最新中考模拟数学试题系列之二(4套合集
- 格式:doc
- 大小:3.73 MB
- 文档页数:51
2019-2020 年中考数学模拟试题4 试题 ,试卷一、填空题 : 请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!1、月球离地球约 380000 千米,这个数用科学记数法表示应记作 ________.2、计算: a 2 a 3 ( ab) 2 =__________.A3、如图,△ ABC 中, AD ⊥ BC ,CE ⊥ AB ,垂足分别为 D 、E ,AD , CE 交于点 H ,请你添加一个适当的条件: ____________,使△ AEH ≌△ CEB 。
4、考查下列式子,归纳规律并填空:E1=(-1 ) 2× 1;H 1-3= ( -1 ) 3× 2;1-3+5= ( -1 ) 4× 3;BDC1-3+5-7+ +( -1 ) n 1(2n-1 ) =______________(n ≥1 且为整数 ). 5、要使一个平行四边形成为正方形,则需添加的条件为 ____________(填上一个正确的结论即可) . 6、抛物线 y=(k+1)x 2 k 2 -9 开口向下 , 且经过原点 , 则 k=_____. 7、已知圆的直径为 13 ㎝ , 圆心到直线 L 的距离为 6 ㎝ , 那么直线 L 和这个圆的公共点的个数为 _________________.8、在半径为 1 的⊙ O 中 , 弦 AB=1,则弧 AB 的长为 ____________.9、从一副扑克牌中随机抽出一张牌,得到大王或小王的概率是__________.10、 如图 : 为了测量河对岸旗杆 AB 的高度 , 在点 C 处测得顶端 A 的仰角为30°, 沿 CB 方向前进 20m 达到 D处 , 在 D 点测得旗杆顶端 A 的仰角为 45° , 则旗杆 AB 的高度为 __________m.( 精确到 0.1m)二、选择题 : 在每题所给出的四个选项中,只有一项是符合题意的A. 把所选项前的字母代号填在题后的括号内 . 相信你一定会选对! 1、化简 ( 2) 2 得()A 、 4B 、 -2C、 2D 、 -4CD B2、中华人民共和国国旗上的五角星,它的五个锐角的度数和是()A 、 500B 、 100 0C 、 180 0D 、 200 03、随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费标准按原标准每分钟降低了 a 元后,再次下调了 25%,现在的收费标准是每分钟b 元,则原收费标准每分钟为()A 、( 5 b a )元B 、( 5b a )元 C 、( 3 b a) 元 D 、( 4ba )元44434、用一批完全相同的正多边形木板铺地面,要求顶点聚在一起,且木板之间没有缝隙,下列木板不符合要求的( )A 、正三角形木板B 、正方形木板C 、正五边形木板D 、 正六边形木板 5、下列图形中,既是轴对称图形又是中心对称图形的是( ) A 、等腰三角形B 、直角三角形C 、平行四边形D 、 菱形6、二次函数 y=ax 2+bx+c 的图象如图所示,则下列结论正确的是()A.a>0,b>0,c>0B.a<0,b<0,c<oC.a<o,b>0,c<0D.a<0,b>0,c>o7、在课外活动课上,教师让同学们作一个对角线完全垂直的等腰梯yxo形形状的风筝,其面积为800 平方米,则对角线所用的竹条至少需()A、 40 2 cm B 、 40cm C 、 80cm D 、 80 2 cm8、将正偶数按下表排成 5 列:第一列第二列第三列第四列第五列第一行 2 4 6 8第二行16 14 12 10第三行18 20 22 24第四行32 30 28 26。
xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:据宜宾市旅游局公布的数据,今年“五一”小长假期间,全市实现旅游总收入330000000元.将330000000用科学记数法表示为()A.3.3×108 B.3.3×109 C.3.3×107 D.0.33×1010试题2:不等式组的解集表示在数轴上,正确的是()A. B. C. D.试题3:已知m=1+,n=1﹣,则代数式的值为()A.9 B.±3 C.3 D.5试题4:若关于x的一元二次方程x2﹣3x+p=0(p≠0)的两个不相等的实数根分别为a和b,且a2﹣ab+b2=18,则+的值是()A.3 B.﹣3 C.5 D.﹣5试题5:一个正方形和两个等边三角形的位置如图所示,则∠1+∠2+∠3的度数为()A.150° B.120° C.90° D.180°试题6:如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A. B. C.D.试题7:由若干个相同的小正方体搭成的一个几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数最多有()A.4 B.5 C.6 D.7试题8:某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是()A.15.5,15.5 B.15.5,15 C.15,15.5 D.15,15试题9:如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时.设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()A. B. C. D.试题10:如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan∠BAO=2,则k的值为()A.3 B.4 C.6 D.8试题11:如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B.:2 C.:2 D.2:试题12:勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90 B.100 C.110 D.121试题13:分解因式:x3﹣2x2+x= .试题14:若关于x的分式方程=﹣2有非负数解,则a的取值范围是.试题15:如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.试题16:如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,A P= .试题17:如图,在平面直角坐标系中,△ABC的顶点坐标分别为(4,0),(8,2),(6,4).已知△A1B1C1的两个顶点的坐标为(1,3),(2,5),若△ABC与△A1B1C1位似,则△A1B1C1的第三个顶点的坐标为.试题18:二次函数y=的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…C n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n C n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n C n的周长为.试题19:先化简再求值:,其中x是方程x2﹣2x=0的根.试题20:目前中学生带手机进校园现象越来越受到社会关注,针对这种现象,某校数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)根据抽样调查结果,请你估计1万名中学生家长中有多少名家长持反对态度;(4)在此次调查活动中,初三(1)班和初三(2)班各有2位家长对中学生带手机持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求选出的2人来自不同班级的概率.试题21:LED灯具有环保节能、投射范围大、无频闪、使用寿命较长等特点,在日常生活中,人们更倾向于LED灯的使用,某校数学兴趣小组为了解LED灯泡与普通白炽灯泡的销售情况,进行了市场调查:某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)45 25标价(元)60 30(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可以获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?试题22:太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为30°,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D、F,CD垂直于地面,FE⊥AB于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号).试题23:如图,AB、BF分别是⊙O的直径和弦,弦CD与AB、BF分别相交于点E、G,过点F的切线HF与DC的延长线相交于点H,且HF=HG.(1)求证:AB⊥CD;(2)若sin∠HGF=,BF=3,求⊙O的半径长.试题24:如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.试题25:已知:如图,直线y=﹣x+2与x轴交于B点,与y轴交于C点,A点坐标为(﹣1,0).(1)求过A、B、C三点的抛物线的解析式.(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF周长的最大值.(3)在满足第②问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P的坐标;若不存在,说明理由.试题1答案:A.试题2答案:A【解答】解:解不等式x﹣1≤7﹣x,得:x≤4,解不等式5x﹣2>3(x+1),得:x>,∴不等式组的解集为:<x≤4,试题3答案:C【解答】解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.试题4答案:D【解答】解:∵a、b为方程x2﹣3x+p=0(p≠0)的两个不相等的实数根,∴a+b=3,ab=p,∵a2﹣ab+b2=(a+b)2﹣3ab=32﹣3p=18,∴p=﹣3.当p=﹣3时,△=(﹣3)2﹣4p=9+12=21>0,∴p=﹣3符合题意.+===﹣2=﹣2=﹣5.故选:D.试题5答案:A【解答】解:如图,∠BAC=180°﹣90°﹣∠1=90°﹣∠1,∠ABC=180°﹣60°﹣∠3=120°﹣∠3,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,在△ABC中,∠BAC+∠ABC+∠ACB=180°,∴90°﹣∠1+120°﹣∠3+120°﹣∠2=180°,∴∠1+∠2+∠3=150°.试题6答案:C【解答】解:利用该型号计算器计算cos55°,按键顺序正确的是.试题7答案:C【解答】解:由俯视图易得最底层有4个小正方体,第二层最多有2个小正方体,那么搭成这个几何体的小正方体最多为4+2=6个.试题8答案:D【解答】解:根据图中信息可知这些队员年龄的平均数为:=15(岁),该足球队共有队员2+6+8+3+2+1=22(人),则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁,试题9答案:A【解答】解:点C从点A运动到点B的过程中,x的值逐渐增大,DE的长度随x值的变化先变大再变小,当C与O重合时,y有最大值,∵x=0,y=ABx=AB﹣AB时,DE过点O,此时:DE=ABx=AB,y=AB所以,随着x的增大,y先增后降,类抛物线故选:A.试题10答案:C【解答】解:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴y=BO﹣CD=4﹣1=3,x=BD=2,∴k=x•y=3•2=6.故选:C.试题11答案:D【解答】解:连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,∵根据三角形的面积和平行四边形的面积得:S△DEC=S△DFA=S平行四边形ABCD,即AF×DP=CE×DQ,∴AF×DP=CE×DQ,∵四边形ABCD是平行四边形,∴AD∥BC,∵∠DAB=60°,∴∠CBN=∠DAB=60°,∴∠BFN=∠MCB=30°,∵AB:BC=3:2,∴设AB=3a,BC=2a,∵AE:EB=1:2,F是BC的中点,∴BF=a,BE=2a,BN=a,BM=a,由勾股定理得:FN=a,CM=a,AF==a,CE==2a,∴a•DP=2a•DQ∴DP:DQ=2:.故选:D.试题12答案:C【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,所以四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以KL=3+7=10,LM=4+7=11,因此矩形KLMJ的面积为10×11=110.故选:C.试题13答案:x(x﹣1)2.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.试题14答案:a且a.【解答】解:分式方程去分母得:2x=3a﹣4(x﹣1),移项合并得:6x=3a+4,解得:x=,∵分式方程的解为非负数,∴≥0且﹣1≠0,解得:a≥﹣且a≠.试题15答案:+﹣.【解答】解:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线.∴AC=∴扇形ACC′的面积为:=,∵AC=AC′,AD′=AB∴在△OCD′和△OC'B中,∴△OCD′≌△OC′B(AAS).∴OB=OD′,CO=C′O∵∠CBC′=60°,∠BC′O=30°∴∠COD′=90°∵CD′=AC﹣AD′=﹣1OB+C′O=1∴在Rt△BOC′中,BO2+(1﹣BO)2=(﹣1)2解得BO=,C′O=﹣,∴S△OC′B=•BO•C′O=﹣∴图中阴影部分的面积为:S扇形ACC′﹣2S△OC′B=+﹣.故答案为:试题16答案:3【解答】解:如图作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ,∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=3:4:5,设PQ=4x,则AQ=3x,AP=5x,BQ=2x,∴2x+3x=3,∴x=,∴AP=5x=3.试题17答案:(3,4)或(0,4).【解答】解:设直线AC的解析式为:y=kx+b,∵△ABC的顶点坐标分别为(4,0),(8,2),(6,4),∴,解得:,∴直线AC的解析式为:y=2x﹣8,同理可得:直线AB的解析式为:y=x﹣2,直线BC的解析式为:y=﹣x+10,∵△A1B1C1的两个顶点的坐标为(1,3),(2,5),∴过这两点的直线为:y=2x+1,∴过这两点的直线与直线AC平行,①若A的对应点为A1(1,3),C的对应点为C1(2,5),则B1C1∥BC,B1A1∥BA,设直线B1C1的解析式为y=﹣x+a,直线B1A1的解析式为y=x+b,∴﹣2+a=5,+b=3,解得:a=7,b=,∴直线B1C1的解析式为y=﹣x+7,直线B1A1的解析式为y=x+,则直线B1C1与直线B1A1的交点为:(3,4);②若C的对应点为A1(1,3),A的对应点为C1(2,5),则B1A1∥BC,B1C1∥BA,设直线B1C1的解析式为y=x+c,直线B1A1的解析式为y=﹣x+d,∴×2+c=5,﹣1+d=3,解得:c=4,d=4,∴直线B1C1的解析式为y=x+4,直线B1A1的解析式为y=﹣x+4,则直线B1C1与直线B1A1的交点为:(0,4).∴△A1B1C1的第三个顶点的坐标为(3,4)或(0,4).故答案为:4n.【解答】解:∵四边形A0B1A1C1是菱形,∠A0B1A1=60°,∴△A0B1A1是等边三角形.设△A0B1A1的边长为m1,则B1(,);代入抛物线的解析式中得:()2=,解得m1=0(舍去),m1=1;故△A0B1A1的边长为1,同理可求得△A1B2A2的边长为2,…依此类推,等边△A n﹣1B n A n的边长为n,故菱形A n﹣1B n A n C n的周长为4n.试题19答案:解:原式=[﹣]•=﹣•=﹣•=﹣(x+2)(x﹣1)=﹣x2﹣x+2,解x2﹣2x=0得:x1=0,x2=2(使分式无意义,舍去),∴当x=0时,原式=﹣0﹣0+2=2.解:(1)共调查的中学生家长数是:40÷20%=200(人);(2)扇形C所对的圆心角的度数是:360°×(1﹣20%﹣15%﹣60%)=18°,C类的人数是:200×(1﹣20%﹣15%﹣60%)=10(人),补图如下:(3)根据题意得:10000×60%=6000(人),答:10000名中学生家长中有6000名家长持反对态度;(4)设初三(1)班两名家长为A1,A2,初三(2)班两名家长为B1,B2,画树状图为:共有12种等可能的结果数,其中2人来自不同班级共有8种,所以选出的2人来自不同班级的概率==.试题21答案:解:(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,根据题意得,解得,答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个;(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120﹣a)个,这批灯泡的总利润为W元,根据题意得W=(60﹣45)a+(30﹣25)(120﹣a)=10a+600,∵10a+600≤[45a+25(120﹣a)]×30%,解得a≤75,∵k=10>0,∴W随a的增大而增大,∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(120﹣75)=45个.答:该商场购进LED灯泡75个,则购进普通白炽灯泡45个,这批灯泡的总利润为1350元.试题22答案:解:过A作AG⊥CD于G,则∠CAG=30°,在Rt△ACG中,CG=ACsin30°=50×=25,∵GD=50﹣30=20,∴CD=CG+GD=25+20=45,连接FD并延长与BA的延长线交于H,则∠H=30°,在Rt△CDH中,CH==2CD=90,∴EH=EC+CH=AB﹣BE﹣AC+CH=300﹣50﹣50+90=290,在Rt△EFH中,EF=EH•tan30°=290×=,答:支撑角钢CD和EF的长度各是45cm,cm.试题23答案:【解答】(1)证明:如图,连接OF,∵HF是⊙O的切线,∴∠OFH=90°.即∠1+∠2=90°.∵HF=HG,∴∠1=∠HGF.∵∠HGF=∠3,∴∠3=∠1.∵OF=OB,∴∠B=∠2.∴∠B+∠3=90°.∴∠BEG=90°.∴AB⊥CD.(2)解:如图,连接AF,∵AB、BF分别是⊙O的直径和弦,∴∠AFB=90°.即∠2+∠4=90°.∴∠HGF=∠1=∠4=∠A.在Rt△AFB中,AB===4.∴⊙O的半径长为2.试题24答案:解:(1)PM=PN,PM⊥PN,理由如下:∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴AE=BD,∠EAC=∠CBD,∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,∴PM=BD,PN=AE,∴PM=PN,∵PM∥BD,PN∥AE,AE⊥BD,∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,∴∠MPA+∠NPC=90°,∴∠MPN=90°,即PM⊥PN;(2)∵△ACB和△ECD是等腰直角三角形,∴AC=BC,EC=CD,∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∴△ACE≌△BCD.∴AE=BD,∠CAE=∠CBD.又∵∠AOC=∠BOE,∠CAE=∠CBD,∴∠BHO=∠ACO=90°.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PM∥BD;PN=AE,PN∥AE.∴PM=PN.∴∠MGE+∠BHA=180°.∴∠MGE=90°.∴∠MPN=90°.∴PM⊥PN.(3)PM=kPN∵△ACB和△ECD是直角三角形,∴∠ACB=∠ECD=90°.∴∠ACB+∠BCE=∠ECD+∠BCE.∴∠ACE=∠BCD.∵BC=kAC,CD=kCE,∴=k.∴△BCD∽△ACE.∴BD=kAE.∵点P、M、N分别为AD、AB、DE的中点,∴PM=BD,PN=AE.∴PM=kPN.试题25答案:解:(1)直线y=﹣x+2与x轴交于B(2,0),与y轴交于C点(0,2),设过A、B、C的抛物线的解析式为y=ax2+bx+c,把A(﹣1,0)、B(2,0)、C(0,2)的坐标代入,∴a=﹣1,b=1,c=2,∴抛物线的解析式为:y=﹣x2+x+2,(2)设D(x,﹣x2+x+2),F(x,﹣x+2),∴DF=(﹣x2+x+2)﹣(﹣x+2)=﹣x2+2x,所以x=1时,DF最大=1,∵OB=OC,∴△OBC为等腰直角三角形,∵DE⊥BC,DF∥y轴,∴△DEF为等腰直角三角形,∴△DEF周长的最大值为1+(3)如图,当△DEF周长最大时,D(1,2),F(1,1).延长DF交x轴于H,作PM⊥DF于M,则DB=,DH=2,OH=1当∠DFP=∠DBC时,△DFP∽△DBF,∴,∴DP=,∴=,∴PM=,DM=,∴P点的横坐标为OH+PM=1+=,P点的纵坐标为DH﹣DM=2﹣=,∴P(,).。
湖南省湘潭市2020年中考数学模拟试卷(二)(解析版)一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x23.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.16.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>28.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=____________.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是____________.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是____________.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为____________.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为____________元.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是____________.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=____________.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为____________.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.18.解不等式.19.先化简,再求值:÷(1+),其中x=﹣1.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?2020年湖南省湘潭市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1.|﹣2|=()A.2 B.﹣2 C. D.【考点】绝对值.【分析】根据绝对值的性质可直接求出答案.【解答】解:根据绝对值的性质可知:|﹣2|=2.故选:A.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(﹣4x)2=()A.﹣8x2B.8x2C.﹣16x2D.16x2【考点】幂的乘方与积的乘方.【分析】原式利用积的乘方运算法则计算即可得到结果.【解答】解:原式=16x2,故选D.【点评】此题考查了幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.3.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.下列命题中,正确的是()A.平行四边形的对角线相等B.矩形的对角线互相垂直C.菱形的对角线互相垂直且平分D.对角线相等的四边形是矩形【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据矩形的性质对B进行判断;根据菱形的性质对C进行判断;根据矩形的判定方法对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项错误;B、矩形的对角线互相平分且相等,所以B选项错误;C、菱形的对角线互相垂直且平分,所以C选项正确;D、对角线相等的平行四边形是矩形,所以D选项错误.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部组成.熟练平行四边形和特殊平行四边形的判定与性质是解决此题的关键.5.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于()A. B. C. D.1【考点】列表法与树状图法.【分析】首先分别用A与B表示三角形与矩形,然后根据题意画树状图,由树状图求得所有等可能的结果与能拼成“小房子”(如图2)的情况,再利用概率公式求解即可求得答案,【解答】解:分别用A与B表示三角形与矩形,画树状图得:∵共有12种等可能的结果,能拼成“小房子”的有8种情况,∴任取两张纸片,能拼成“小房子”(如图2)的概率等于:=.故选A.【点评】此题考查了列表法或树状图法求概率.注意此题是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.如图,下列水平放置的几何体中,主视图是三角形的是()A. B. C. D.【考点】简单几何体的三视图.【分析】找到从正面看所得到的图形是三角形即可.【解答】解:A、主视图为长方形,故本选项错误;B、主视图为三角形,故本选项错误;C、主视图为长方形,故本选项错误;D、主视图为长方形,故本选项错误.故选B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.7.若关于x的方程x2+x﹣a+=0没有实数根,则实数a的取值范围是()A.a≥2 B.a≤2 C.a<2 D.a>2【考点】根的判别式.【分析】根据判别式的意义得到△=12﹣4(﹣a+)<0,然后解不等式即可.【解答】解:∵关于x的方程x2+x﹣a+=0没有实数根,∴△=12﹣4(﹣a+)<0,解得:a<2,故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是﹣1,则顶点A的坐标是()A.(2,﹣1)B.(1,﹣2)C.(1,2) D.(2,1)【考点】菱形的性质;坐标与图形性质.【分析】点A的横坐等于OC的长的一半,点A的纵坐标与点B的纵坐标互为相反数.【解答】解:∵点C的坐标为(4,0),∴OC=4,∴点B的纵坐标是﹣1,∴A(2,1).故选D.【点评】本题综合考查了菱形的性质和坐标的确定,综合性较强.二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9.化简:﹣=.【考点】二次根式的加减法.【分析】先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.【解答】解:原式=2﹣=.故答案为:.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.如图,△ABC三边的中线AD、BE、CF的公共点为G,若S△ABC=12,则图中阴影部分的面积是4.【考点】三角形的面积.【分析】根据三角形的中线把三角形的面积分成相等的两部分,知△ABC的面积即为阴影部分的面积的3倍.【解答】解:∵△ABC的三条中线AD、BE,CF交于点G,∴S△CGE=S△AGE=S△ACF,S△BGF=S△BGD=S△BCF,∵S△ACF=S△BCF=S△ABC=×12=6,∴S△CGE=S△ACF=×6=2,S△BGF=S△BCF=×6=2,=S△CGE+S△BGF=4.∴S阴影故答案为4.【点评】根据三角形的中线把三角形的面积分成相等的两部分,该图中,△BGF的面积=△BGD的面积=△CGD的面积,△AGF的面积=△AGE的面积=△CGE的面积.11.已知反比例函数y=的图象经过点(2,3),则此函数的关系式是y=.【考点】待定系数法求反比例函数解析式.【分析】已知反比例函数y=的图象经过点(2,3),则把(2,3)代入解析式就可以得到k的值.【解答】解:根据题意得:3=解得k=6,则此函数的关系式是y=.故答案为:y=.【点评】本题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点内容.12.在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为.【考点】几何概率.【分析】根据题意,求得正方形与圆的面积,相比计算可得答案.【解答】解:根据题意,针头扎在阴影区域内的概率就是圆与正方形的面积的比值;由题意可得:正方形纸边长为4cm,其面积为16cm2,圆的半径为1cm,其面积为πcm2,故其概率为.【点评】本题考查几何概率的求法:注意圆、正方形的面积计算.用到的知识点为:概率=相应的面积与总面积之比.13.某商店一套西服的进价为300元,按标价的80%销售可获利100元,则该服装的标价为500元.【考点】一元一次方程的应用.【分析】首先理解题意找出题中存在的等量关系:利润=售价﹣进价,根据此等量关系列方程即可.【解答】解:设该服装的标价为x元,则实际售价为80%x,根据等量关系列方程得:80%x﹣300=100,解得:x=500.故答案为:500.【点评】此题主要考查了一元一次方程的应用,理解利润、售价、进价三者之间的关系是解题关键.14.如图,直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,则不等式﹣3≤﹣2x﹣5<kx+b的解集是﹣2<x≤﹣1.【考点】一次函数与一元一次不等式.【分析】把所给两点代入一次函数解析式可得k,b的值,进而求不等式组的解集即可.【解答】解:∵直线y=kx+b经过A(﹣2,﹣1)和B(﹣3,0)两点,∴,解得,∴不等式变为﹣3≤﹣2x﹣5<﹣x﹣3,解得﹣2<x≤﹣1,故答案为﹣2<x≤﹣1.【点评】考查一次函数和一元一次不等式的相关问题;用待定系数法求得未知函数解析式是解决本题的突破点.15.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=80°.【考点】圆周角定理;垂径定理.【分析】根据垂径定理可得点B是中点,由圆周角定理可得∠BOD=2∠BAC,继而得出答案.【解答】解:∵,⊙O的直径AB与弦CD垂直,∴=,∴∠BOD=2∠BAC=80°.故答案为:80°.【点评】此题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.16.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为.【考点】翻折变换(折叠问题).【分析】首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可.【解答】解:∵AB=3,AD=4,∴DC=3,BC=4∴AC==5,根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,在Rt△AED′中:(AD′)2+(ED′)2=AE2,22+x2=(4﹣x)2,解得:x=,故答案为:.【点评】此题主要考查了图形的翻着变换,以及勾股定理的应用,关键是掌握折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17.计算:|﹣|+(﹣)﹣1sin45°+()0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣2×+1=﹣+1=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x≤2,由②得,x>﹣.故不等式组的解集为:﹣<x≤2.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.20.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,如图是根据这组数据绘制的统计图,图1中从左到右各长方形A、B、C、D、E高度之比为3:4:5:6:2,已知此次调查中捐10元和15元的人数共27人.(1)他们一共抽查了多少人?这组数据的众数、中位数各是多少?(2)图2中,捐款数为20元的D部分所在的扇形的圆心角的度数是多少?(3)若该校共有1000名学生,请求出D部分学生的人数及D部分学生的捐款总额.【考点】扇形统计图;用样本估计总体;条形统计图;中位数;众数.【分析】(1)根据A、B、C、D、E高度之比为3:4:5:6:2,求得B等和C等所占的百分比,再根据捐10元和15元的人数共27人求得总人数;根据中位数和众数的概念求解;(2)各部分所占的圆心角即为百分比×360°;(3)根据样本估计总体.【解答】解:(1)总人数=27÷=60(人);众数:20(元);中位数15(元).(2)捐款数为20元的D部分所在的扇形的圆心角的度数=×360°=108°;(3)D部分的学生人数=1000×=300(人);D部分学生的捐款总额=300×20=6000(元).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时也考查了中位数、众数、平均数的概念及根据样本估计总体.21.如图,某公司入口处有一斜坡AB,坡角为12°,AB的长为3m,施工队准备将斜坡修成三级台阶,台阶高度均为hcm,深度均为30cm,设台阶的起点为C.(1)求AC的长度;(2)求每级台阶的高度h.(参考数据:sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.结果都精确到0.1cm)【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)过点B作BE⊥AC于点E,在Rt△ABE中利用三角函数求出AE,由AC=AE ﹣CE,可得出答案;(2)在Rt△ABE中,求出BE,即可计算每级台阶的高度h.【解答】解:如右图,过点B作BE⊥AC于点E,(1)在Rt△ABE中,AB=3m,cos12°≈0.9781,AE=ABcos12°≈2.934m=293.4cm,∴AC=AE﹣CE=293.4﹣60=233.4cm.答:AC的长度约为233.4cm.(2)h=BE=ABsin12°=×300×0.2079=20.79≈20.8cm.答:每级台阶的高度h约为20.8cm.【点评】本题考查了解直角三角形的应用,难度一般,解答本题的关键是根据坡度和坡角构造直角三角形,并解直角三角形.22.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【考点】全等三角形的判定与性质.【分析】首先得出BC=EF,利用平行线的性质∠B=∠DEF,再利用AAS得出△ABC≌△DEF,即可得出答案.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.【点评】此题主要考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.23.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.已知关于x的一元二次方程(x﹣3)(x﹣2)=|m|.(1)求证:对于任意实数m,方程总有两个不相等的实数根;(2)若方程的一个根是1,求m的值及方程的另一个根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)要证明方程有两个不相等的实数根,即证明△>0即可;(2)将x=1代入方程(x﹣3)(x﹣2)=|m|,求出m的值,进而得出方程的解.【解答】(1)证明:∵(x﹣3)(x﹣2)=|m|,∴x2﹣5x+6﹣|m|=0,∵△=(﹣5)2﹣4(6﹣|m|)=1+4|m|,而|m|≥0,∴△>0,∴方程总有两个不相等的实数根;(2)解:∵方程的一个根是1,∴|m|=2,解得:m=±2,∴原方程为:x2﹣5x+4=0,解得:x1=1,x2=4.即m的值为±2,方程的另一个根是4.【点评】此题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.同时考查了一元二次方程的解的定义.25.(10分)(2020•湘潭模拟)如图,以矩形ABCD的对角线AC的中点O为圆心,OA 长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K.过D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H.(1)求证:AE=CK;(2)如果AB=a,AD=a(a为大于零的常数),求BK的长.【考点】圆的综合题.【分析】(1)先根据平行线的性质和垂直的定义得出∠AED=90°,再根据矩形的性质判断出Rt△ADE≌Rt△CBK即可;(2)先利用勾股定理求出AC,再用三角形的面积公式求出BK即可.【解答】(1)∵DH∥KB,BK⊥AC,∴DE⊥AC,∴∠AED=90°,∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∴∠EAD=∠KCB,在△ADE和△CBK中∴Rt△ADE≌Rt△CBK,∴AE=CK.(2)在Rt△ABC中,AB=a,AD=BC=a,∴AC===,∵S△ABC=AB×BC=AC×BK,∴BK===a.【点评】此题是圆的综合题,主要考查了矩形的性质,平行线的性质,垂直的定义,勾股定理,解本题的关键是判断出Rt△ADE≌Rt△CBK.26.(10分)(2020•长沙)为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求月销售量y(万件)与销售单价x(元)之间的函数关系式;(2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额﹣生产成本﹣员工工资﹣其它费用),该公司可安排员工多少人?(3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款?【考点】一次函数的应用;分段函数.【分析】(1)从图中看,这是一个分段一次函数,40≤x≤60和60<x<100时,函数的表达式不同,每段函数都经过两点,使用待定系数法即可求出函数关系式;(2)利用(1)中的函数关系,当销售单价定为50元时,可计算出月销售量,设可安排员工m人,利润=销售额一生产成本﹣员工工资﹣其它费用,列出方程即可解;(3)先分情况讨论出利润的最大值,即可求解.【解答】解:(1)当40≤x≤60时,令y=kx+b,则,解得,故,同理,当60<x<100时,.故y=;(2)设公司可安排员工a人,定价50元时,由5=(﹣×50+8)(50﹣40)﹣15﹣0.25a,得30﹣15﹣0.25a=5,解得a=40,所以公司可安排员工40人;(3)当40≤x≤60时,利润w1=(﹣x+8)(x﹣40)﹣15﹣20=﹣(x﹣60)2+5,则当x=60时,w max=5万元;当60<x<100时,w2=(﹣x+5)(x﹣40)﹣15﹣0.25×80=﹣(x﹣70)2+10,∴x=70时,w max=10万元,∴要尽早还清贷款,只有当单价x=70元时,获得最大月利润10万元,设该公司n个月后还清贷款,则10n≥80,∴n≥8,即n=8为所求.【点评】本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,是一道综合性较强的代数应用题,能力要求比较高.。
中考数学模拟考试卷(含有答案)一.单选题。
(共40分)1.2023的相反数是()A.2023B.12023C.﹣12023D.﹣20232.如图所示的几何体由5个大小相同的立方块搭成,则该几何体的左视图是()3.根据国家统计局调查显示,2022年我国全年出生人口956万人,9 560 000用科学记数法可以表示为()A.0.956×107B.956×104C.9.56×107D.95.6×1054.将一副三角板(∠EDF=30°,∠C=45°)按如图所示方式摆放,使得点D在三角板的一边AC上,且DE∥AB,则∠DMC等于()A.60°B.75°C.90°D.105°(第4题图)(第6题图)5.下列图形中,既是轴对称图形,但不是中心对称图形的是()6.实数M,N在数轴上对应点的位置如图所示,下列结论正确的是()A.mn>0B.m>﹣nC.|m|>|n|D.m+1>n+17.将分别标有“最”、“美”、“济”、“南”四个汉字的小球装在一个不透明的口袋中,这些球除汉字不同外其余完全相同,每次摸球前先搅匀,随机摸出一球,放回摸出的球后再随机摸出一球,两次摸出的球的汉字可以组成济南概率是( ) A.516 B.16 C.18 D.148.如图,PA 、PB 分别是弧AMB 所在圆⨀O 相切于点A ,B ,若该圆半径是3cm ,∠P=60°,则弧AMB 的长是( )A.6πB.4πC.3πD.2π(第8题图) (第10题图)9.如图,在平行四边形ABCD 中,分别以点B ,D 为圆心,大于12BD 的长半径画弧,两弧交于M ,N ,直线MN 分别交AD ,BC 于点E ,F ,连接BD ,EF ,若∠BAD=120°,AE=1,AB=2,则线段BF 的长是( )A.√7+1B.√3+√2C.3D.√710.在平面直角坐标系中,点(1,m )和(2,n )在抛物线y=ax 2+bx+c (a >0)上,抛物线的对称轴为直线x=t ,若m <c <n ,则t 的取值范围( ) A.t <1 B.0<t <1 C.12<t <1 D.12<t <32 二.填空题。
2024年襄州区初中学业水平考试模拟训练数学试题(本试卷共6页,满分120分,考试时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的,请将其序号在答题卡上涂黑作答.1.有理数的相反数是( )A .B .C .D .2.剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形但不是轴对称图形的是( ).A .B .C .D .3.不等式的解集在数轴上表示正确的是( )A .B .C .D .4.下列计算正确的是( ).A .B .C .D .5.如图,直线,将含角的直角三角板按图中位置摆放,若,则图中等于( ).3-3-313-13231x x >+246()a a =326a a a ⋅=()222a b a b -=-=a b 30︒()30ABC B ∠=︒1110∠=︒2∠A .B .C .D .6.如图所示的几何体,由五个相同的小正方体组成的,它的主视图是( ).A .B .C .D .7.下列说法正确的是( ).A .检测一批家用汽车的抗撞能力用全面抽查B .检测长征运载火箭零部件质量情况用随机抽样抽查C .“抛掷一枚质地均匀的硬币,正面向上”是随机事件D .“任意画一个三角形,其内角和是”是随机事件8.如图,在平面直角坐标系中,原点O 为对角线的中点,轴,点B 的坐标为,,点C 的坐标为( )A .B .C .D.20︒30︒40︒50︒180︒ABCD Y BD AD x ()1,1--3AD =()3,1-()2,1-()1,2-()2,1-9.如图,点A ,B ,C ,D 在上,,则的长为( )A .B .8C .D .410.抛物线(a ,b ,c 为常数,)对称轴是直线,抛物线与x 轴相交于,两点,,下列结论正确的是( ).A .B .,都在抛物线上,则C .D .方程的两根为,,则二、填空题(本大题共5个小题,每小题3分,共15分)把答案填在答题卡的相应位置上.11在实数范围内有意义的条件是 .12.计算: .13.经过十字路口处的两辆汽车,可能直行,也可能右转,如果这两种可能性大小相同,则至少有一辆向右转的概率是 .14.《九章算术》是我国古代经典数学著作,奠定了中国传统数学的基本框架.书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大、小器各容几何?”译文:“今有大容器5个,小容器1个,总容积为3斛;大容器1个,小容器5个,总容积为2斛.问大、小容器的容积各是多少斛?”答:大容器容积为 斛,小容器容积为 斛.15.如图,将矩形纸片折叠,折痕为,折叠后,点的对应点落在延长线上的点处,点的对应点为点,延长交于点.若,,则四O ,4,30AC BC AC ADC ⊥=∠=︒BC 2y ax bx c =++0a >=1x -()1,0x ()2,0x 212x <<0c >()12,y -()22,y 12y y >240ac b ->20ax bx c ++=1x 2x 122x x +=-211x x x x ÷=--ABCD BE D BA F C G DA BG H 1tan 2ABE ∠=5EF =边形的面积为 .三、解答题(本大题共9个小题,共75分)解答应写出文字说明、证明过程或演算步骤,并且写在答题卡上每题对应的答题区域内.16.17.如图,在中,,分别是边的中点,求证:四边形是菱形.18.如图,平地上建筑物与建筑物相距,在建筑物的顶部处测得建筑物顶部的仰角为,底部的俯角为,求建筑物的高度.(结果保留整数.参考数据:,,)19.为了解甲、乙两所学校八年级学生综合素质整体情况,对两校八年级学生进行了综合素质测评,并对成绩作出如下统计分析.【收集整理数据】分别从两所学校各随机抽取了a 名学生的综合素质测试成绩(百分制,成绩都是整数且不低于分).将抽取的两所学校的成绩分别进行整理,分成A ,B ,C ,D ,E ,F 六组,用x 表示成绩,A 组:,B 组:,C 组:,D 组:,E 组:,F 组:,其中乙校E 组成绩如下:,,,AFGH 1-ABC AB AC =D E F 、、AB BC AC 、、ADEF AB CD 50m AB A CD C 28︒D 45︒CD sin 280.47︒≈cos 280.88︒≈tan 280.53︒≈404050x ≤<5060x ≤<6070x ≤<7080x ≤<8090x ≤<90100x ≤≤828484,,,,,,,,,,,.【描述数据】根据统计数据,绘制出了如下统计图.【分析数据】两所学校样本数据的平均数、中位数、众数、方差如下表:学校平均数中位数众数方差甲校乙校b 79根据以上信息,解答下列问题:(1) , ;(2)补全条形统计图;(3)甲校共有人参加测试,若测试成绩不低于80分的为优秀,估计甲校测试成绩优秀的约有 人;(4)从平均数、中位数、众数、方差中,任选一个统计量,解释其在本题中的意义.20.如图,一次函数与反比例函数(k 为常数,)的图象相交于,两点.(1)求m ,n ,k 的值;(2)当时,对于x 的每一个值,函数(p 为常数)的值大于函数的848585868687878888898989808181175.5281154.16=a b =5001522y x =-+k y x=0k ≠()1,A m ()4,B n 14x <<12y x p =-+2y x=值,直接写出p 的取值范围.21.在中,,以为直径的交于点,点在上,,,的延长线相交于点.(1)如图1,求证:是的切线;(2)如图2,连接并延长,交于点,若点是的中点,部分的面积.22.张经理到老王的果园里一次性采购一种水果吨,他俩商定,张经理的采购价元吨与采购量吨之间的关系如下表:老王发现,他俩商定的与之间满足一次函数关系.已知水果的平均成本是元吨,老王在这次买卖中获得的利润为元.(1)分别求出与,与的函数解析式;(2)若老王在这次买卖中获得的利润为元,求张经理采购的水果的数量;(3)张经理的采购量为多少时,老王获得的利润最大?最大利润是多少?23.(1)如图1,四边形是正方形,是等腰直角三角形,.①求证:;②线段与的数量关系是______;(2)将图1中的绕点B 顺时针旋转,当旋转到点F 在的延长线上时,与相交于点G ,①如图2,当点G 是的中点时,若的长;②如图3,当点G 不是的中点时,设的中点为H ,连接,判断线段的关系,并说明理由.Rt ABC △90ACB ∠=︒BC O AB D E AC AE DE =ED CB F EF O EO O G B DGAC =x ()1040x ≤≤y /x x 10152025303540y 6000550050004500400035003000y x 1000/W y x W x 87500ABCD BEF △90BFE ∠=︒BDE BCF ∽△△DE CF BEF △DE EF BC BC AB =CF BC DE AH AH FH ,24.在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,点是直线上方抛物线上不与抛物线顶点重合的一动点,设点的横坐标为.(1)请直接写出,的值;(2)如图,若抛物线的对称轴为直线,点为直线上一动点,当垂直平分时,求的值;(3)过点作轴的垂线交于点,过点作轴的垂线与抛物线的另一个交点为,线段,的长度之和记为.①求关于的函数解析式;②根据的不同取值,试探索点的个数情况.24y ax bx =++x ()2,0A -()4,0B y C P BC P m a b l D l BC PD m P x BC M P y N PM PN d d m d P参考答案与解析1.B 【分析】本题考查了相反数的定义,根据相反数的定义进行判断即可,解题的关键是熟练掌握相反数的定义,只有符号不同的两个数互为相反数.【解答】解:有理数的相反数是,故选:.2.C【分析】本题考查了轴对称与中心对称图形的识别,根据中心对称图形的概念得出答案即可.【解答】解:A 、是轴对称图形,不是中心对称图形,故本选项不符合题意;B 、是轴对称图形,是中心对称图形,故本选项不符合题意;C 、不是轴对称图形,是中心对称图形,故本选项符合题意;D 、不是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C .3.B【分析】本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,先根据不等式的性质:先移项,然后合并同类项即可解得不等式,进而在数轴上表示解集,即可求解.【解答】解:∴∴解得:在数轴上表示如图故选:B .4.D【分析】本题考查了幂的乘方,单项式乘单项式,完全平方公式,二次根式的除法运算,熟练掌握运算法则和公式是解答本题的关键.根据幂的乘方,单项式乘单项式,完全平方公式,二次根式的除法运算法则逐项分析即可.3-3B 231x x >+231x x ->1x ->1x <-【解答】解:A. ,原计算错误,故此选项不符合题意;B. ,原计算错误,故此选项不符合题意;C. ,原计算错误,故此选项不符合题意;D. ,原计算正确,故此选项符合题意;故选:D .5.C【分析】本题考查平行线的性质,对顶角,三角形内角和定理,根据平行线的性质得到,由对顶角相等得到,再利用三角形内角和定理即可求解.【解答】解:如图,,,,,,,故选:C .6.A【分析】本题考查三视图的理解,对三视图理解正确是关键.正面看到的即是主视图.【解答】解:从正面看,其主视图是故选:A .7.C248()a a =2326a a a ⋅=()2222a b a ab b -=-+=3∠4∠ a b ∥1110∠=︒13110∴∠=∠=︒43∠=∠ 4110∴∠=︒ 30ABC ∠=︒2180440ABC ∴∠=︒-∠-∠=︒【分析】本题考查的知识点是普查与抽样调查, 事件的分类,三角形内角和, 根据题意逐项分析判断,即可求解.【解答】解:A. 检测一批家用汽车的抗撞能力用抽样抽查,故该选项不正确,不符合题意;B. 检测长征运载火箭零部件质量情况用全面抽查,故该选项不正确,不符合题意;C. “抛掷一枚质地均匀的硬币,正面向上”是随机事件,故该选项正确,符合题意;D. “任意画一个三角形,其内角和是”是必然事件,故该选项不正确,不符合题意;故选:C .8.B【分析】本题主要考查了求关于原点对称的点的坐标特征,平行四边形的性质,正确理解题意得到点B 和点D ,点A 和点C 关于原点对称是解题的关键.【解答】解:∵原点O 为对角线的中点,∴点B 和点D ,点A 和点C 关于原点对称,∵点B 的坐标为,∴点D 的坐标是:,又∵轴,∴点A 的坐标是:,∴点C 的坐标为,故选:B .9.A【分析】连接,根据可得为的直径,又根据得到,故在直角三角形中,利用特殊角的三角函数即可求出.【解答】解:连接,,180︒ABCD Y BD ()1,1--()1,1AD x 3AD =()2,1-()2,1-AB AC BC ⊥AB O 30ADC ∠=︒30ABC ∠=︒BC AB AC BC ⊥Q,为的直径,,,在中,,..故选:A .【点拨】本题主要考查圆周角定理,解三角形,解题的关键是掌握公式、定理。
2011中考模拟数学试题系列之二(4套) 目录 2011中考模拟数学试题1
2011中考模拟数学试题2 2011中考模拟数学试题3 2011中考模拟数学试题4 2011中考模拟数学试题 1
考生须知
1.本试卷共6页,共五道大题,25道小题,满分120分。考试时间120分钟。 2.在试卷和答题卡上认真填写学校、班级和姓名。 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 4. 在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。 5.考试结束,请将本试卷、答题卡和草稿纸一并交回。 一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个是符合题意的. 1. -2010的倒数是 A. 2010 B. 20101 C. 20101 D. -2010
2.在722,5,π和9四个实数中,其中的无理数是 A. 722和5 B. 722和π C. 9和5 D. 5 和π 3.如图,⊙O的半径为2,直线PA、PB为⊙O的切线,A、B为切点,若PA⊥PB,则OP的长为
A. 24 B. 4
C.22 D. 2 4.在平面直角坐标系中,矩形OABC的顶点A在x轴上,点C在y轴上,把矩形OABC绕着原点顺时针旋转90得到矩形OABC,若OA=2,OC=4,则点B的坐标为 A.(24), B.(24), C.(42), D.(24), 5.某班在开展 “节约每一滴水”的活动中,从全班40名同学中选出10名同学汇报了各自家庭一个月的节水情况,有关数据整理如下表:
节水量(单位:m3 ) 0.5 1 1.5. 2
同学数(人) 2 3 2 3 用所学的统计知识估计40名同学的家庭一个月节约用水的总量大约是
A.20 m3 B.52 m3 C.60 m3 D.100m3 6.有9张背面相同的卡片,正面分别印有下列几种几何图形.其中等腰三角形4张、平行四边形3张、圆形2张,现将9张卡片正面朝下洗匀任意摆放,从中任意抽取一张,抽到正面图形属于中心对称图形的卡片的概率是 A.95 B.92 C.91 D. 31 7.如图,是一个几何体的三视图,根据图中标注的数据可求得这个几何体的侧面积为( ) A.π6 B.π12 C.4π2 D.8π4
8.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是 A. 222 B.52 C。 62 D. 6
二、填空题(本题共16分,每小题4分) 9.在函数51xy中,自变量x的取值范围是 . 10.在□ABCD中,E为BC延长线上一点,AE交CD于点F,若AB=7,CF=3,则CEAD= .
11.如图,正六边形ABCDEF的边长为2,则图中阴影部分面积 为 .
12.一组按规律排列的整数5,7,11,19,„,第6个整数为____ _,根据上述规律,第n个整数为____ (n为正整数).
三、解答题(本题共30分,每小题5分)
等腰三角形 平行四边形 圆形 13.解分式方程:xxx3331. 14.已知关于x的一元二次方程x2―mx―2=0. (1)对于任意实数m,判断此方程根的情况,并说明理由; (2)当m=2时,求些方程的根.
15.已知:如图,在正方形ABCD中, 点E在CD边上,点F在CB的延长线上,且 FA⊥EA.求证:DE=BF. .
16.已知1582xx,求2)12()1(4)2)(2(xxxxx的值. 17.如图,二次函数321bxaxy 的图象与x轴相交于点A(-3,0)、B(1,0),交y轴点C, C、D是二次函数图象上的一对对称点,一次函数nmxy2的图象经过B、D两点. (1)求二次函数的解析式及点D的坐标; (2)根据图象写出12yy时,x的取值范围.
18. 如图,在矩形ABCD中, AB=6,∠BAC=30°,点E在CD边上. (1)若AE=4,求梯形ABCE的面积; (2)若点F在AC上,且CEABFA,求AEBF的值.
四、解答题(本题共20分,第19题6分,第20、21题每小题5分,第22题4分)
A D
C F B
E 19.为了积极应对全球金融危机,某地区采取宏观经济政策,启动了新一轮投资计划,该计划分为民生工程、基础建设、企业技改、重点工程等四个项目.图1表示这个投资计划的分项目统计图,图2表示该地区民生工程项目分类情况统计图.
请你根据图1、图2所给信息,回答下列问题: (1) 在图1中,企业技改项目投资占总投资的百分比是多少? (2) 在图2中,如果“交通设施”投资且比“食品卫生”投资多850万元,且占“民生工程”的投资的25%,那么“交通设施”投资及“民生工程”投资各是多少万元?并补全图2; (3) 求该地区投资计划的总额约为多少万元?(精确到万元)
20.《喜羊羊与灰太狼》是一部中、小学生都喜欢看的动画片,某企业获得了羊公仔和狼公仔的生产专利.该企业每天生产两种公仔共450只,两种公仔的成本和售价如下表所示.如果设每天生产羊公仔x只,每天共获利y元. (1)求出y与x之间的函数关系及自变量x的取值范围; (2)如果该企业每天投入的成本不超过10000元,那么要每天获利最多,应生产羊公仔和狼公仔各多少只?
21.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,连结EB交OD于点F.
类别 成本(元/只) 售价(元/只) 羊公仔 20 23 狼公仔 30 35 (1)求证:OD⊥BE; (2)若DE=25,AB=25,求AE的长.
22. 如图,在△ABC中,∠B=∠C=30°.请你设计两种不同的分法,将△ABC分割成四个小三角形,使得其中两个是全等三角形,而另外两个是相似但不全等的直角三角形.请画出分割线段,并在两个全等三角形中标出一对相等的内角的度数(画图工具不限,不要求证明,不要求写出画法).
五、解答题(本题共22分,第23题7分,第24题8分,第25题7分) 23.已知:关于x的一元二次方程04)4(2mxmx,其中40m. (1)求此方程的两个实数根(用含m的代数式表示); (2)设抛物线cbxxy2与x轴交于A、B两点(A在B的左侧),若点D的坐标为(0,-2),且AD·BD=10,求抛物线的解析式; (3)已知点E(a,1y)、F(2a,y2)、G(3a,y3)都在(2)中的抛物线上,是否存在含有1y、y2、y3,且与a无关的等式?如果存在,试写出一个,并加以证明;如果不存在,说明理由.
24.在△ABC中,点P为BC的中点. (1)如图1,求证:AP<21(AB+BC); (2)延长AB到D,使得BD=AC,延长AC到E,使得CE=AB,连结DE. ①如图2,连结BE,若∠BAC=60°,请你探究线段BE与线段AP之间的数量关系.写出你的结论,并加以证明; ②请在图3中证明:BC≥21DE.
25. 在平面直角坐标系中,将直线l:2343xy沿x轴翻折,得到一条新直线与x轴交于点A,与y轴交于点B,将抛物线1C:232xy沿x轴平移,得到一条新抛物线2C与y轴交于点D,与直线AB交于点E、点F. (1)求直线AB的解析式; (2)若线段DF∥x轴,求抛物线2C的解析式; (3)在(2)的条件下,若点F在y轴右侧,过F作FH⊥x轴于点G,与直线l交于点H,一条直线m(m不过△AFH的顶点)与AF交于点M,与FH交于点N,如果直线m既平分△AFH的面积,求直线m的解析式. 数学试题答案 2010.6 阅卷须知: 1.解答右端所注分数,表示考生正确做到这一步应得的累加分数。 2.若考生的解法与本解法不同,正确者可参照评分参考给分。 一、选择题(共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案 B D C C B A B A
二、填空题(共4道小题,每小题4分,共16分) 题号 9 10 11 12
答案 5x 3
4 33 67 32n
(n为正整数)
三、解答题(本题共30分 ,每小题5分) 13.解:把原方程整理,得3331xxx. ········································································· 1分 去分母,得1=3(x-3)-x . ························································································· 2分 去括号,得1=3x-9-x. ··························································································· 3分 解得x=5. ··················································································································· 4分 经检验,x=5 是原方程的解. ················································································ 5分
14.解:(1) △=acb42=m2+8. ····················································································· 1分 ∵对于任意实数m,m2≥0, ∴m2+8>0. ∴对于任意的实数m,方程①总有两个不相等的实数根. ······················· 2分
(2)当m=2时, 原方程变为0222xx. ············································································ 3分 ∵△=acb42=12, ∴2122x.
解得x1=31, x2=31. ····································································· 5分 15.证明:在正方形ABCD中, AD = AB, „„„„„„„„„„„„1分 ∠BAD=∠D=∠ABF=90°. „„„„„2分 ∵EA⊥AF, ∴∠BAE+∠DAE =∠BAF+∠BAE =90°. ∴∠ DAE =∠BAF. „„„„„„„„3分