第7章 图论-7树与生成树
- 格式:ppt
- 大小:392.00 KB
- 文档页数:25
在离散数学中,图是一个由点和边组成的抽象数学模型。
其中,树是一种特殊的图,它是一个无环连通图。
在图论中,树扮演了重要的角色,它具有许多有趣的性质和应用。
而生成树则是树的一个特殊子集,它由给定图中的所有顶点和部分边构成。
本文将介绍图的树的基本概念,并探讨生成树的计数方法。
首先,让我们来看看图的树。
树是一种无环连通图,其中任意两个顶点之间存在唯一一条路径。
它具有以下性质:1.n个顶点的树有n-1条边。
这可以通过归纳法证明:当n=1时,结论成立;假设n=k时成立,那么n=k+1时,只需要添加一个顶点和一条边,即可构成n=k+1个顶点的树。
因此,结论成立。
2.连接树上任意两个顶点的边都是桥。
即如果一条边被删除,那么树就会变成两个或更多个不相连的子树。
3.树是一个高度平衡的结构。
对于一个n个顶点的树,任意两个叶子结点之间的路径长度至多相差1。
4.树的任意两个顶点之间有唯一一条路径,路径长度为顶点之间的边数。
接下来,让我们来讨论生成树的计数方法。
生成树是树的一个特殊子集,它是由给定图中的所有顶点和部分边构成。
生成树的计数在图论中具有重要的意义和应用。
对于一个具有n个顶点的连通图来说,其生成树的个数可以通过Cayley公式计算得到。
Cayley公式是由亚瑟·凯利于1889年提出的,它给出了完全图的生成树数目。
据此,我们可以得到生成树的计数公式为:T = n^(n-2),其中T表示生成树的个数。
此外,还有一种常见的计数方法是基于度数矩阵和邻接矩阵的矩阵树定理。
矩阵树定理由高斯于1847年提出,它提供了一种计算图的生成树个数的方法。
根据矩阵树定理,一个无向图G的生成树数目等于该图度数矩阵的任意一个(n-1)阶主子式的行列式的值。
其中,度数矩阵是一个对角矩阵,它的对角线上的元素为各个顶点的度数。
邻接矩阵则是一个关于顶点间连接关系的矩阵,其中1表示相邻顶点之间存在边,0表示不存在边。
除了数学方法,还存在一种基于图的遍历的计数方法,称为Kirchhoff矩阵树定理。
图论中的生成树计数算法生成树是图论中重要的概念之一,它是指由给定图的节点组成的树形结构,其中包含了原图中的所有节点,但是边的数量最少。
生成树的计数问题是指在一个给定的图中,有多少种不同的生成树。
生成树计数算法是解决这个问题的关键步骤,本文将介绍一些常见的生成树计数算法及其应用。
1. Kirchhoff矩阵树定理Kirchhoff矩阵树定理是图论中经典的生成树计数方法之一。
该定理是由Kirchhoff在19世纪提出的,它建立了图的Laplacian矩阵与其生成树个数的关系。
Laplacian矩阵是一个$n\times n$的矩阵,其中$n$是图中的节点数。
对于一个连通图而言,Laplacian矩阵的任意一个$n-1$阶主子式,其绝对值等于该图中生成树的个数。
应用示例:假设我们有一个无向连通图,其中每个节点之间的边权均为1。
我们可以通过计算图的Laplacian矩阵的任意一个$n-1$阶主子式的绝对值来得到该图中的生成树个数。
2. Prufer编码Prufer编码是一种编码方法,可用于求解生成树计数问题。
它是基于树的叶子节点的度数的编码方式。
Prufer编码将一个树转换为一个长度为$n-2$的序列,其中$n$是树中的节点数。
通过给定的Prufer序列,可以构造出对应的生成树。
应用示例:假设我们有一个具有$n$个节点的有标号的无根树。
我们可以通过构造一个长度为$n-2$的Prufer序列,然后根据Prufer编码的规则构造出对应的生成树。
3. 生成函数方法生成函数方法是一种利用形式幂级数求解生成树计数问题的方法。
通过将图的生成树计数问题转化为生成函数的乘法运算,可以得到生成函数的一个闭形式表达式,从而求解生成树的个数。
应用示例:假设我们有一个具有$n$个节点的有根树,其中根节点的度数为$d$。
我们可以通过生成函数方法求解出该有根树中的生成树个数。
4. Matrix-Tree定理Matrix-Tree定理是对Kirchhoff矩阵树定理的一种扩展,适用于带权图中生成树计数的问题。
离散数学是计算机科学中的重要学科,其中生成树是一个重要的概念。
在图论中,生成树是一棵树,它包含了图中的所有顶点,并且是由图边组成的无环连通子图。
生成树在图论中有着重要的应用,特别是在计算机网络、运筹学和电路设计等领域。
生成树的概念与基础就是组成它的边是有限的,并且连接图中的所有顶点,但没有形成圈回到起点。
生成树通常是用来描述一个系统的最小连接方式。
生成树可以应用于计算机网络的设计中,用于构建最小生成树算法,以便在网络中选择最小的数据传输路径。
此外,在运筹学中,生成树被用于求解最小生成树问题,即为一个加权图找到一棵包含所有顶点的生成树,使得树中边的权重之和最小。
在离散数学中,生成树计数是一个重要的研究分支。
生成树计数是指对给定图,计算其生成树的数目。
生成树计数的问题可以通过使用基于图论和组合数学的算法来解决。
通常,生成树计数的问题与相应图的特性和性质密切相关。
对于一个简单图来说,如果图中任意两点之间至少有一条边,那么该图一定存在生成树。
对于有 n 个顶点的连通图来说,它的生成树数量可以通过Cayley公式计算得到。
Cayley公式表明,一个有 n 个标号的顶点的完全图的生成树数量等于 n^(n-2)。
而对于非完全图,生成树的计数问题则较为困难。
在处理非完全图的生成树计数问题时,可以使用基于递归和动态规划的算法来解决。
一个常见的方法是使用Kirchhoff矩阵树定理,它将生成树计数的问题转化为计算矩阵的行列式的问题。
Kirchhoff矩阵树定理提供了一种计算给定图的生成树数目的有效算法,通过计算图的基尔霍夫矢量的一个特征值,可以得到图的生成树的数目。
另一个常见的方法是使用Prufer编码,它是一个用于描述无环连通图的序列。
通过Prufer编码,我们可以将计算生成树的问题转化为计数树的问题。
通过对无向图进行Prufer编码,我们可以计算出生成树的数目,并且可以根据生成树的数目来确定该无向图的种类和特征。
离散数学图论(图、树)常考考点知识点总结图的定义和表示1.图:一个图是一个序偶<V , E >,记为G =< V ,E >,其中:① V ={V1,V2,V3,…, Vn}是有限非空集合,Vi 称为结点,V 称为节点集② E 是有限集合,称为边集,E中的每个元素都有V中的结点对与之对应,称之为边③与边对应的结点对既可以是无序的,也可以是有序的表示方法集合表示法,邻接矩阵法2.邻接矩阵:零图的邻接矩阵全零图中不与任何结点相邻接的结点称为孤立结点,两个端点相同的边称为环或者自回路3.零图:仅有孤立节点组成的图4.平凡图:仅含一个节点的零图无向图和有向图5.无向图:每条边都是无向边的图有向图:每条边都是有向边的图6.多重图:含有平行边的图(无向图中,两结点之间包括结点自身之间的几条边;有向图中同方向的边)7.线图:非多重图8.重数:平行边的条数9..简单图:无环的线图10.子图,真子图,导出子图,生成子图,补图子图:边和结点都是原图的子集,则称该图为原图的子图真子图(该图为原图的子图,但是不跟原图相等)11.生成子图:顶点集跟原图相等,边集是原图的子集12.导出子图:顶点集是原图的子集,边集是由顶点集在原图中构成的所有边构成的图完全图(任何两个节点之间都有边)13.完全图:完全图的邻接矩阵主对角线的元素全为0,其余元素都是114.补图:完全图简单图15.自补图:G与G的补图同构,则称自补图16.正则图:无向图G=<V,E>,如果每个顶点的度数都是k,则图G称作k-正则图17.结点的度数利用邻接矩阵求度数:18.握手定理:图中结点度数的总和等于边数的两倍推论:度数为奇数的结点个数为偶数有向图中,所有结点的入度=出度=边数19.图的度数序列:出度序列+入度序列20.图的同构:通俗来说就是两个图的顶点和边之间有双射关系,并且每条边对应的重数相同(也就是可任意挪动结点的位置,其他皆不变)21.图的连通性及判定条件可达性:对节点vi 和vj 之间存在通路,则称vi 和vj 之间是可达的22.无向图的连通性:图中每两个顶点之间都是互相可达的23..强连通图:有向图G 的任意两个顶点之间是相互可达的判定条件:G 中存在一条经过所有节点至少一次的回路24.单向连通图:有向图G 中任意两个顶点之间至少有一个节点到另一个节点之间是可达的判定条件:有向图G 中存在一条路经过所有节点25.弱连通图:有向图除去方向后的无向图是连通的判定条件:有向图邻接矩阵与转置矩阵的并是全一的矩阵26.点割:设无向图G=<V,E>为联通图,对任意的顶点w  V,若删除w及与w相关联的所有边后,无向图不再联通,则w称为割点;27.点割集:设无向图G=<V,E>为连通图,若存在点集 ,当删除 中所有顶点及与V1顶点相关联的所有边后,图G不再是联通的;而删除了V1的任何真子集 及与V2中顶点先关的所有边后,所得的子图仍是连通图,则称V1是G的一个点割集设无向图G=<V,E>为连通图,任意边e  E,若删除e后无向图不再联通,则称e 为割边,也成为桥28.边割集:欧拉图,哈密顿图,偶图(二分图),平面图29.欧拉通路(回路):图G 是连通图,并且存在一条经过所有边一次且仅一次的通路(回路)称为拉通路(回路)30.欧拉图:存在欧拉通路和回路的图31.半欧拉图:有通路但没有欧拉回路32.欧拉通路判定:图G 是连通的,并且有且仅有零个或者两个奇度数的节点欧拉回路判定:图G 是连通的,并且所有节点的度数均为偶数有向欧拉图判定:图G 是连通的,并且所有节点的出度等于入度33.哈顿密图:图G 中存在一条回路,经过所有点一次且仅一次34..偶图:图G 中的顶点集被分成两部分子集V1,V2,其中V1nV2= o ,V1UV2= V ,并且图G 中任意一条边的两个端点都是一个在V1中,一个在V2中35.平面图:如果把无向图G 中的点和边画在平面上,不存在任何两条边有不在端点处的交叉点,则称图G 是平面图,否则是非平面图36.图的分类树无向树和有向树无向树:连通而不含回路的无向图称为无向树生成树:图G 的某个生成子图是树有向树:一个有向图,略去所有有向边的方向所得到的无向图是一棵树最小生成树最小生成树:设G -< V . E 是连通赋权图,T 是G 的一个生成树,T 的每个树枝所赋权值之和称为T 的权,记为W ( T . G 中具有最小权的生成树称为G 的最小生成树最优树(哈夫曼树)设有一棵二元树,若对所有的树叶赋以权值w1,w2… wn ,则称之为赋权二元树,若权为wi 的叶的层数为L ( wi ),则称W ( T )= EWixL ( wi )为该赋权二元树的权,W )最小的二元树称为最优树。
离散数学生成树一、引言离散数学是数学的一个分支,它研究的是不连续的、离散的数学结构。
生成树是离散数学中的一个重要概念,它在图论中有着广泛的应用。
本文将介绍生成树的定义、性质以及应用领域。
二、生成树的定义在图论中,生成树是指包含图中所有顶点的一个连通子图,并且该子图是一个树。
换句话说,生成树是从图中选择一些边,构成一个没有回路的子图,同时保持图的连通性。
三、生成树的性质1. 生成树的边数等于顶点数减一。
这个性质可以通过数学归纳法证明。
假设一个图有n个顶点,那么它的生成树一定有n-1条边。
2. 生成树是连通图的最小连通子图。
也就是说,对于一个连通图来说,它的生成树是包含所有顶点的子图中边数最少的一个。
3. 生成树中任意两个顶点之间都是互联的。
也就是说,生成树中任意两个顶点之间存在且仅存在一条路径,这个路径就是生成树中的边。
四、生成树的应用生成树在计算机科学中有着广泛的应用,以下是一些常见的应用领域:1. 网络设计:生成树可以用于设计计算机网络中的最优传输路径,以提高网络的稳定性和可靠性。
2. 电力传输:生成树可以用于规划电力传输网络,以确保电力的高效传输和供应。
3. 数据压缩:生成树可以用于数据压缩算法中,通过构建最优编码树来减少数据的存储空间。
4. 优化问题:生成树可以用于解决一些优化问题,比如旅行商问题中的最短路径搜索。
5. 连接关系:生成树可以用于分析社交网络、物流网络等复杂系统中的连接关系。
五、总结生成树作为离散数学中的重要概念,在图论和计算机科学中有着广泛的应用。
它不仅可以用于网络设计和电力传输等实际问题,还可以用于解决优化问题和分析复杂系统中的连接关系。
通过对生成树的研究和应用,我们可以更好地理解和优化各种实际问题。
生成树的定义和性质使得它成为离散数学中的重要研究对象。
希望本文对读者理解生成树的概念和应用有所帮助。