脊髓缺血再灌注损伤的病理机制及治疗(一)
- 格式:docx
- 大小:15.00 KB
- 文档页数:3
缺血再灌注损伤
缺血再灌注损伤是一种常见而严重的疾病,其发生率和死亡率日益增加。
缺血再灌注损伤是指缺血情况下,组织再次被血液灌注时所引起的组织损伤。
这种损伤主要发生在心脏、肝脏、肾脏和大脑等器官中,严重时甚至会导致器官功能障碍和死亡。
缺血再灌注损伤的形成机制十分复杂。
一方面,血管内皮细胞和周围组织血管收缩后,血液无法到达组织细胞,从而导致局部缺血。
另一方面,当血液重新被灌注回组织细胞时,血管内皮细胞和周围组织会释放出大量的自由基和炎症因子,引起组织细胞的氧化损伤和炎症反应。
为了预防和治疗缺血再灌注损伤,目前的主要方法是采用抗氧化剂、炎症因子抑制剂、细胞凋亡抑制剂等药物,以及利用低温、缺氧等方法来减少缺血再灌注损伤的发生。
此外,合理的营养和运动也可以起到预防和治疗缺血再灌注损伤的作用。
总之,缺血再灌注损伤是一种十分严重的疾病,其发生机制十分复杂,需要多方面的方法来进行预防和治疗。
未来,随着医学技术的不断发展,相信我们一定可以更好地预防和治疗缺血再灌注损伤,为人类健康事业作出更大的贡献。
世界最新医学信息文摘 2021年第21卷第8期101投稿邮箱:sjzxyx88@作者简介:第一作者:冯玉涛。
通信作者*:严冬雪(1966-),硕士,副教授、硕士研究生导师。
·综述·脊髓缺血再灌注的机制及防治研究进展冯玉涛,严冬雪*(桂林医学院附属医院脊柱骨病外科,广西 桂林 541000 )摘要:脊髓缺血再灌注损伤 (spinal cord ischemia-reperfusion injury,SCII ) 是神经系统原发性损伤的由于氧气和血液再灌注后的继发性损伤,多继发于脊柱脊髓损伤,脊髓损伤的首要原因为交通事故。
其发病机制涉及众多环节,通常会引起严重的后果,但脊髓损伤后进行性缺血的确切机制还不清楚,一般认为既有全身性因素也有局部因素,治疗方法也是多种多样,但最终还是以对症处理为主,本文就如何有效预防SCII 的治疗进行阐述。
关键词:脊髓缺血再灌注损伤;血-脊髓屏障;低温;高压氧;Ca2+;细胞凋亡中图分类号:R544.1 文献标识码:A DOI :10.3969/j.issn.1671-3141.2021.08.038本文引用格式:冯玉涛,严冬雪.脊髓缺血再灌注的机制及防治研究进展[J].世界最新医学信息文摘,2021,21(08):101-102,105.0 引言脊髓缺血再灌注损伤(spinal cord ischemia-reperfusion injury, SCII)是原发的脊髓损伤的继发伤害,表现为缺血脊髓组织损伤后恢复血液灌注,脊髓组织的损伤反而加重,可导致神经系统相关并发症[1]。
而脊髓损伤的首要原因为交通事故,占到46.9%。
其次是工伤事故,占到33. 1% ,其他损伤包括运动失误、生活中的损伤、火器伤及锐器伤等[2]。
Mccord [3]于1985 年正式提出了缺血再灌注损伤的概念,其发病机制涉及众多、过程错综复杂,长年以来受到许多临床医生及基础研究工作者的广泛重视,但脊髓损伤后进行性缺血的确切机制还不清楚,一般认为既有全身性因素也有局部因素,治疗方法也是多种多样,但最终还是以对症处理为主,本文就如何有效预防SCII 的治疗进行阐述。
脊髓缺血再灌注损伤的病理机制及治疗(一)脊髓损伤至今仍然被认为是一种无特殊治疗方法的伤病。
近20年来人们对脊髓损伤的病因及机制进行了大量的基础研究和临床观察,认识到原发性脊髓损伤后的继发性损害,如缺血再灌注损伤是造成神经损伤的一个重要因素。
本文将目前对脊髓缺血再灌注损伤的研究进展做一综述。
1脊髓缺血再灌注损伤模型自Stenonis(1667年)以来,脊髓缺血损伤(SpinalCordIschemiaInjury,SCII)动物模型的制作是SCII研究中首先面临的一个重要课题。
目前此模型多以阻断腹主动脉致SCII为代表〔1〕,经腹膜后左肾动脉下腹主动脉阻断造成SCII模型,亦被广泛的应用;后来有学者经股动脉插气囊或液囊导管阻断腹主动脉制作模型。
这些模型均存在一共同的不足之处,即同时导致了腹腔及下肢等广泛的缺血损伤,这无疑影响了对研究脊髓损伤后的行为功能学的评估。
伍亚民等〔2〕应用选择性阻断日本大耳白家兔腰动脉制作脊髓缺血损伤轻、中、重度模型获得很好的效果。
徐明在数字减影(DSA)设备监视下行选择性脊髓动脉造影和栓塞,建立急性SCII 动物模型,这在国内外尚少有报道。
他发现小颗粒聚乙烯醇(PVA,直径118~154μm)经椎间动脉注入后,滞留于脊髓前、后纵行动脉链内,能有效阻断局部脊髓血供。
这是制备SCII 动物模型的一种较为实用的方法。
2脊髓缺血再灌注损伤机制研究脊髓缺血再灌注损伤的具体机制尚不清楚,但氧自由基介导的脂质过氧化反应、钙离子超载、兴奋性氨基酸、前列腺素等因素在脊髓损伤机制中起重要的作用已得到公认。
近年来在损伤机制研究方面取得了很多进展,较为引人注意的有以下几个方面。
2.1脊髓缺血损伤后神经元的死亡方式Sakurai-M等〔3〕通过对家兔脊髓缺血再灌注损伤的研究,认为脊髓短暂缺血后运动神经元的死亡方式不是坏死,而是凋亡。
他发现在缺血15min、再灌注2天后电泳发现少数神经元细胞核的DNA碎片,并于运动神经元的细胞核中观察到末端脱氧核苷酸转移酶1介导的三磷酸脱氧尿苷酸生物素阳性染色。
缺血-再灌注损伤一、概述1.缺血性疾病心脏:冠心病、心肌梗死脑:脑血管痉挛、脑血管狭窄,脑梗塞四肢:血栓,骨折,长期卧床,血栓闭塞性脉管炎外伤:骨折,休克,DIC手术:止血带(骨科手术,整形手术)2.骨折骨折使某一骨折段的血液供应被破坏,而发生该骨折段的缺血性坏死。
由于股骨头动脉血供缺乏丰富的侧枝循环,当股骨头颈骨折移位明显、血管损伤后常引起股骨头缺血性坏死。
3.骨筋膜室综合征骨筋膜室内的肌肉和神经因急性缺血而产生的一系列早期症状和体征。
常由创伤骨折的血肿和组织水肿使其室内内容物质体积增加或外包扎过紧,局部压迫使骨筋膜室容积减小而导致骨筋膜室内压力增高所致。
4.治疗手段改进溶栓治疗介入:PCI动脉搭桥术休克治疗的进步体外循环断肢再植器官移植eg 心脏介入治疗股动脉或桡动脉穿刺,将带有球囊的导管放入血管,将球囊送到冠状动脉狭窄病变合适位置,加大球囊内压力,使其扩张并压迫动脉壁上的粥样硬化斑块。
经预扩张后,将金属支架送到病变处,支撑在冠状动脉内的狭窄病变处,使狭窄或塌陷的血管向外扩张,达到血管重建的目的。
5.缺血再灌注历史1955年,Sewell结扎狗冠状动脉后,如突然解除结扎,恢复血流,动物室颤而死亡1960年,Jennings第一次提出心肌再灌注损伤的概念1967年,Bulkley和Hutchins发现冠脉搭桥血管再通后病人发生心肌细胞反常性坏死1968年,Ames报道了脑缺血-再灌注损伤现象1972年,Flore报道了肾缺血-再灌注损伤现象1978年,Modry报道了肺缺血-再灌注损伤现象1981年,Greenberg报道了肠缺血- 再灌注损伤现象二、缺血-再灌注损伤的原因和影响因素缺血再灌注损伤(ischemia-reperfusion injury, IRI)缺血器官在恢复血液灌注后缺血性损伤进一步加重的现象,称为缺血-再灌注损伤1.原因1.1 组织器官缺血后恢复血液供应如休克治疗后微循环的再灌注、心脏骤停后心肺复苏等1.2 新医疗技术的应用如PCI(经皮冠状动脉介入手术)、溶栓疗法、断肢再植等2.影响因素2.1 缺血时间(首要因素)过短——功能恢复过长——坏死不同动物、不同器官发生IRI的缺血时间不同阻断狗冠状动脉左旋支15-20min,心肌IRI的发生率很高;而在15min以内或40min以上再灌注,心肌IRI均较少发生。
脊髓缺血再灌注损伤的病理机制及治疗(一)
脊髓损伤至今仍然被认为是一种无特殊治疗方法的伤病。
近20年来人们对脊髓损伤的病因及机制进行了大量的基础研究和临床观察,认识到原发性脊髓损伤后的继发性损害,如缺血再灌注损伤是造成神经损伤的一个重要因素。
本文将目前对脊髓缺血再灌注损伤的研究进展做一综述。
1脊髓缺血再灌注损伤模型
自Stenonis(1667年)以来,脊髓缺血损伤(SpinalCordIschemiaInjury,SCII)动物模型的制作是SCII研究中首先面临的一个重要课题。
目前此模型多以阻断腹主动脉致SCII为代表〔1〕,经腹膜后左肾动脉下腹主动脉阻断造成SCII模型,亦被广泛的应用;后来有学者经股动脉插气囊或液囊导管阻断腹主动脉制作模型。
这些模型均存在一共同的不足之处,即同时导致了腹腔及下肢等广泛的缺血损伤,这无疑影响了对研究脊髓损伤后的行为功能学的评估。
伍亚民等〔2〕应用选择性阻断日本大耳白家兔腰动脉制作脊髓缺血损伤轻、中、重度模型获得很好的效果。
徐明在数字减影(DSA)设备监视下行选择性脊髓动脉造影和栓塞,建立急性SCII 动物模型,这在国内外尚少有报道。
他发现小颗粒聚乙烯醇(PVA,直径118~154μm)经椎间动脉注入后,滞留于脊髓前、后纵行动脉链内,能有效阻断局部脊髓血供。
这是制备SCII 动物模型的一种较为实用的方法。
2脊髓缺血再灌注损伤机制研究
脊髓缺血再灌注损伤的具体机制尚不清楚,但氧自由基介导的脂质过氧化反应、钙离子超载、兴奋性氨基酸、前列腺素等因素在脊髓损伤机制中起重要的作用已得到公认。
近年来在损伤机制研究方面取得了很多进展,较为引人注意的有以下几个方面。
2.1脊髓缺血损伤后神经元的死亡方式Sakurai-M等〔3〕通过对家兔脊髓缺血再灌注损伤的研究,认为脊髓短暂缺血后运动神经元的死亡方式不是坏死,而是凋亡。
他发现在缺血15min、再灌注2天后电泳发现少数神经元细胞核的DNA碎片,并于运动神经元的细胞核中观察到末端脱氧核苷酸转移酶1介导的三磷酸脱氧尿苷酸生物素阳性染色。
SCII细胞死亡过程中,DNA损伤早于细胞核内碎片的出现,DNA蛋白激酶(DNA-PK)在DNA的修复中起着重要作用。
DNA-PK含一个异二聚体的ku抗原及一个分子量为460000Da的催化亚基-DNA-PKc,是一种含丝氨酸及苏氨酸的激酶。
DNA-PK修复DNA时,ku和DNA-PKcs均结合于DNA的自由尾端,结合后DNA-PKcs受到激活,ku能增强此激活作用。
ShackelfordDA等〔4〕研究兔子SCII时发现脊髓短暂缺血时(15min),DNA-pk活性增高,再灌注后脊髓神经功能可恢复,而严重的缺血时(60min)DNA-pkcs及多聚酶数量减少,活性受到抑制,致永久性瘫痪。
2.2脊髓缺血损伤后局部离子环境人们已认识得后SCII后局部离子环境发生明显的变化。
脊髓缺血、缺氧导致细胞膜通透性增加,离子钠、钾、钙失衡,从而影响脊髓的传导功能。
细胞内的高钙与线粒体结合,并激活多种酶,致代谢紊乱,产生大量自由基参与脂质过氧化,与离子钙超负荷等引起微血管痉挛和闭塞,加重微循环障碍。
Masaki-M、申才良等〔5〕发现,脊髓组织损伤区钾、镁含量下降,钠、钙升高,而血清总钙没有明显变化。
血清总镁伤后开始下降,后又有所回升。
这与脊髓伤后细胞膜结构破坏,离子泵活性降低,能量产生障碍有关。
Robson等发现如果伤前给予足量的镁可以促进动物缺血性脊髓损伤的功能恢复。
2.3脊髓缺血损伤的早期标志ShackelfordDA〔6〕研究发现微管辅助蛋白τ在微管组装的动力因素中起重要作用,微管合成是轴突生长和神经塑型所必需的。
缺血促进蛋白分解,影响激酶和磷酸酶的活性,长时间缺血致截瘫时发现τ被去磷酸化。
τ的这种变化可影响到微管的稳定性,进而影响到神经可塑性及轴突运输功能。
缺血后Tau-1明显下降的机制可能有三种:(1)至少一个位点被去磷酸化;(2)被降解导致大分子τ减少;(3)τ过磷酸化,Tau-1免疫反应性下降。
缺血时τ在10~30min内很快去磷酸化,再灌注后MAP激酶被激活,τ又复磷酸化,未发现τ过磷酸化。
动脉阻断15min时,钙离子依赖性激酶Ⅱ的活性下降70%,再灌注
后又迅速磷酸化。
研究发现此激酶的活性变化和蛋白τ的去磷酸化是脊髓缺血损伤早期的敏感性标志。
2.4脊髓缺血再灌注损伤的脂质变化LukacovaN等〔7〕的研究表明脊髓局部缺血时,脂质发生过氧化反应并伴有明显的脂质分解过程。
缺血时TBA、RS明显升高,磷酯酰纤维醇(IP)、EP、EPLS与PA等均明显降低,缺血20min后仍可见丝氨酸磷酯(SP)的改变。
再灌注后伴有IP、EPLS、PA下降,而EP维持缺血时水平。
2.5脊髓缺血再灌注损伤中的保护因素KluchovaD〔8〕发现脊髓缺血再灌注后,NADH脱氢酶明显存在于背角、中心周围区、骶副交感神经核中,4天后出现于中央灰质区及神经核坏死区。
MarsalaJ〔9〕使用银染色发现脊髓灰质中NADPH-硫辛酰胺脱氢酶强阳性染色的神经元能对抗缺血。
在腹主动脉结扎后40min或再灌注1天后,该强阳性染色的神经元及其轴突主要位于下腰髓Ⅰ~Ⅲ、Ⅹ层,骶2副交感神经元中。
尽管Ⅳ~Ⅶ层神经元广泛坏死,但此区域内大量阳性染色的神经元未发生坏死。
其对抗缺血的机制尚不明确,推测与一氧化氮(NO)的扩血管作用有关。
体内活性蛋白C(APC)是一种抗凝因子,HiroseK等〔10〕在大鼠SCII的研究中发现在静脉给予APC组和使用氮芥类药物造成白细胞减少组,SCII后TNF-α、IL-8、过氧化酶等升高的水平较其它组明显减低。
其实验表明APC对抗SCII的作用是通过抑制中性粒细胞来实现的,具体机制可能是抑制了中性粒细胞的一活性因子TNF-α,且丝氨酸蛋白酶的活性在其中起重要作用。
脊髓缺血再灌注损伤的病理机制复杂,人们对此的认识尚正逐渐深入。
如近年来,人们已逐渐对内皮素-1(ET-1)在SCII中的作用有了一定程度的认识,不少实验表明ET-1参与SCII 的致伤机制,并是伤后4~24h的重要损害因子之一。
随着对脊髓缺血损伤病理机制的逐渐认识,人们在脊髓缺血再灌注损伤的防治方法上也取得了较多的进展。
3脊髓缺血再灌注损伤防治方法的研究进展
临床上,脊髓缺血再灌注损伤常合并或继发在脊柱脊髓外伤和病变中,少有单独发生。
故在治疗脊柱脊髓伤病时,SCII就已在获得防治。
常用的方法有外科手术、药物治疗、基因治疗、移植治疗等,另外还有其特殊的防治措施。
3.1特殊措施胸心外科、血管外科的部分手术中常需要短时或永久阻断腹主动脉、腰动脉等,导致SCII,术后引起相应的脊髓损伤症状。
近年来许多研究表明,如果在阻断这些重要动脉前,先短暂夹闭该动脉数分钟,进行一定时间的缺血耐受训练后,可减少SCII的程度〔11,12〕。
此现象最先发现于大脑组织中,且不同动物、中枢神经系统的不同部位对缺血的敏感程度不一样,海马锥体区最敏感,而脑干则不敏感。
NzauMunyao实验时先耐受性短暂夹闭兔子腹主动脉12.5min,12h后再阻断30min,发现脊髓前角运动神经元在形态上的损伤征象明显低于未进行缺血训练组,监测前肢功能亦未见明显损伤。
并证实了预先进行缺血耐受训练的时间长短取决于不同组织对缺血的敏感性,一般是造成组织梗死所需时间的30%~40%;他还发现不同动物、不同组织均能产生这种现象,且开始缺血训练到按手术要求处理该血管的间隔时间长短不一样,脑组织间隔1~5天,兔子脊髓则为12h,而心脏及骨骼肌仅为数分钟。
另外,RadonakJ研究发现此类需阻断重要动脉的手术,术后开放该动脉时如进行逐步充血、充氧,亦可减少SCII〔13〕。
有不少实验采取温度控制来减少SCII,产生了一定的效果。
PerdrizetGA〔14〕等在处理该动脉前,使体温升高至42.5℃,持续15min,致全身热休克,再恢复正常体温,6~8h后再阻塞动脉,研究表明这样对脊髓有保护作用。
同样,低温亦有相同效应〔15~18〕。
RadonakJ 在硬膜外用5℃盐水使脊髓降温,整个缺血过程脊髓温度为26.8℃,再阻断胸主动脉,脊髓可耐受缺血40min。
轻、中度低温(32~35℃)可使缺血再灌注后的脑脊液中的葡萄糖含量降低,但对相应的神经组织无损害,不产生任何远期影响。
3.2外科手术临床上患者脊柱骨性组织、韧带等软组织的结构改变,是造成SCII的一重要原因,SCII后组织水肿,又可加重SCII。
目前已广泛的认为,脊柱脊髓外伤后早期在6~8h内行手术减压是治疗SCII的关键。