 段的平均速度,因此B 点是时间中点的位置,因此有t BC =t . 解法四:图像法利用相似三角形面积之比等于对应边平方比的方法,作出v t 图像,如图所示,S △AOC /S △BDC =CO 2/CD 2且S △AOC =4S △BDC ,OD =t ,OC =t +t CD所以4/1=t +t CD2t 2CD解得t CD =t .则t BC =t CD =t . [答案] t[一语通关] 这类匀减速直线运动,当物体速度为零时,加速度不为零,所以物体还要反向运动.求解这类问题一是注意矢量的正负;二是要注意速度、时间等物理量可能有两解.[跟进训练]1.一个物体以v 0=8 m/s 的初速度从斜面底端沿光滑斜面向上滑动,加速度的大小为2 m/s 2,冲上最高点之后,又以相同大小的加速度往回运动.求:(1)物体3 s 末的速度; (2)物体5 s 末的速度;(3)物体在斜面上的位移大小为15 m 时所用的时间. [解析] (1)(2)由t =v t -v 0a,物体冲上最高点的时间是4 s ,又根据v t =v 0+at,3 s 末的速度为v 3=(8-2×3)m/s=2 m/s,5 s 末的速度v 5=(8-2×5)m/s=-2 m/s ,即5 s 末速度大小为2 m/s ,方向沿斜面向下.(3)由位移公式x =v 0t +12at 2,以v 0方向为正方向,则x =15 m ,a =-2 m/s 2代入数据,解得:t 1=3 s ,t 2=5 s即经过位移大小为15 m 处所用的时间分别为3 s(上升过程中)和5 s(下降过程中). [答案] (1)2 m/s 方向沿斜面向上 (2)-2 m/s 方向沿斜面向下 (3)3 s 和5 s运动图像的理解与应用两类运动图像对比x t 图像 v t 图像典型 图像其中④为抛物线其中④为抛物线物理 意义 反映的是位移随时间的变化规律 反映的是速度随时间的变化规律 点 对应某一时刻物体所处的位置 对应某一时刻物体的速度 斜率斜率的大小表示速度大小 斜率的正负表示速度的方向 斜率的大小表示加速度的大小 斜率的正负表示加速度的方向 截距直线与纵轴截距表示物体在t =0时刻距离原点的位移,即物体的出发点;在t 轴上的截距表示物体回到原点的时间直线与纵轴的截距表示物体在t =0时刻的初速度;在t 轴上的截距表示物体速度为0的时刻两图线的交点同一时刻各物体处于同一位置同一时刻各物体运动的速度相同【例2】 (多选)在如图所示的位移—时间(x t )图像和速度—时间(v t )图像中,给出的四条图线甲、乙、丙、丁分别代表四辆车由同一地点向同一方向运动的情况,则下列说法正确的是( )A .t 1时刻,乙车追上甲车B .0~t 1时间内,甲、乙两车的平均速度相等C .丙、丁两车在t 2时刻相遇D .0~t 2时间内,丙、丁两车的平均速度相等AB [它们由同一地点向同一方向运动,在t 1时刻前,甲的位移大于乙的位移,在t 1时刻甲、乙位移相等,则A 正确;在t 1时刻两车的位移相等,由v =xt,甲、乙两车在0~t 1时间内的平均速度相等,B 正确;由v t 图像与时间轴围成的面积表示位移可知:丙、丁两车在t 2时刻对应v t 图线的面积不相等,即位移不相等,C 错误;0~t 2时间内,丁的位移大于丙的位移,时间相等,所以丁的平均速度大于丙的平均速度,故D 错误.][一语通关] 图像的特点在于直观性,可以通过“看”和“写”寻找规律及解题的突破口,为方便记忆,这里总结为“六看一写”:一看“轴”,二看“线”,三看“斜率”,四看“面”,五看“截距”,六看“特殊值”;必要时写出函数表达式.[跟进训练]2.(多选)2020年10月27日,中国载人深潜器“奋斗者”号,在西太平洋马里亚纳海沟成功下潜突破1万米,达到10 058米,创造了中国载人深潜的新纪录。
章末复习课[整合·网络构建][警示·易错提醒]1.“互斥事件”与“相互独立事件”的区别.“互斥事件”是说两个事件不能同时发生,“相互独立事件”是说一个事件发生与否对另一个事件发生的概率没有影响.2.对独立重复试验要准确理解.(1)独立重复试验的条件:第一,每次试验是在同样条件下进行;第二,任何一次试验中某事件发生的概率相等;第三,每次试验都只有两种结果,即事件要么发生,要么不发生.(2)独立重复试验概率公式的特点:关于P(X=k)=C k n p k(1-p)n-k,它是n次独立重复试验中某事件A恰好发生k次的概率.其中n是重复试验次数,p是一次试验中某事件A发生的概率,k是在n次独立试验中事件A恰好发生的次数,弄清公式中n,p,k的意义,才能正确运用公式.3.(1)准确理解事件和随机变量取值的意义,对实际问题中事件之间的关系要清楚.(2)认真审题,找准关键字句,提高解题能力.如“至少有一个发生”“至多有一个发生”“恰有一个发生”等.(3)常见事件的表示.已知两个事件A、B,则A,B中至少有一个发生为A∪B;都发生为A·B;都不发生为—A ·—B ;恰有一个发生为(—A ·B)∪(A·—B );至多有一个发生为(—A ·—B )∪(—A ·B)∪(A·—B ).4.对于条件概率,一定要区分P(AB)与P(B|A).5.(1)离散型随机变量的期望与方差若存在则必唯一,期望E (ξ)的值可正也可负,而方差的值则一定是一个非负值.它们都由ξ的分布列唯一确定.(2)D (ξ)表示随机变量ξ对E (ξ)的平均偏离程度.D (ξ) 越大表明平均偏离程度越大,说明ξ的取值越分散;反之D (ξ)越小,ξ的取值越集中.(3)D (aξ+b )=a 2D (ξ),在记忆和使用此结论时,请注意D (aξ+b )≠aD (ξ)+b ,D (aξ+b )≠aD (ξ).6.对于正态分布,要特别注意N (μ,σ2)由μ和σ唯一确定,解决正态分布问题要牢记其概率密度曲线的对称轴为x =μ.专题一 条件概率的求法条件概率是高考的一个热点,常以选择题或填空题的形式出现,也可能是大题中的一个部分,难度中等.[例1] 坛子里放着7个大小、形状相同的鸭蛋,其中有4个是绿皮的,3个是白皮的.如果不放回地依次拿出2个鸭蛋,求:(1)第1次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿出绿皮鸭蛋的概率;(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.解:设“第1次拿出绿皮鸭蛋”为事件A ,“第2次拿出绿皮鸭蛋”为事件B ,则“第1次和第2次都拿出绿皮鸭蛋”为事件AB .(1)从7个鸭蛋中不放回地依次拿出2个的事件数为n (Ω)=A 27=42, 根据分步乘法计数原理,n (A )=A 14×A 16=24. 于是P (A )=n (A )n (Ω)=2442=47.(2)因为n (AB )=A 24=12, 所以P (AB )=n (AB )n (Ω)=1242=27.(3)法一 由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为P (B |A )=P (AB )P (A )=27÷47=12. 法二 因为n (AB )=12,n (A )=24, 所以P (B |A )=n (AB )n (A )=1224=12.归纳升华解决概率问题的步骤.第一步,确定事件的性质:古典概型、互斥事件、独立事件、独立重复试验、条件概率,然后把所给问题归结为某一种.第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生,分别运用相加或相乘事件公式.第三步,利用条件概率公式求解:(1)条件概率定义:P (B |A )=P (AB )P (A ).(2)针对古典概型,缩减基本事件总数P (B |A )=n (AB )n (A ).[变式训练] 已知100件产品中有4件次品,无放回地从中抽取2次每次抽取1件,求下列事件的概率:(1)第一次取到次品,第二次取到正品; (2)两次都取到正品.解:设A ={第一次取到次品},B ={第二次取到正品}.(1)因为100件产品中有4件次品,即有正品96件,所以第一次取到次品的概率为P (A )=4100,第二次取到正品的概率为P (B |A )=9699,所以第一次取到次品,第二次取到正品的概率为P (AB )=P (A )P (B |A )=4100×9699=32825. (2)因为A ={第一次取到次品},且P (A )=1-P (A )=96100, P (B |A )=9599,所以P (AB )=P (A )P (B |A )=96100×9599=152165. 专题2 独立事件的概率要正确区分互斥事件与相互独立事件,准确应用相关公式解题,互斥事件是不可能同时发生的事件,相互独立事件是指一个事件的发生与否对另一个事件没有影响.[例2] 某射击小组有甲、乙两名射手,甲的命中率为P 1=23,乙的命中率为P 2,在射击比赛活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.(1)若P 2=12,求该小组在一次检测中荣获“先进和谐组”的概率.(2)计划在2018年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为ξ,如果E (ξ)≥5,求P 2的取值X 围.解析:(1)因为P 1=23,P 2=12,根据“先进和谐组”的定义可得,该小组在一次检测中荣获“先进和谐组”的包括两人两次都射中,两人恰好各射中一次,所以该小组在一次检测中荣获“先进和谐组”的概率P =⎝⎛⎭⎪⎫C 12·23·13·⎝ ⎛⎭⎪⎫C 12·12·12+⎝ ⎛⎭⎪⎫23·23⎝ ⎛⎭⎪⎫12·12=13.(2)该小组在一次检测中荣获“先进和谐组”的概率P =⎝⎛⎭⎪⎫C 12·23·13[C 12·P 2·(1-P 2)]+⎝ ⎛⎭⎪⎫23·23()P 2·P 2=89P 2-49P 22, 又ξ~B (12,P ),所以E (ξ)=12P , 由E (ξ)≥5知,⎝ ⎛⎭⎪⎫89P 2-49P 22·12≥5,解得34≤P 2≤1.[变式训练] 甲、乙两射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率. (2)2人中恰有1人射中目标的概率. (3)2人中至少有1人射中目标的概率.解:记“甲射击1次,击中目标”为事件A ,“乙射击1次,击中目标”为事件B ,则A 与B ,与B , A 与B ,与为相互独立事件.(1)2人都射中目标的概率为P (AB )=P (A )·P (B )=0.8×0.9=0.72.(2)“2人中恰有1人射中目标”包括两种情况:一种是甲射中、乙未射中(事件A 发生),另一种是甲未射中、乙射中(事件B 发生).根据题意,知事件A 与B 互斥,所求的概率为P =P (A )+P (B )=P (A )P ()+P ()P (B )=0.8×(1-0.9)+(1-0.8)×0.9=0.08+0.18=0.26.(3)“2人中至少有1人射中目标”包括“2人都射中”和“2人中有1人射中”2种情况,其概率为P =P (AB )+[P (A )+P (B )]=0.72+0.26=0.98.专题三 独立重复试验与二项分布二项分布是高考考查的重点,要准确理解、熟练运用其概率公式P n (k )=C kn ·p k(1-p )n -k,k =0,1,2,…,n ,高考以解答题为主,有时也用选择题、填空题形式考查.[例3] 现有10道题,其中6道甲类题,4道乙类题,X 同学从中任取3道题解答. (1)求X 同学所取的3道题至少有1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题.设X 同学答对每道甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示X 同学答对题的个数,求X 为1和3的概率.解:(1)设事件A =“ X 同学所取的3道题至少有1道乙类题”,则有A =“X 同学所取的3道题都是甲类题”.因为P (— A )=C 36C 310=16,所以P (A )=1-P (— A )=56.(2)P (X =1)=C 12⎝ ⎛⎭⎪⎫351·⎝ ⎛⎭⎪⎫251·15+C 02⎝ ⎛⎭⎪⎫350·⎝ ⎛⎭⎪⎫252·45=28125; P (X =3)=C 22⎝ ⎛⎭⎪⎫352·⎝ ⎛⎭⎪⎫25·45=36125. 归纳升华解决二项分布问题必须注意: (1)对于公式P n (k )=C k n ·p k (1-p )n -k,k =0,1,2,…,n 必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.[变式训练] 口袋中装有大小、轻重都无差别的5个红球和4个白球,每一次从袋中摸出2个球,若颜色不同,则为中奖.每次摸球后,都将摸出的球放回口袋中,则3次摸球恰有1次中奖的概率为()A.80243B.100243C.80729D.100729解析:每次摸球中奖的概率为C 14C 15C 29=2036=59,由于是有放回地摸球,故3次摸球相当于3次独立重复实验, 所以3次摸球恰有1次中奖的概率P =C 13×59×⎝ ⎛⎭⎪⎫1-592=80243.答案:A专题四 离散型随机变量的期望与方差离散型随机变量的均值和方差在实际问题中具有重要意义,也是高考的热点内容. [例4] (2016·某某卷)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:(1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以,事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为:X 0 1 2 P415715415随机变量X 的数学期望E (X )=0×415+1×715+2×415=1.归纳升华(1)求离散型随机变量的分布列有以下三个步骤:①明确随机变量X 取哪些值;②计算随机变量X 取每一个值时的概率;③将结果用表格形式列出.计算概率时要注意结合排列组合知识.(2)均值和方差的求解方法是:在分布列的基础上利用E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 求出均值,然后利用D (X )=∑i =1n[x i -E (X )]2p i 求出方差.[变式训练] 根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:0.3,0.7,0.9,求:(1)工期延误天数Y 的均值与方差.(2)在降水量至少是300的条件下,工期延误不超过6天的概率.解:(1)由已知条件有P (X <300)=0.3,P (300≤X <700)=P (X <700)-P (X <300)=0.7-0.3=0.4,P (700≤X <900)=P (X <900)-P (X <700)=0.9-0.7=0.2. P (X ≥900)=1-P (X <900)=1-0.9=0.1.所以Y 的分布列为于是,E (Y )=0×0.3D (Y )=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8.故工期延误天数Y 的均值为3,方差为9.8.(2)由概率的加法公式,P (X ≥300)=1-P (X <300)=0.7, 又P (300≤X <900)=P (X <900)-P (X <300)=0.9-0.3=0.6. 由条件概率,得P (Y ≤6|X ≥300)=P (X <900|X ≥300)=P (300≤X <900)P (X ≥300)=0.60.7=67.故在降水量X 至少是300的条件下,工期延误不超过6天的概率是67.专题五 正态分布及简单应用高考主要以选择题、填空题形式考查正态曲线的形状特征与性质,抓住其对称轴是关键. [例5] 某市去年高考考生成绩服从正态分布N (500,502),现有25 000名考生,试确定考生成绩在550~600分的人数.解:因为考生成绩X ~N (500,502),所以μ=500,σ=50,所以P (550<X ≤600)=12[P (500-2×50<X ≤500+2×50)-P (500-50<X ≤500+50)]=12(0.954 4-0.682 6)=0.135 9.故考生成绩在550~600分的人数为25 000×0.135 9≈3 398(人). 归纳升华正态分布概率的求法1.注意3σ原则,记住正态总体在三个区间内取值的概率.2.注意数形结合.由于正态分布密度曲线具有完美的对称性,体现了数形结合的重要思想,因此运用对称性结合图象解决某一区间内的概率问题成为热点问题.[变式训练] 某镇农民年收入服从μ=5 000元,σ=200元的正态分布.则该镇农民平均收入在5 000~5 200元的人数的百分比是________.解析:设X 表示此镇农民的平均收入,则X ~N (5 000,2002). 由P (5 000-200<X ≤5 000+200)=0.682 6. 得P (5 000<X ≤5 200)=0.682 62=0.341 3.故此镇农民平均收入在5 000~5 200元的人数的百分比为34.13%. 答案:34.13% 专题六 方程思想方程思想是解决概率问题中的重要思想,在求离散型随机变量的分布列,求两个或三个事件的概率时常会用到方程思想.即根据题设条件列出相关未知数的方程(或方程组)求得结果.[例6] 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29.(1)分别求甲、乙、丙三台机床各自加工的零件是一等品的概率;(2)从甲、乙、丙加工的零件中各取一个检验,求至少有一个一等品的概率. 解:记A ,B ,C 分别为甲、乙、丙三台机床各自加工的零件是一等品的事件. 由题设条件有⎩⎪⎨⎪⎧P (A — B )=14,P (B — C )=112,P (AC )=29,即⎩⎪⎨⎪⎧P (A )[1-P (B )]=14, ①P (B )[1-P (C )]=112,②P (A )P (C )=29. ③由①③得P (B )=1-98P (C ),代入②得27[P (C )]2-51P (C )+22=0.解得P (C )=23或P (C )=119(舍去).将P (C )=23分别代入②③可得P (A )=13,P (B )=14.故甲、乙、丙三台机床各自加工的零件是一等品的概率分别是13,14,23.(2)记D 为从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的事件.则P (D )=1-P (— D )=1-[1-P (A )][1-P (B )][1-P (C )]=1-23×34×13=56.故从甲、乙、丙加工的零件中各取一个检验,至少有一个一等品的概率为56.归纳升华(1)在求离散型随机变量的分布列时,常利用分布列的性质:①p 1≥0,i =1,2,3,…,n ;②∑i =1np i =1,列出方程或不等式求出未知数.(2)在求两个或多个概率时,常根据不同类型的概率公式列出方程或方程组求出未知数. [变式训练] 若离散型随机变量ξ的分布列为:ξ 0 1 P9a 2-a3-8a求常数a 解:由离散型随机变量的性质得⎩⎪⎨⎪⎧9a 2-a +3-8a =1,0≤9a 2-a ≤1,0≤3-8a ≤1,解得a =23(舍去)或a =13.所以,随机变量的分布列为:ξ 0 1 P2313。
第2章一元二次函数、方程和不等式知识系统整合规律方法收藏1.比较数(式)的大小依据:a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.适用范围:若数(式)的大小不明显,作差后可化为积或商的形式.步骤:①作差;②变形;③判断差的符号;④下结论.变形技巧:①分解因式;②平方后再作差;③配方法;④分子(分母)有理化.2.利用基本不等式证明不等式(1)充分利用条件是关键,要注意“1”的整体代换及几个“=”必须保证同时成立.(2)利用基本不等式证明不等式是综合法证明不等式的一种情况,其实质就是从已知的不等式入手,借助不等式的性质和基本不等式,经过逐步的逻辑推理,最后推得所证结论,其特征是“由因导果”.(3)证明不等式时要注意灵活变形,可以多次利用基本不等式的变形形式.3.利用基本不等式求最值(1)利用基本不等式求最值,必须同时满足以下三个条件:一正、二定、三相等.即:①x,y都是正数.②积xy(或和x+y)为常数(有时需通过“配凑、分拆”凑出定值).③x与y必须能够相等(等号能够取到).(2)构造定值条件的常用技巧①加项变换;②拆项变换;③统一换元;④平方后利用基本不等式.4.解一元二次不等式的步骤当a>0时,解形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)的一元二次不等式的一般步骤如下:(1)确定对应方程ax2+bx+c=0的解;(2)画出对应函数y=ax2+bx+c的图象的简图;(3)由图象写出不等式的解集.特别提醒:(1)在通过图象获取解集时,注意不等式中的不等号方向、是否为严格不等关系及Δ=0时的特殊情况.(2)当a<0时,解不等式可以从两个方面入手:①画出对应图象进行直接判定(此时图象开口向下);②两边同乘以-1,把a 转变为-a 再进行求解.5.一元二次不等式的实际应用不等式在解决生活、生产中的一些实际问题中有着广泛的应用,主要有范围问题、最值问题等.解一元二次不等式的应用问题的关键在于构造一元二次不等式模型.解题的一般步骤是:(1)理清题意:弄清问题的实际背景和意义,用数学语言来描述问题. (2)简化假设:精选问题中的关键变量. (3)列出关系式:建立变量间的不等关系式. (4)求解:运用数学知识解相应不等式.(5)检验并作答:将所得不等式的解集放回原题中检验是否符合实际情况,然后给出问题的答案.学科思想培优一、常数代换法[典例1] 已知正数x ,y 满足x +y =1,则1x +41+y 的最小值为( )A .5 B.143 C.92D .2解析 因为x +y =1,所以x +(1+y )=2,则2⎝ ⎛⎭⎪⎫1x +41+y =[x +(1+y )]⎝ ⎛⎭⎪⎫1x +41+y =4x 1+y +1+yx+5≥24x 1+y ·1+y x +5=9,所以1x +41+y ≥92,当且仅当⎩⎪⎨⎪⎧4x 1+y =1+y x ,x +y =1,即⎩⎪⎨⎪⎧x =23,y =13时,等号成立,因此1x +41+y 的最小值为92.故选C.答案 C 二、消元法[典例2] 设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz 的最小值为________.解析 解法一:由x -2y +3z =0,得y =x +3z2,故y 2xz =(x +3z )24xz =14⎝ ⎛⎭⎪⎫6+x z +9z x ≥14⎝ ⎛⎭⎪⎫6+2x z ·9z x =3, 当且仅当x =y =3z 时取等号,即y 2xz 的最小值为3.解法二:由x -2y +3z =0,得x =2y -3z ,x y=2-3zy>0.y 2xz =y 2(2y -3z )z =3⎝ ⎛⎭⎪⎫2-3z y ·3z y ≥3⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫2-3z y +3z y 2=3.当且仅当x =y =3z 时取等号,即y2xz 的最小值为3.答案 3 三、配凑法1.从和或积为定值的角度入手配凑某些不等式的约束条件可看成若干变元的和或积的定值,在不等式的变形中,配凑出这些定值,可使问题巧妙获解.常见的配凑变形有化积为和、常数的代换、加法结合律等常规运算和技巧.[典例3] 设x >0,y >0,x 2+y 22=1,求x 1+y 2的最大值.解 ∵x >0,y >0,x 2与y 22的和为定值,∴x 1+y 2=x 2(1+y 2)=2x 2·1+y 22≤2·x 2+1+y 222=2·x 2+y 22+122=324,当且仅当x 2=1+y 22,即x =32,y =22时取等号,即x 1+y 2的最大值为324.[典例4] 已知x ,y ,z 为正数,且满足xyz (x +y +z )=1,求(x +y )(y +z )的最小值. 解 由条件得x +y +z =1xyz,则(x +y )(y +z )=xy +xz +y 2+yz =y (x +y +z )+xz =y ·1xyz +xz =1xz +xz ≥2,当且仅当1xz=xz ,即xz =1时取等号,故(x +y )(y +z )的最小值为2.[典例5] 设a 1,a 2,a 3,…,a n 均为正实数,求证:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+a 3+…+a n .证明 为了约去a 2k a k +1中的分母,可考虑配上一项a k +1,于是有a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2n -1a n +a n ≥2a n -1,a 2na 1+a 1≥2a n ,当且仅当a 1=a 2=…=a n 时取等号.以上不等式相加,化简,可得原不等式成立.2.从取等号的条件入手配凑在题中约束条件下,各变元将取某个特定值,这就提示我们可考虑用这些值来进行配凑. [典例6] 设a ,b ,c >0,a +b +c =1,求3a +1+3b +1+3c +1的最大值. 解2·3a +1≤2+3a +12=3a +32,2·3b +1≤3b +32,2·3c +1≤3c +32.以上三式相加,并利用a +b +c =1,得2(3a +1+3b +1+3c +1)≤6,故3a +1+3b +1+3c +1的最大值为3 2.四、判别式法在“三个二次”问题中的应用一元二次方程、一元二次不等式与二次函数的关系十分密切,习惯上称为“三个二次”问题.根据判别式法在解一元二次方程中的作用,可见判别式法在“三个二次”问题中的重要性.1.求变量的取值范围[典例7] 不等式(m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立,求实数m 的取值范围.解 (m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立. ①若m 2-2m -3=0,则m =-1或m =3.当m =-1时,不符合题意;当m =3时,符合题意.②若m 2-2m -3≠0,设y =(m 2-2m -3)x 2-(m -3)x -1<0对任意x ∈R 恒成立. 则m 2-2m -3<0,Δ=b 2-4ac =5m 2-14m -3<0, 解得-15<m <3.故实数m 的取值范围是-15<m <3.2.求最值[典例8] 已知正实数a ,b 满足a +2b +ab =30,试求实数a ,b 为何值时,ab 取得最大值.解 构造关于a 的二次方程,应用“判别式法”.设ab =y , ①由已知得a +2b +y =30. ②由①②消去b ,整理得a 2+(y -30)a +2y =0, ③对于③,由Δ=(y -30)2-4×2y ≥0,即y 2-68y +900≥0,解得y ≤18或y ≥50,又y =ab <30,故舍去y ≥50,得y ≤18.把y =18代入③(注意此时Δ=0),得a 2-12a +36=0,即a =6,从而b =3.故当a =6,b =3时,ab 取得最大值18.3.证明不等式[典例9] 已知x ,y ∈R ,证明:2x 2+2xy +y 2-4x +5>0恒成立.证明 不等式可变形为y 2+2xy +2x 2-4x +5>0,将不等式左边看作关于y 的二次函数,令z =y 2+2xy +2x 2-4x +5,则关于y 的一元二次方程y 2+2xy +2x 2-4x +5=0的根的判别式Δ=4x 2-4(2x 2-4x +5)=-4(x -2)2-4<0,即Δ<0.则对于二次函数z =y 2+2xy +2x2-4x +5,其图象开口向上,且在x 轴上方,所以z >0恒成立,即2x 2+2xy +y 2-4x +5>0恒成立.五、含变量的不等式恒成立问题[典例10] 对于满足0≤p ≤4的一切实数,不等式x 2+px >4x +p -3恒成立,试求x 的取值范围.解 原不等式可化为x 2+px -4x -p +3>0, 令y =x 2+px -4x -p +3 =(x -1)p +(x 2-4x +3).由题设得⎩⎪⎨⎪⎧x 2-4x +3>0(p =0),4(x -1)+x 2-4x +3>0(p =4),解得x >3或x <-1.故x 的取值范围是x <-1或x >3.。