浙江省宁波三校初中竞赛选拔模拟试卷
- 格式:doc
- 大小:642.50 KB
- 文档页数:14
宁波九年级数学选拔试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 若一个三角形的两边长分别是8cm和10cm,那么第三边的长度可能是多少?A. 3cmB. 5cmC. 12cmD. 17cm3. 下列哪个选项是正确的?A. 0除以任何数都等于0B. 任何数乘以0都等于0C. 任何数除以1都等于它本身D. 任何数乘以1都等于它本身4. 下列哪个数是无理数?A. √9B. √16C. √25D. √265. 下列哪个图形是正方形?A. 四条边都相等的四边形B. 四个角都相等的四边形C. 对角线互相垂直的四边形D. 对角线互相平分且相等的四边形二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 任何两个奇数相加的和都是偶数。
()3. 任何两个有理数相乘的积都是有理数。
()4. 平行四边形的对角线互相平分。
()5. 任何两个实数相加的和都是实数。
()三、填空题(每题1分,共5分)1. 最大的负整数是______。
2. 若一个数的平方是49,那么这个数是______或______。
3. 若两个数的和是10,它们的差是2,那么这两个数分别是______和______。
4. 若一个等腰三角形的底边长是8cm,腰长是5cm,那么这个三角形的周长是______cm。
5. 若一个数的算术平方根是3,那么这个数是______。
四、简答题(每题2分,共10分)1. 请简要解释有理数的概念。
2. 请简要解释无理数的概念。
3. 请简要解释平行四边形的性质。
4. 请简要解释等腰三角形的性质。
5. 请简要解释勾股定理。
五、应用题(每题2分,共10分)1. 计算下列各式的值:(1) 3^2 + 4^2(2) (3 + 4)^2(3) (3 4)^22. 解方程:2x + 3 = 113. 解方程:3(x 2) = 2(x + 1)4. 计算下列各式的值:(1) √9(2) √16(3) √255. 计算下列各式的值:(1) 3^3(2) 4^3(3) (3 + 4)^3六、分析题(每题5分,共10分)1. 已知一个三角形的两边长分别是8cm和10cm,那么第三边的长度可能是多少?请给出理由。
宁波市南三县重点名校2024届中考物理全真模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、本大题包括10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.如图所示,一螺线管的右端放着一颗可自由转动的小磁针,闭合开关S前小磁针处于静止,闭合开关S后,小磁针的N极将A.向左偏转B.向右偏转C.仍然静止D.无法判断2.在如图所示电路中,电源电压不变,当滑动变阻器的滑片P由中点向右端移动时,下列说法正确的是()A.电流表的示数变小B.电压表的示数变小C.灯泡消耗的功率变大D.电路消耗的总功率减小3.下面是小宇同学在物理学习中的几个研究实例(1)在学习汽化现象时,研究蒸发与沸腾的异同点(2)根据熔化过程的不同,将固体分为晶体和非晶体两类(3)比较电流表与电压表在使用过程中的相同点与不同点(4)在研究磁场时,引入磁感线对磁场进行描述上述几个实例中,采用的主要科学研究方法是“比较法”的为A.(1)(3)B.(2)(4)C.(2)(3)D.(3)(4)4.WiFi上网是当今广泛使用的一种无线网络传输技术,它快递信息用到的是()A.红外线B.紫外线C.电磁波D.超声波5.甲、乙两人同时从同一起跑线出发,同向做匀速直线运动,某时刻他们的位置如图所示,图中能正确反映两人运动距离与时间关系的是A.B.C.D.6.如图所示,在微型电风扇的插头处接上一个小灯泡,用手旋转叶片,发现小灯泡发光.选项图示实验原理能解释上述现象的是()A.B.C.D.7.如图所示的四个实例中,为了增大压强的是A.书包背带做得较宽B.切苹果器的刀片做得较薄C.铁轨铺在枕木上D.“好奇”号火星车模型轮子大而宽8.如图所示,在水平桌面上有甲、乙两个相同的容器,分别放有A、B两个小球,两球在水中分别处于漂浮和悬浮状态,两容器中的水面高度相同,则下列说法中正确的是A.两容器底部受到的压力相等B.两球浸没在水中的体积相等C.两球受到的浮力相等D.两球的质量相等9.如图是去年我区冬天某天天气预报的信息图片,关于图片中信息的解释正确的是A.雨的形成是汽化现象B.雪的形成过程中会放出热量C.预报的最低气温读作“摄氏零下1度”D.可以用体温计来测我区该天的气温10.如图甲、乙两容器质量相等、底面积相同,内装质量相等、深度相同的不同液体,两容器底部受到液体的压强分别为p甲和p乙,容器对桌面的压力分别为F甲和F乙,则A.p甲=p乙F甲<F乙B.p甲=p乙F甲>F乙C.p甲<p乙F甲=F乙D.p甲>p乙F甲=F乙二、填空题(本大题包括7小题,每小题2分,共14分)11.小智测酸奶的密度,用天平测出酸奶与盒子的总质量是102.8g,将部分酸奶倒入量筒中,如图甲所示,测量剩余酸奶与盒子的质量如图乙所示,量筒中酸奶的质量是_____g,酸奶的密度是_____kg/m1.12.图甲是小灯泡L和电阻R的电流随电压变化图象,将它们按图乙所示接入电路中,只闭合开关S,小灯泡的实际功率为1W;则小灯泡两端的电压为______V,再闭合开关S1,电流表示数变化了______A,此时电路消耗的总功率为______W.13.3月21日下午,吉安市罕见地下起了冰雹,冰雹的形成主要是当天气温急剧升高,空气密度_________(填“增大”或“减小”),含有大量水蒸气的气流迅速升到高空形成冰雹,冰雹下到地面后一会就消失不见了,这是_________现象(填物态变化名称)。
浙江省宁波市海曙区三校联考2025届九年级化学第一学期期中达标检测模拟试题学期期中达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、单选题(本题包括12个小题,每小题3分,共36分.每小题只有一个选项符合题意)1.下列关于燃烧和灭火的说法,不正确的是A.将木柴架空燃烧,目的是增大可燃物与氧气的接触面积,促进燃烧B.高楼住宅发生火灾时,使用楼内电梯逃生C.逃离火灾现场时,可用湿毛巾捂住口鼻,并尽量贴近地面逃离D.图书档案起火,可用液态二氧化碳灭火器灭火2.下列说法不正确的是A.原子的质量主要集中在原子核上B.分子、原子、离子都是构成物质的微粒C.原子通过得失电子可以形成离子,但离子不能形成原子D.氧原子的原子核内有8个质子和8个中子,则氧原子核外一定有8个电子3.下列物质在氧气中燃烧的装置不正确的是( )A.B.C.D.4.生产生活中的下列做法不正确的是()A.用含有小苏打的药剂来治疗胃酸过多B.人被蚊虫叮咬后,涂一些肥皂液可减轻痛痒C.医疗上用氯化钠配制溶质质量分数为0.9%的生理盐水D.用洗发剂洗发后,用呈碱性的护发剂护理头发5.某化学兴趣小组的同学在老师的指导下,正确完成如下图所示两个实验。
已知所用实验装置气密性良好。
关于该实验,有如下说法:①红磷熄灭并冷却后才能打开弹簧夹;②点燃酒精灯加入铜丝,可观察到铜丝有红色变成黑色;③停止加热后即可读出注射器内气体的体积约为24mL;④实验取用铜丝质量的多少不会影响实验结果;⑤两个实验均能证明空气是混合物;⑥两个实验均能证明空气中约含1/5体积的氧气。
其中正确说法的个数有()A.2个B.3个C.4个D.5个6.已知30℃时,Na2SO3在水中的溶解度为36g。
宁波九年级数学选拔试卷专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是无理数?()A. √9B. √16C. √3D. √13. 若a、b为实数,且a≠0,那么下列哪个式子是正确的?()A. a² = b²B. a² + b² = (a + b)²C. (a + b)² = a² + 2ab+ b²D. a² b² = (a b)²4. 下列哪个式子是等边三角形的面积公式?()A. 面积 = 1/2 底高B. 面积 = 1/2 边长高C. 面积= √3/4 边长²D. 面积 = 1/4 边长²5. 若一个圆的半径为r,则它的周长为()。
A. 2πrB. πr²C. 2rD. r²二、判断题(每题1分,共5分)1. 若a、b为实数,且a≠b,则a²≠b²。
()2. 任何实数的平方都是非负数。
()3. 若一个四边形的对角线互相平分,则它是矩形。
()4. 任何两个奇数之和都是偶数。
()5. 若a、b为实数,且a≠0,则(a/b)² = a²/b²。
()三、填空题(每题1分,共5分)1. 若一个正方形的边长为4,则它的面积是______。
2. 若一个圆的半径为3,则它的周长是______。
3. 若a、b为实数,且a≠0,则(a/b)² = ______。
4. 若一个等边三角形的边长为5,则它的面积是______。
5. 若一个正方形的对角线长为10,则它的边长是______。
四、简答题(每题2分,共10分)1. 解释什么是无理数?2. 解释什么是等边三角形?3. 解释什么是勾股定理?4. 解释什么是圆的周长?5. 解释什么是正方形的对角线?五、应用题(每题2分,共10分)1. 一个正方形的边长为6,求它的面积。
宁波九年级数学选拔试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列哪个数是质数?()A. 21B. 29C. 35D. 393. 若x² 5x + 6 = 0,则x的值为()。
A. 2 或 3B. 1 或 6C. -2 或 -3D. -1 或 -64. 在直角坐标系中,点(3, 4)关于y轴的对称点是()。
A. (3, -4)B. (-3, 4)C. (-3, -4)D. (4, 3)5. 若一组数据的平均数为10,且数据个数为5,则这组数据的总和为()。
A. 40B. 50C. 60D. 70二、判断题(每题1分,共5分)1. 两个负数相乘的结果是正数。
()2. 任何一个偶数都可以表示为2的倍数。
()3. 三角形的内角和等于180度。
()4. 若a > b,则a² > b²。
()5. 对角线互相垂直的四边形一定是菱形。
()三、填空题(每题1分,共5分)1. 若一个三角形的两边长分别为3和4,则第三边的长度范围为______。
2. 2的平方根是______。
3. 若一个等差数列的首项为2,公差为3,则第5项为______。
4. 若sinθ = 1/2,则θ的值为______度。
5. 二项式展开式(a + b)²的结果是______。
四、简答题(每题2分,共10分)1. 解释什么是质数。
2. 简述勾股定理的内容。
3. 解释等差数列和等比数列的区别。
4. 什么是函数?给出一个函数的例子。
5. 简述平行四边形的性质。
五、应用题(每题2分,共10分)1. 计算下列表达式的值:2³ + 3² 5。
2. 解方程:2x 5 = 3x + 2。
3. 若一个长方体的长、宽、高分别为4、3、2,求其体积。
4. 已知等差数列的前三项分别为2、5、8,求该数列的通项公式。
2023年浙江省宁波市海曙区三校联考毕业升学考试模拟卷数学卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.5 C.6 D.2542.某校40名学生参加科普知识竞赛(竞赛分数都是整数),竞赛成绩的频数分布直方图如图所示,成绩的中位数落在()A.50.5~60.5 分B.60.5~70.5 分C.70.5~80.5 分D.80.5~90.5 分3.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.254.函数y=ax 2+1与ay x=(a≠0)在同一平面直角坐标系中的图象可能是( ) A . B . C . D .5.3-的相反数是( )A .33B .-33C .3D .3-6.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.如图,⊙O 的半径为1,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若∠BAC 与∠BOC 互补,则弦BC 的长为( )A 3B .3C .3D .38.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=-B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=-9.如图,以O 为圆心的圆与直线y x 3=-+交于A 、B 两点,若△OAB 恰为等边三角形,则弧AB 的长度为( )A .23π B .π C .23π D .13π 10.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作弧AC 、弧CB 、弧BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形.设点I 为对称轴的交点,如图2,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE=2π,将它沿等边△DEF 的边作无滑动的滚动,当它第一次回到起始位置时,这个图形在运动中扫过区域面积是( )A .18πB .27πC .452π D .45π二、填空题(共7小题,每小题3分,满分21分) 11.函数y =1x -中,自变量x 的取值范围是________. 12.在实数范围内分解因式:226x - =_________13.如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为____个.14.在一个不透明的口袋中,有3个红球、2个黄球、一个白球,它们除颜色不同之外其它完全相同,现从口袋中随机摸出一个球记下颜色后放回,再随机摸出一个球,则两次摸到一个红球和一个黄球的概率是_____.15.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的切线与AB 的延长线交于点P ,连接AC ,若∠A=30°,PC=3,则BP 的长为 .16.因式分解:=______.17.在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有_____个.三、解答题(共7小题,满分69分)18.(10分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为,图①中m的值为;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.19.(5分)如图,在△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D的直线交BC边于点E,∠BDE=∠A.判断直线DE与⊙O的位置关系,并说明理由.若⊙O的半径R=5,tanA=34,求线段CD的长.20.(8分)先化简,再求值:(x2x2+-+24x4x4-+)÷xx2-,其中x=1221.(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作发现如图1,固定△ABC,使△DEC绕点C旋转.当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S1.则S1与S1的数量关系是.猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC中BC,CE边上的高,请你证明小明的猜想.拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,OE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDC,请直接写出相应的BF的长22.(10分)如图,已知点A(1,a)是反比例函数y1=mx的图象上一点,直线y2=﹣1122x+与反比例函数y1=mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.23.(12分)解不等式组:3(2)421152x xx x≥-+⎧⎪-+⎨<⎪⎩并把解集在数轴上表示出来.24.(14分)先化简,再求值:221121()1a aa a a a-+-÷++,其中a=3+1.2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【答案解析】易证△CFE∽△BEA,可得CF CEBE AB=,根据二次函数图象对称性可得E在BC中点时,CF有最大值,列出方程式即可解题.【题目详解】若点E在BC上时,如图∵∠EFC+∠AEB=90°,∠FEC+∠EFC=90°,∴∠CFE=∠AEB,∵在△CFE和△BEA中,90CFE AEB C B ︒∠=∠⎧⎨∠=∠=⎩, ∴△CFE ∽△BEA ,由二次函数图象对称性可得E 在BC 中点时,CF 有最大值,此时CF CEBE AB =,BE =CE =x ﹣52,即525522x y x -=-,∴225()52y x =-, 当y =25时,代入方程式解得:x 1=32(舍去),x 2=72,∴BE =CE =1,∴BC =2,AB =52, ∴矩形ABCD 的面积为2×52=5; 故选B . 【答案点睛】本题考查了二次函数顶点问题,考查了相似三角形的判定和性质,考查了矩形面积的计算,本题中由图象得出E 为BC 中点是解题的关键. 2、C 【答案解析】分析:由频数分布直方图知这组数据共有40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,据此可得.详解:由频数分布直方图知,这组数据共有3+6+8+8+9+6=40个,则其中位数为第20、21个数据的平均数,而第20、21个数据均落在70.5~80.5分这一分组内,所以中位数落在70.5~80.5分.故选C .点睛:本题主要考查了频数(率)分布直方图和中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 3、D 【答案解析】 分析:根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断. 详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,又∵被调查学生总数为120人,∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.综上所述,选项D中数据正确.故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.4、B【答案解析】测试卷分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);ayx=位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);ayx=位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.5、C【答案解析】根据只有符号不同的两个数互为相反数进行解答即可.【题目详解】所以故选C.【答案点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.6、D【答案解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【题目详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D.【答案点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.7、A【答案解析】分析:作OH⊥BC于H,首先证明∠BOC=120,在Rt△BOH中,BH=OB•sin60°=1×32,即可推出BC=2BH=3,详解:作OH⊥BC于H.∵∠BOC=2∠BAC,∠BOC+∠BAC=180°,∴∠BOC=120°,∵OH⊥BC,OB=OC,∴BH=HC,∠BOH=∠HOC=60°,在Rt△BOH中,BH=OB•sin60°=1×32=32,∴3故选A.点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线.8、D【答案解析】测试卷分析:方程22311xx x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.考点:解分式方程的步骤.9、C【答案解析】过点O 作OE AB ⊥, ∵y x 3=-+,∴(3,0)D ,(0,3)C ,∴COD 为等腰直角三角形,45ODC ∠=︒, 26sin 45322OE OD =⋅︒=⋅=, ∵OAB △为等边三角形, ∴60OAB ∠=︒, ∴622sin 6023OE AO ==⋅=︒.∴60122π22ππ36063AB r ︒=⋅=⋅=︒.故选C. 10、B 【答案解析】先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可. 【题目详解】 如图1中,∵等边△DEF 的边长为2π,等边△ABC 的边长为3, ∴S 矩形AGHF =2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG=2 1203360π⋅=3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;故选B.【答案点睛】本题考查轨迹,弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解题的关键是判断出莱洛三角形绕等边△DEF 扫过的图形.二、填空题(共7小题,每小题3分,满分21分)11、x≤1【答案解析】分析:根据二次根式有意义的条件解答即可.详解:∵二次根式有意义,被开方数为非负数,∴1 -x≥0,解得x≤1.故答案为x≤1.点睛:本题考查了二次根式有意义的条件,熟知二次根式有意义,被开方数为非负数是解题的关键.12、2((.【答案解析】先提取公因式2后,再把剩下的式子写成x2-2,符合平方差公式的特点,可以继续分解.【题目详解】2x2-6=2(x2-3)=2((.故答案为2(().【答案点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.13、8【答案解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【题目详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有2个小立方体,第三层最少有1个小正方体,∴搭成这个几何体的小正方体的个数最少是5+2+1=8(个).故答案为:8【答案点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数.14、1 3【答案解析】先画树状图展示所有36种等可能的结果数,再找出两次摸到一个红球和一个黄球的结果数,然后根据概率公式求解.【题目详解】画树状图如下:由树状图可知,共有36种等可能结果,其中两次摸到一个红球和一个黄球的结果数为12,所以两次摸到一个红球和一个黄球的概率为121= 363,故答案为1 3 .【答案点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.15、.【答案解析】测试卷分析:连接OC,已知OA=OC,∠A=30°,所以∠OCA=∠A=30°,由三角形外角的性质可得∠COB=∠A+∠ACO=60°,又因PC是⊙O切线,可得∠PCO=90°,∠P=30°,再由PC=3,根据锐角三角函数可得OC=PC•tan30°=,PC=2OC=2,即可得PB=PO﹣OB=.考点:切线的性质;锐角三角函数.16、2(x+3)(x﹣3).【答案解析】测试卷分析:先提公因式2后,再利用平方差公式分解即可,即=2(x2-9)=2(x+3)(x-3).考点:因式分解.17、1【答案解析】测试卷解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.三、解答题(共7小题,满分69分)18、(1)40人;1;(2)平均数是15;众数16;中位数15.【答案解析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【题目详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵1341410151116121731540x⨯+⨯+⨯+⨯+⨯==,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15+15=15 2,∴这组数据的中位数为15.【答案点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.19、(1)DE与⊙O相切;理由见解析;(2)92.【答案解析】(1)连接OD,利用圆周角定理以及等腰三角形的性质得出OD⊥DE,进而得出答案;(2)得出△BCD∽△ACB,进而利用相似三角形的性质得出CD的长.【题目详解】解:(1)直线DE与⊙O相切.理由如下:连接OD.∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB是⊙O直径∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD⊥DE∴DE与⊙O相切;(2)∵R=5,∴AB=10,在Rt△ABC中∵tanA=34 BCAB=∴BC=AB•tanA=10×315 42 =,∴252==,∵∠BDC=∠ABC=90°,∠BCD=∠ACB ∴△BCD∽△ACB∴CD CB CB CA=∴CD=2215()922522CBCA==.【答案点睛】本题考查切线的判定、勾股定理及相似三角形的判定与性质,掌握相关性质定理灵活应用是本题的解题关键.20、-1 3【答案解析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【题目详解】原式=[x2x2+-+()24x2-]÷xx2-=[()22x4x2---+()24x2-]÷xx2-=()22xx2-·x2x-=xx2-,当x=12时,原式=12122-=-13. 【答案点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21、解:(1)①DE ∥AC .②12S S =.(1)12S S =仍然成立,证明见解析;(3)3或2.【答案解析】(1)①由旋转可知:AC=DC ,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC 是等边三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE ∥AC .②过D 作DN ⊥AC 交AC 于点N ,过E 作EM ⊥AC 交AC 延长线于M ,过C 作CF ⊥AB 交AB 于点F .由①可知:△ADC 是等边三角形, DE ∥AC ,∴DN=CF,DN=EM .∴CF=EM .∵∠C=90°,∠B =30°∴AB=1AC .又∵AD=AC∴BD=AC .∵1211S CF BD S AC EM 22=⋅=⋅, ∴12S S =.(1)如图,过点D 作DM ⊥BC 于M ,过点A 作AN ⊥CE 交EC 的延长线于N , ∵△DEC 是由△ABC 绕点C 旋转得到,∴BC=CE ,AC=CD ,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,∴∠ACN=∠DCM ,∵在△ACN 和△DCM 中,ACN DCM CMD N AC CD ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△ACN ≌△DCM (AAS ),∴AN=DM ,∴△BDC 的面积和△AEC 的面积相等(等底等高的三角形的面积相等),即S 1=S 1;(3)如图,过点D 作DF 1∥BE ,易求四边形BEDF 1是菱形,所以BE=DF 1,且BE 、DF 1上的高相等,此时S △DCF1=S △BDE ;过点D 作DF 1⊥BD ,∵∠ABC=20°,F 1D ∥BE ,∴∠F 1F 1D=∠ABC=20°,∵BF 1=DF 1,∠F 1BD=12∠ABC=30°,∠F 1DB=90°, ∴∠F 1DF 1=∠ABC=20°,∴△DF 1F 1是等边三角形,∴DF 1=DF 1,过点D 作DG ⊥BC 于G ,∵BD=CD ,∠ABC=20°,点D 是角平分线上一点,∴∠DBC=∠DCB=12×20°=30°,BG=12BC=92, ∴∴∠CDF 1=180°-∠BCD=180°-30°=150°,∠CDF 1=320°-150°-20°=150°,∴∠CDF 1=∠CDF 1,∵在△CDF 1和△CDF 1中,1212DF DF CDF CDF CD CD ⎧⎪∠⎨⎪⎩===,∴△CDF1≌△CDF1(SAS),∴点F1也是所求的点,∵∠ABC=20°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=12×20°=30°,又∵BD=33,∴BE=12×33÷cos30°=3,∴BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或2.22、(1)反比例函数的解析式为y=﹣3x;(2)D(﹣2,32);﹣2<x<0或x>3;(3)P(4,0).【答案解析】测试卷分析:(1)把点B(3,﹣1)带入反比例函数1myx=中,即可求得k的值;(2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D坐标,观察图象可得相应x的取值范围;(3)把A(1,a)是反比例函数1myx=的解析式,求得a的值,可得点A坐标,用待定系数法求得直线AB的解析式,令y=0,解得x的值,即可求得点P的坐标.测试卷解析:(1)∵B(3,﹣1)在反比例函数1myx=的图象上,∴-1=m3,∴m=-3,∴反比例函数的解析式为3yx =-;(2)31122yxy x⎧=-⎪⎪⎨⎪=-+⎪⎩,∴3x -=1122x -+, x 2-x-6=0,(x-3)(x+2)=0,x 1=3,x 2=-2,当x=-2时,y=32, ∴D (-2,32); y 1>y 2时x 的取值范围是-2<x<0或x>32; (3)∵A (1,a )是反比例函数1m y x =的图象上一点, ∴a=-3,∴A (1,-3),设直线AB 为y=kx+b,331k b k b +=-⎧⎨+=-⎩, ∴14k b =⎧⎨=-⎩, ∴直线AB 为y=x-4,令y=0,则x=4,∴P(4,0)23、不等式组的解集为﹣7<x≤1,将解集表示在数轴上表示见解析.【答案解析】测试卷分析:先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条不等式表示出来.测试卷解析:由①得:﹣2x ≥﹣2,即x ≤1,由②得:4x ﹣2<5x +5,即x >﹣7,所以﹣7<x ≤1.在数轴上表示为:.考点:解一元一次不等式组;在数轴上表示不等式的解集.点睛:分别求出各不等式的解集,再求出其公共解集即可.不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.24、13【答案解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【题目详解】原式=()()()211·11a a a a a a a ++-+- =()211a -,当+1时,原式=13. 【答案点睛】 本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.。
浙江省宁波市2023年中考数学三模试卷(解析版)一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列各数中,最小的数是()A.﹣2B.﹣1C.0D.﹣π2.下列计算正确的是()A.(﹣2a2b)3=﹣8a6b3B.a6÷a3+a2=2a2C.2a+3b=5ab D.a2•a4=a83.北京冬奥村是2022年北京冬季奥运会、冬残奥会最大的非竞赛类场馆之一,总建筑面积约38.66万平方米.其中38.66万用科学记数法可表示为()A.0.3866×106B.3.9×105C.3.866×105D.38.66×1044.有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.5.为了解新冠肺炎疫情防控期间,学生居家进行“线上学习”情况,某班进行了某学科单元基础知识“线上测试”,其中抽查的10名学生的成绩如图所示,对于这10名学生的测试成绩,下列说法正确()A.中位数是95分B.众数是90分C.平均数是95分D.方差是156.使式子有意义的x取值范围是()A.x>﹣1B.x≥﹣1C.x<﹣1D.x≤﹣17.菱形ABCD如图所示,对角线AC、BD相交于点O,若BD=6,菱形ABCD面积等于24,且点E为AD的中点,则线段OE的长为()A.2B.2.5C.4D.58.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.9.如图,在矩形ABCD中AB=10,BC=8,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A1B1C1D1的边A1B1与⊙O相切于点E,则BB1的长为()A.B.2C.D.10.如图,将图1中的长方形纸片剪成①号、②号、③号、④号正方形和⑤号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是()A.只需知道图1中大长方形的周长即可B.只需知道图2中大长方形的周长即可C.只需知道③号正方形的周长即可D.只需知道⑤号长方形的周长即可二、填空题(每小题5分,共30分)11.(5分)实数4的算术平方根为.12.(5分)分解因式:3x2﹣12=.13.(5分)一个不透明的袋子里装有2个黄球,3个红球和5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.14.(5分)如图,圆锥的底面圆的半径是4,其母线长是8,则圆锥侧面展开图的扇形的圆心角度数是.15.(5分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,∠BCD=45°,AB=BD=4,E为AD上一动点,连接BE,将△ABE沿BE折叠得到△FBE,当点F落在平行四边形的对角线上时,OF的长为.16.(5分)如图,已知A为反比例函数y=(k>0)图象上一点,B为x轴正半轴上一点,过点B作BC⊥x轴交反比例函数图象于点C,连结OA,AB,OC.当OA=AB,△DBC 的面积等于1时,k的值为.三、解答题(本大题有8小题,共80分)17.(1)计算:4sin60°+(﹣)﹣1﹣+|﹣5|.(2)解不等式组:.18.图①、图②都是由边长为1的小等边三角形构成的网格,△ABC为格点三角形.请仅用无刻度的直尺在网格中完成下列作图,不写作法(1)在图①中,画出△ABC中AB边上的中线CM;(2)在图②中,画出△ABC中AC边上的高BN.19.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)20.2021年,中国航天人在太空又书写了新的奇迹,为增进学生对航天知识的了解,某校开展了相关的宣传教育活动.现随机抽取部分学生进行航天知识竞赛活动,并将所得数据绘制成如下不完整的条形统计图和扇形统计图.根据以上信息,回答下列问题:(1)本次抽样的样本容量为,“良好”所在扇形的圆心角的度数是:;(2)补全条形统计图;(3)若该校共有学生1500人,估计该校学生在这次竞赛中获得良好及以上的学生有多少人?21.某同学利用数学知识测量建筑物DEFG的高度.他从点A出发沿着坡度为i=5:12的斜坡AB步行26米到达点B处,用测角仪测得建筑物顶端D的仰角为37°,建筑物底端E的俯角为30°.若AF为水平的地面,测角仪竖直放置,其高度BC=2米.(1)求点B到水平地面的距离.(2)求建筑物的高度DE.(精确到0.1米)(参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.端午节是我们中华民族的传统节日,某校九年级1班准备在端午节当天组织学生包粽子.班级分为男生(甲)女生(乙)两个小组,甲组男生在包粽子过程中因体育锻炼暂停一会,然后以原来的工作效率继续包粽子,由于时间紧任务重,乙组女生也加入共同加工粽子.设甲组男生加工时间t(分钟),甲组加工粽子的数量为y甲(个),乙组女生加工粽子的数量为y乙(个),其函数图象如图所示.(1)求y乙与t之间的函数关系式,并写出t的取值范围;(2)求a的值,并说明a的实际意义;(3)甲组男生加工多长时间时,甲、乙两组加工粽子的总数为480个?直接写出答案.23.【证明体验】(1)如图(1),在△ABC中,∠ACB=2∠ABC,AD平分∠BAC交BC于D,点E在AB上,AE=AC,连结DE,求证:EB=CD.【思考探究】(2)如图(2),在(1)的条件下,过点C作CF∥DE交AB于点F,交AD 于点G,若AB=6,AC=4,求FG的长.【拓展延伸】(3)如图(3),在四边形ABCD中,∠BAC=90°,且∠ABC=∠BDC=∠ACD,若AB=4,CD=,求BD的长.24.如图,⊙O的直径AB垂直于弦CD于点E,点P是CD延长线上异于点D的一个动点,连结AP交⊙O于点Q,连结CQ交AB于点F,连结AC,DQ.(1)求证:∠ACQ=∠CP A;(2)若AB=10,CD=8,①若PD=4,求CQ的长;②若PD=x,=y,求y与x之间的函数关系式;(3)在(2)的条件下,求AQ•DQ的最大值.参考答案与试题解析一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.下列各数中,最小的数是()A.﹣2B.﹣1C.0D.﹣π【分析】根据负数小于0,两个负数相比较,绝对值大的反而小可得答案.【解答】解:∵﹣π<﹣2<﹣1<0,∴最小的数是﹣π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握两个负数相比较,绝对值大的反而小.2.下列计算正确的是()A.(﹣2a2b)3=﹣8a6b3B.a6÷a3+a2=2a2C.2a+3b=5ab D.a2•a4=a8【分析】利用积的乘方的法则,同底数幂的除法的法则,同底数幂的乘法的法则,合并同类项的法则对各项进行运算即可.【解答】解:A、(﹣2a2b)3=﹣8a6b3,故A符合题意;B、a6÷a3+a2=a3+a2,故B不符合题意;C、2a与3b不属于同类项,不能合并,故C不符合题意;D、a2•a4=a6,故D不符合题意;故选:A.【点评】本题主要考查积的乘方,同底数幂的乘法,同底数幂的除法,合并同类项,解答的关键是对相应的运算法则的掌握.3.北京冬奥村是2022年北京冬季奥运会、冬残奥会最大的非竞赛类场馆之一,总建筑面积约38.66万平方米.其中38.66万用科学记数法可表示为()A.0.3866×106B.3.9×105C.3.866×105D.38.66×104【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,且n比原来的整数位数少1,据此判断即可.【解答】解:38.66万=386600=3.866×105.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.有一个铁制零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()A.B.C.D.【分析】找到从左面看所得到的图形即可.【解答】解:左边看去是一个正方形,中间有一个圆柱形孔,圆柱的左视图是矩形,所以左视图的正方形里面还要两条虚线.故选:C.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图;注意看到的用实线表示,看不到的用虚线表示.5.为了解新冠肺炎疫情防控期间,学生居家进行“线上学习”情况,某班进行了某学科单元基础知识“线上测试”,其中抽查的10名学生的成绩如图所示,对于这10名学生的测试成绩,下列说法正确()A.中位数是95分B.众数是90分C.平均数是95分D.方差是15【分析】A、根据中位数的定义将这组数据从小到大重新排列,求出最中间的2个数的平均数,即可得出中位数;B、根据众数的定义找出出现次数最多的数.C、根据加权平均数公式代入计算可得;D、根据方差公式计算即可.【解答】解:A、中位数是90分,错误;B、众数是90分,正确;C、平均数==91,错误;D、方差=[2(85﹣91)2+5(90﹣91)2+2×(95﹣91)2+(100﹣91)2]=19,错误;故选:B.【点评】本题考查了众数、平均数、中位数以及方差的知识,熟练掌握概念及公式是解题的关键.6.使式子有意义的x取值范围是()A.x>﹣1B.x≥﹣1C.x<﹣1D.x≤﹣1【分析】根据二次根式有意义的条件是:被开方数是非负数,以及分母不等于0,据此即可求解.【解答】解:根据题意得:x+1>0,解得:x>﹣1.故选:A.【点评】本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.7.菱形ABCD如图所示,对角线AC、BD相交于点O,若BD=6,菱形ABCD面积等于24,且点E为AD的中点,则线段OE的长为()A.2B.2.5C.4D.5【分析】由菱形的面积公式可求AC=8,由勾股定理可求AD,由直角三角形的性质可求解.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO=3,∵BD=6,菱形ABCD面积等于24,∴24=,∴AC=8,∴AO=4,∴AD===5,∵点E为AD的中点,AC⊥BD,∴OE=AD=,故选:B.【点评】本题考查了菱形的性质,直角三角形的性质,勾股定理,求出AD的长是解题的关键.8.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A.B.C.D.【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【解答】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.9.如图,在矩形ABCD中AB=10,BC=8,以CD为直径作⊙O.将矩形ABCD绕点C旋转,使所得矩形A1B1C1D1的边A1B1与⊙O相切于点E,则BB1的长为()A.B.2C.D.【分析】连接EO并延长交线段CD1于点F,过点B1作B1G⊥BC于点G,由题意可得:四边形B1EFC为矩形,则EF=B1C=8,由勾股定理可求线段CF的长;由旋转的性质可得:∠OCF=∠B1CG,则sin∠OCF=sin∠B1CG=,cos∠OCF=cos∠B1CG=;利用直角三角形的边角关系可求B1G和CG,最后利用勾股定理可得结论.【解答】解:连接EO并延长交线段CD1于点F,过点B1作B1G⊥BC于点G,如图,∵边A1B1与⊙O相切于点E,∴OE⊥A1B1.∵四边形A1B1C1D1是矩形,∴A1B1⊥B1C,B1C⊥CD1.∴四边形B1EFC为矩形.∴EF=B1C=8.∵CD为⊙O的直径,∴OE=DO=OC=AB=5.∴OF=EF﹣OE=3.∵A1B1∥CD1,OE⊥A1B1,∴OF⊥CD1.∴CF==4.由旋转的性质可得:∠OCF=∠B1CG.∴sin∠OCF=sin∠B1CG=,cos∠OCF=cos∠B1CG=.∵sin∠OCF=,cos∠OCF=,∴,.∴B1G=,CG=.∴BG=BC﹣CG=.∴BB1===.故选:C.【点评】本题主要考查了矩形的判定与性质,圆的切线的性质,勾股定理,直角三角形的边角关系,旋转的性质,连接EO,利用切线的性质得到OE⊥A1B1,是解决此类问题常添加的辅助线.10.如图,将图1中的长方形纸片剪成①号、②号、③号、④号正方形和⑤号长方形,并将它们按图2的方式无重叠地放入另一个大长方形中,若需求出没有覆盖的阴影部分的周长,则下列说法中错误的是()A.只需知道图1中大长方形的周长即可B.只需知道图2中大长方形的周长即可C.只需知道③号正方形的周长即可D.只需知道⑤号长方形的周长即可【分析】设①号正方形的边长为x,②号正方形的边长为y,则③号正方形的边长为x+y,④号正方形的边长为2x+y,⑤号长方形的长为3x+y,宽为y﹣x,根据图2得没有覆盖的阴影部分的周长=2(AB+BD),计算即可得到答案.【解答】解:设①号正方形的边长为x,②号正方形的边长为y,则③号正方形的边长为x+y,④号正方形的边长为2x+y,⑤号长方形的长为3x+y,宽为y﹣x,∴AB=2x+y+x+y﹣y=3x+y,BD=y﹣x+y+2x+y﹣x﹣y=2y,根据题意得:没有覆盖的阴影部分的周长=2 (AB+BD)=2(3x+y+2y)=6(x+y).∵图1中大长方形的周长=2(3x+y+y+x+y+y)=8(x+y);图2中大长方形的周长=2(2x+y+x+y+y﹣x+y+2x+y)=8x+10y;⑤号长方形的周长=2(y﹣x+3x+y)=4(x+y);∴选项A,C,D说法正确,不符合题意,选项B说法错误,符合题意.故选:B.【点评】此题考查整式加减的应用,解题的关键是设出未知数,列代数式表示各线段进而解决问题.二、填空题(每小题5分,共30分)11.(5分)实数4的算术平方根为2.【分析】依据算术平方根根的定义求解即可.【解答】解:∵22=4,∴4的算术平方根是2.故答案为:2.【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.12.(5分)分解因式:3x2﹣12=3(x﹣2)(x+2).【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式.13.(5分)一个不透明的袋子里装有2个黄球,3个红球和5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵袋子中装有10个小球,其中红球有3个,∴从袋子中随机取出1个球,则它是红球的概率是.故答案为:.【点评】本题考查了概率公式.用到的知识点为:概率=所求情况数与总情况数之比.14.(5分)如图,圆锥的底面圆的半径是4,其母线长是8,则圆锥侧面展开图的扇形的圆心角度数是180°.【分析】先由半径求得圆锥底面周长,再由扇形的圆心角的度数=圆锥底面周长×180÷8π计算.【解答】解:圆锥底面周长=2×4π=8π,∴扇形的圆心角的度数=8π×180÷8π=180°.故答案为:180°.【点评】本题考查了圆锥的计算,解决本题的关键是根据圆锥的底面周长得到扇形圆心角的表达式子.15.(5分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,∠BCD=45°,AB=BD=4,E为AD上一动点,连接BE,将△ABE沿BE折叠得到△FBE,当点F落在平行四边形的对角线上时,OF的长为2或.【分析】分两种情形:如图1中,当点F落在BD上时,点F与D重合.如图2中,当点F落在AC上时,设BE交AC于点J.分别求出OF即可.【解答】解:如图1中,当点F落在BD上时,点F与D重合.∵四边形ABCD是平行四边形,∴OB=OD=BD=2,即OF=2;如图2中,当点F落在AC上时,设BE交AC于点J.∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∵BA=BD=4,∴∠BAD=∠BDA=45°,∴∠ABD=90°,∴AO===2,∵BA,BF关于BE对称,∴BF=BA,BE⊥AF,∴AJ=JF,∵•AB•OB=•OA•BJ,∴BJ==,∴OJ===,∴AJ=JF=AO﹣OJ=2﹣=,∴OF=FJ﹣OJ=﹣=,综上所述,满足条件的OF的值为2或.故答案为:2或.【点评】本题考查翻折变换,平行四边形的性质,解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.(5分)如图,已知A为反比例函数y=(k>0)图象上一点,B为x轴正半轴上一点,过点B作BC⊥x轴交反比例函数图象于点C,连结OA,AB,OC.当OA=AB,△DBC 的面积等于1时,k的值为10.【分析】过点A作AF⊥x轴于点F,交OC于点E,易证△FOE∽△BOC,根据相似三角形的性质可得EF:BC=OE:OC=OF:OB=1:2,再根据△AOF的面积=△OBC的面积=,可得BC:AF=1:2,进一步可得BC:AE=2:3,根据△BDC的面积可得△ADE的面积,易证△BDC∽△ADE,可得△ADC的面积,再根据E是OC的中点,可得△AOE的面积,进一步可得△AOF的面积,根据反比例函数k的几何意义可得k的值.【解答】解:过点A作AF⊥x轴于点F,交OC于点E,如图所示,∵AO=AB∴OF=FB,∵BC⊥x轴,∴∠OBC=∠OFE=90°,∵∠FOE=∠BOC,∴△FOE∽△BOC,∴EF:BC=OE:OC=OF:OB=1:2,∵△AOF的面积=△OBC的面积=,∵OF:OB=1:2,∴AF:BC=2:1,∵EF:BC=1:2,∴BC:AE=2:3,∵AF∥BC,∴∠AED=∠BCD,∠EAD=∠CBD,∴△BDC∽△ADE,∵△DBC的面积等于1,∴△ADE的面积为,∵DC:DE=BC:AE=2:3,∴△ADC的面积==,∴△AEC的面积为=,∴△AOE的面积为,∵EF:AE=1:3,∴△AEF的面积为=,∴△AOF的面积为=5,∴k=2×5=10,故答案为:10.【点评】本题考查了反比例函数k的几何意义,涉及相似三角形的判定和性质,三角形的面积等,熟练掌握反比例函数k的几何意义是解题的关键.三、解答题(本大题有8小题,共80分)17.(1)计算:4sin60°+(﹣)﹣1﹣+|﹣5|.(2)解不等式组:.【分析】(1)原式利用特殊角的三角函数值,负整数指数幂,二次根式性质,以及绝对值的代数意义化简即可得到结果;(2)分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【解答】解:(1)原式=4×+(﹣3)﹣2+5=2﹣3﹣2+5=2;(2)不等式组,由①得:x≥,由②得:x>3,∴不等式组的解集为x>.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.18.图①、图②都是由边长为1的小等边三角形构成的网格,△ABC为格点三角形.请仅用无刻度的直尺在网格中完成下列作图,不写作法(1)在图①中,画出△ABC中AB边上的中线CM;(2)在图②中,画出△ABC中AC边上的高BN.【分析】(1)如图①中,根据三角形的中线的定义画出图形即可;(2)如图②中,根据三角形高的定义画出图形即可.【解答】解:(1)如图①中,线段CM即为所求;(2)如图②中,线段BN即为所求.【点评】本题考查作图﹣应用与设计作图,三角形的中线,高,等边三角形的性质等知识,解题的关键是掌握三角形的中线,高的定义,属于中考常考题型.19.如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0),B(3,2).(1)求m的值和抛物线的解析式;(2)求不等式x2+bx+c>x+m的解集.(直接写出答案)【分析】(1)分别把点A(1,0),B(3,2)代入直线y=x+m和抛物线y=x2+bx+c,利用待定系数法解得y=x﹣1,y=x2﹣3x+2;(2)根据题意列出不等式,直接解二元一次不等式即可,或者根据图象可知,x2﹣3x+2>x﹣1的图象上x的范围是x<1或x>3.【解答】解:(1)把点A(1,0),B(3,2)分别代入直线y=x+m和抛物线y=x2+bx+c 得:0=1+m,,∴m=﹣1,b=﹣3,c=2,所以y=x﹣1,y=x2﹣3x+2;(2)x2﹣3x+2>x﹣1,解得:x<1或x>3.【点评】主要考查了用待定系数法求函数解析式和二次函数的图象的性质.要具备读图的能力.20.2021年,中国航天人在太空又书写了新的奇迹,为增进学生对航天知识的了解,某校开展了相关的宣传教育活动.现随机抽取部分学生进行航天知识竞赛活动,并将所得数据绘制成如下不完整的条形统计图和扇形统计图.根据以上信息,回答下列问题:(1)本次抽样的样本容量为60,“良好”所在扇形的圆心角的度数是:144°;(2)补全条形统计图;(3)若该校共有学生1500人,估计该校学生在这次竞赛中获得良好及以上的学生有多少人?【分析】(1)根据优秀的人数和所占比例即可求出样本容量,根据良好的人数求出所占比例即可计算“良好”所在扇形的圆心角的度数;(2)求出合格的人数,补全条形统计图即可;(3)根据样本中良好及以上的学生所占比例估算全校学生的情况即可.【解答】解:(1)15÷25%=60,×360°=144°,故答案为:60,144°;(2)60﹣24﹣15﹣9=12(人),补全条形图如下:(3)1500×=975(人),∴估计该校学生在这次竞赛中获得良好及以上的学生有975人.【点评】本题主要考查条形统计图的知识,熟练根据条形统计图和扇形统计图得出相应的数据是解题的关键.21.某同学利用数学知识测量建筑物DEFG的高度.他从点A出发沿着坡度为i=5:12的斜坡AB步行26米到达点B处,用测角仪测得建筑物顶端D的仰角为37°,建筑物底端E的俯角为30°.若AF为水平的地面,测角仪竖直放置,其高度BC=2米.(1)求点B到水平地面的距离.(2)求建筑物的高度DE.(精确到0.1米)(参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长CB交AF于点H,根据斜坡AB的坡度为i=5:12,设BH=5x米,AH=12x米,然后在Rt△ABH中,利用勾股定理进行计算即可解答;(2)过点C作CP⊥DE,垂足为P,则CH=PE=12米,然后在Rt△CPE中,利用锐角三角函数的定义求出CP的长,再在Rt△CDP中,利用锐角三角函数的定义求出DP 的长,最后进行计算即可解答.【解答】解:(1)延长CB交AF于点H,∵斜坡AB的坡度为i=5:12,∴=,设BH=5x米,AH=12x米,在Rt△ABH中,AB=26米,∴AH2+BH2=AB2,∴(12x)2+(5x)2=262,∴x=2或x=﹣2(舍去),∴BH=5x=10(米),∴点B到水平地面的距离为10米;(2)过点C作CP⊥DE,垂足为P,则CH=PE=BC+BH=2+10=12(米),在Rt△CPE中,∠PCE=30°,∴CP===12(米),在Rt△CDP中,∠DCP=37°,∴DP=CP•tan37°≈12×0.75=9(米),∴DE=DP+PE=9+12≈27.6(米),∴建筑物的高度DE约为27.6米.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.端午节是我们中华民族的传统节日,某校九年级1班准备在端午节当天组织学生包粽子.班级分为男生(甲)女生(乙)两个小组,甲组男生在包粽子过程中因体育锻炼暂停一会,然后以原来的工作效率继续包粽子,由于时间紧任务重,乙组女生也加入共同加工粽子.设甲组男生加工时间t(分钟),甲组加工粽子的数量为y甲(个),乙组女生加工粽子的数量为y乙(个),其函数图象如图所示.(1)求y乙与t之间的函数关系式,并写出t的取值范围;(2)求a的值,并说明a的实际意义;(3)甲组男生加工多长时间时,甲、乙两组加工粽子的总数为480个?直接写出答案.【分析】(1)利用待定系数法求函数解析式;(2)先求出男生前30分钟包粽子的速度,利用速度乘以时间计算a的值;(3)根据工作效率不变求出y甲的解析式,由y甲+y乙=480,列得4t﹣40+12t﹣600=480,求出t即可.【解答】解:(1)设y乙与t之间的函数关系式是y乙=kt+b,则,解得,即y乙与t之间的函数关系式是y乙=12t﹣600(50≤t≤80);(2)由图象可得,男生包粽子的速度为120÷30=4(个/分钟),∴a=120+4×(80﹣40)=280,即a的值是280,实际意义是当男生包粽子80分钟时,一共包粽子280个;(3)由题意可得,当40≤t≤80时,由于工作效率没有变,∴y甲=120+4(t﹣40)=4t﹣40,当y甲+y乙=480时,4t﹣40+12t﹣600=480,得t=70,∴甲组男生加工70分钟时,甲、乙两组加工粽子的总数为480个.【点评】此题考查了一次函数的实际应用,一元一次方程的实际应用,正确理解函数图象并得到相关的信息及正确掌握一次函数的知识是解题的关键.23.【证明体验】(1)如图(1),在△ABC中,∠ACB=2∠ABC,AD平分∠BAC交BC于D,点E在AB上,AE=AC,连结DE,求证:EB=CD.【思考探究】(2)如图(2),在(1)的条件下,过点C作CF∥DE交AB于点F,交AD 于点G,若AB=6,AC=4,求FG的长.【拓展延伸】(3)如图(3),在四边形ABCD中,∠BAC=90°,且∠ABC=∠BDC=∠ACD,若AB=4,CD=,求BD的长.【分析】(1)证明△ADE≌△ADC(SAS),可得∠AED=∠C,ED=CD,根据三角形外角的性质可得出∠B=∠EDB,则BE=DE,即可得出结论;(2)证明△CAF∽△BAC,根据相似三角形的性质得AC2=AF•AB,可得AF=,再证△AFG∽△AED,由相似三角形的性质可求解;(3)过点B作BH⊥CD交DC的延长线于H,根据全等三角形的性质可得BH=AB=4,通过证明△BCH∽△DBH,可求CH=,DH==6,由勾股定理可求解.【解答】(1)证明:∵AD平分∠,∴∠BAD=∠CAD,在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴∠AED=∠C,ED=CD,∵∠AED是△BED的外角,∴∠AED=∠B+∠EDB,∴∠C=∠B+∠EDB,∵∠C=2∠B,∴2∠B=∠B+∠EDB,∴∠B=∠EDB,∴BE=DE,∴EB=CD;(2)解:∵CF∥DE,∴∠BCF=∠BDE,∵∠BDE=∠B=∠ACB,∴∠BCF=ACB,∴∠ACF=∠BCF=∠B,∵∠CAF=∠CAB,∴△CAF∽△BAC,∴,∴AC2=AF•AB,∵AB=6,AC=4,∴AF=,∵BE=AB﹣AE=AB﹣AC=6﹣4=2,∴DE=BE=2,∵CF∥DE,∴△AFG∽△AED,∴,∴,∴FG=;(3)解:过点B作BH⊥CD交DC的延长线于H,设∠ABC=∠BDC=∠ACD=α,则∠ACD=2α,∵∠BAC=90°,∴∠ACB=90﹣α,∴∠BCH=180﹣2α﹣(90﹣α)=90°﹣α,∴∠ACB=∠BCH,∵BH⊥CD,∴∠H=∠BAC=90°,在△ABC和△HBC中,,∴△ABC≌△HBC(AAS),∴BH=AB=4,∵∠H=90°,∴∠CBH=90°﹣(90°﹣α)=α=∠BDH,∵∠H=∠H,∴△BCH∽△DBH,∴,∴BH2=CH•DH,∴42=CH•DH=CH•(CH+CD),∴42=CH•(CH+),∴CH=或﹣6(不合题意,舍去),∴DH==6,∴BD===2.【点评】本题是四边形综合题,考查了全等三角形的判定与性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质,熟练掌握全等三角形的判定与性质以及相似三角形的判定和性质是解本题的关键.24.如图,⊙O的直径AB垂直于弦CD于点E,点P是CD延长线上异于点D的一个动点,连结AP交⊙O于点Q,连结CQ交AB于点F,连结AC,DQ.(1)求证:∠ACQ=∠CP A;(2)若AB=10,CD=8,①若PD=4,求CQ的长;②若PD=x,=y,求y与x之间的函数关系式;(3)在(2)的条件下,求AQ•DQ的最大值.【分析】(1)连接BQ,利用圆周角定理,垂直的意义,通过等量代换即可得出结论;(2)①通过证明△CAQ∽△P AC,可得,即可求解;②分别求出S△QAC=×S△PDQ,S△DCQ=S△PDQ,即可求解;(3)根据△ACQ∽△APC和△PDQ∽△P AC分别表示出AQ和DQ,然后求得AQ•DQ 的关系式,根据基本不等式求得结果.【解答】(1)证明:连接BQ,如图,∵AB为⊙O的直径,∴∠AQB=90°,∴∠QAB+∠B=90°,∵PE⊥AE,∴∠QAB+∠P=90°,∴∠P=∠B,∵∠B=∠ACQ,∴∠ACQ=∠CP A;(2)解:①如图,连接OD,∵AB=10,CD=8,AB⊥CD,∴AO=BO=OD=5,DE=CE=4,∴OE===3,∴AE=8,∴AC===4,∵PD=4,∴PE=8,PC=12,∴AP===8,∵∠ACQ=∠CP A,∠CAQ=∠CAP,∴△CAQ∽△P AC,∴,∴=,∴CQ=3;②∵四边形AQDC为圆的内接四边形,∴∠PDQ=∠QAC,∵∠ACQ=∠CP A,∴△PDQ∽△CAQ,∴=()2=,∴S△QAC=×S△PDQ,∵△PDQ与△DCQ是等高的三角形,∴=,∴S△DCQ=S△PDQ,∵=y,∴y===∴y与x之间的函数关系式为y=;(3)解:在Rt△APE中,AP==,由(1)得:∠ACQ=∠CP A,∵∠CAQ=∠P AC,∴△CAQ∽△P AC,∴=,∴AQ==,∵四边形ACDQ内接于⊙O,∴∠PDQ=∠P AC,∵∠P=∠P,∴△PDQ∽△P AC,∴,∴DQ==,∴AQ•DQ==256•=256•,∵x+≥2=8,∴AQ•DQ≤256•=40﹣8,∴AQ•DQ的最大值为:40﹣8.【点评】本题考查了圆的有关性质,相似三角形的判定和性质,完全平方公式等知识,解决问题的关键根据相似表示出相关线段的长.。
2024届浙江省宁波市海曙区三校联考中考押题数学预测卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是()A.B.C.D.2.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置()A.点A的左侧B.点A点B之间C.点B点C之间D.点C的右侧3.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()A.14B.12C.34D.564.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-5.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+b D.6ab2÷2ab=3b6.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×1087.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行一百步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”这是一道行程问题,意思是说:走路快的人走100步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?如果走路慢的人先走100步,设走路快的人要走 x 步才能追上走路慢的人,那么,下面所列方程正确的是()A .x x 10060100-= B .x x 10010060-= C .x x 10060100+= D .x x 10010060+= 8.下列图形中为正方体的平面展开图的是( )A .B .C .D .9.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )A .B .C .D .10.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是( )A .17B .27C .37D .4711.在﹣3,﹣1,0,1四个数中,比﹣2小的数是( ) A .﹣3B .﹣1C .0D .112.如图,矩形AEHC 是由三个全等矩形拼成的,AH 与BE ,BF ,DF ,DG ,CG 分别交于点,,,,P Q K M N ,设BPQ ,DKM △,CNH △的面积依次为1S ,2S ,3S ,若1320S S +=,则2S 的值为( )A.6 B.8 C.10 D.12二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,▱ABCD中,对角线AC,BD相交于点O,且AC⊥BD,请你添加一个适当的条件________,使ABCD成为正方形.14.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.15.直角三角形的两条直角边长为6,8,那么斜边上的中线长是____.16.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.17.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.18.等腰梯形是__________对称图形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(623182sin60(1)2-︒⎛⎫-+-+ ⎪⎝⎭解不等式组3(1)45513x xxx--⎧⎪-⎨->⎪⎩,并写出它的所有整数解.20.(6分)如图,抛物线y =ax 2+bx+c (a >0)的顶点为M ,直线y =m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.(1)由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是_____.(2)抛物线y =212x 对应的准蝶形必经过B (m ,m ),则m =_____,对应的碟宽AB 是_____. (3)抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (x p ,y p ),使得∠APB 为锐角,若有,请求出y p 的取值范围.若没有,请说明理由.21.(6分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 与⊙O 相交于点D ,点E 在⊙O 上,且DE=DA ,AE 与BC 交于点F . (1)求证:FD=CD ;(2)若AE=8,tan ∠E=,求⊙O 的半径.22.(8分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度. 23.(8分)先化简,再求值:242a a a a⎛⎫--÷ ⎪⎝⎭,其中a 满足a 2+2a ﹣1=1. 24.(10分)先化简,再求值:(31m +﹣m +1)÷241m m -+,其中m 的值从﹣1,0,2中选取. 25.(10分)如图,二次函数y =12x 2+bx+c 的图象交x 轴于A 、D 两点,并经过B 点,已知A 点坐标是(2,0),B点坐标是(8,6).求二次函数的解析式;求函数图象的顶点坐标及D 点的坐标;二次函数的对称轴上是否存在一点C ,使得△CBD 的周长最小?若C 点存在,求出C 点的坐标;若C 点不存在,请说明理由.26.(12分)某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润y A(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元) 1 2 2.5 3 5y A(万元) 0.4 0.8 1 1.2 2信息二:如果单独投资B种产品,则所获利润y B(万元)与投资金额x(万元)之间存在二次函数关系:y B=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出y B与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示y A与x之间的关系,并求出y A与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?27.(12分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上请根据阅读材料,解决下列问题:如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.(I)旋转中心是点,旋转了(度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】试题分析:由题意可知:从左面看得到的平面图形是长方形是柱体,从上面看得到的平面图形是圆的是圆柱或圆锥,综合得出这个几何体为圆柱,由此选择答案即可.解:从左面看得到的平面图形是长方形是柱体,符合条件的有A、C、D,从上面看得到的平面图形是圆的是圆柱或圆锥,符合条件的有A、B,综上所知这个几何体是圆柱.故选A.考点:由三视图判断几何体.2、C【解题分析】分析:根据题中所给条件结合A、B、C三点的相对位置进行分析判断即可.详解:<,这与已知不符,故不能选A;A选项中,若原点在点A的左侧,则a cB选项中,若原点在A、B之间,则b>0,c>0,这与b·c<0不符,故不能选B;>且b·c<0,与已知条件一致,故可以选C;C选项中,若原点在B、C之间,则a cD选项中,若原点在点C右侧,则b<0,c<0,这与b·c<0不符,故不能选D.故选C.点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键.3、C【解题分析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率【题目详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=123 164=,故选C.【题目点拨】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.4、A【解题分析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.5、D【解题分析】各项计算得到结果,即可作出判断.【题目详解】解:A、原式=2a,不符合题意;B、原式=a2-2ab+b2,不符合题意;C、原式=a2+ab,不符合题意;D、原式=3b,符合题意;故选D【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、A【解题分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n-,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:将0.0000000076用科学计数法表示为97.610-⨯. 故选A. 【题目点拨】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定. 7、B 【解题分析】解:设走路快的人要走 x 步才能追上走路慢的人,根据题意得:10010060x x -=.故选B . 点睛:本题考查了一元一次方程的应用.找准等量关系,列方程是关键. 8、C 【解题分析】利用正方体及其表面展开图的特点依次判断解题. 【题目详解】由四棱柱四个侧面和上下两个底面的特征可知A ,B ,D 上底面不可能有两个,故不是正方体的展开图,选项C 可以拼成一个正方体,故选C . 【题目点拨】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键. 9、B 【解题分析】解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B . 10、D 【解题分析】由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可. 【题目详解】因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形.在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是47.故选D.【题目点拨】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键.11、A【解题分析】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,根据有理数比较大小的法则即可选出答案.【题目详解】因为正数是比0大的数,负数是比0小的数,正数比负数大;负数的绝对值越大,本身就越小,所以在-3,-1,0,1这四个数中比-2小的数是-3,故选A.【题目点拨】本题主要考查有理数比较大小,解决本题的关键是要熟练掌握比较有理数大小的方法.12、B【解题分析】由条件可以得出△BPQ∽△DKM∽△CNH,可以求出△BPQ与△DKM的相似比为12,△BPQ与△CNH相似比为13,由相似三角形的性质,就可以求出1S,从而可以求出2S.【题目详解】∵矩形AEHC是由三个全等矩形拼成的,∴AB=BD=CD,AE∥BF∥DG∥CH,∴∠BQP=∠DMK=∠CHN,∴△ABQ∽△ADM,△ABQ∽△ACH,∴12AB BQAD DM==,13AB BQAC CH==,∵EF=FG= BD=CD,AC∥EH,∴四边形BEFD、四边形DFGC是平行四边形,∴BE∥DF∥CG,∴∠BPQ=∠DKM=∠CNH,又∵∠BQP=∠DMK=∠CHN,∴△BPQ∽△DKM,△BPQ∽△CNH,∴221211()24S BQ S DM ⎛⎫=== ⎪⎝⎭,221311()39S BQ S CH ⎛⎫=== ⎪⎝⎭, 即214S S =,319S S =,1320S S +=,∴11920S S +=,即11020S =, 解得:12S =, ∴214S S =42=⨯8=,故选:B . 【题目点拨】本题考查了矩形的性质,平行四边形的判定和性质,相似三角形的判定与性质,三角形的面积公式,得出S 2=4S 1,S 3=9S 1是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、∠BAD=90° (不唯一) 【解题分析】根据正方形的判定定理添加条件即可. 【题目详解】解:∵平行四边形 ABCD 的对角线AC 与BD 相交于点O ,且AC ⊥BD , ∴四边形ABCD 是菱形,当∠BAD=90°时,四边形ABCD 为正方形. 故答案为:∠BAD=90°. 【题目点拨】本题考查了正方形的判定:先判定平行四边形是菱形,判定这个菱形有一个角为直角. 14、4.8或6411【解题分析】根据题意可分两种情况,①当CP 和CB 是对应边时,△CPQ ∽△CBA 与②CP 和CA 是对应边时,△CPQ ∽△CAB ,根据相似三角形的性质分别求出时间t 即可. 【题目详解】①CP 和CB 是对应边时,△CPQ ∽△CBA ,所以CPCB=CQCA,即16216t-=12t,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以CPCA=CQCB,即16212t-=16t,解得t=64 11.综上所述,当t=4.8或6411时,△CPQ与△CBA相似.【题目点拨】此题主要考查相似三角形的性质,解题的关键是分情况讨论.15、1.【解题分析】试题分析:∵直角三角形的两条直角边长为6,8,∴由勾股定理得,斜边=10.∴斜边上的中线长=12×10=1.考点:1.勾股定理;2. 直角三角形斜边上的中线性质.16、y1<y1【解题分析】直接利用一次函数的性质分析得出答案.【题目详解】解:∵直线经过第一、三、四象限,∴y随x的增大而增大,∵x1<x1,∴y1与y1的大小关系为:y1<y1.故答案为:y1<y1.【题目点拨】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.17、(﹣2,2)【解题分析】试题分析:∵直线y=2x+4与y轴交于B点,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐标为(﹣2,2).考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.18、轴【解题分析】根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.【题目详解】画图如下:结合图形,根据轴对称的定义及等腰梯形的特征可知,等腰梯形是轴对称图形.故答案为:轴【题目点拨】本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)73(1)0,1,1.【解题分析】(1)本题涉及零指数幂、负指数幂、特殊角的三角函数值,在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果(1)先求出每个不等式的解集,再求出不等式组的解集,最后再找出整数解即可解:(1)原式=1﹣,=7(1)()3145{513x xxx-≥---①>②,解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式组的解集是:﹣1<x≤1.故不等式组的整数解是:0,1,1.【题目点拨】此题考查零指数幂、负指数幂、特殊角的三角函数值,一元一次不等式组的整数解,掌握运算法则是解题关键20、(1)MN与AB的关系是:MN⊥AB,MN=12AB,(2)2,4;(2)①y=13x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,y p的取值范围是y p<﹣2或y p>2.【解题分析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y=13x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.【题目详解】(1)MN与AB的关系是:MN⊥AB,MN=12 AB,如图1,∵△AMB是等腰直角三角形,且N为AB的中点,∴MN⊥AB,MN=12 AB,故答案为MN⊥AB,MN=12 AB;(2)∵抛物线y =212x 对应的准蝶形必经过B (m ,m ), ∴m =12m 2, 解得:m =2或m =0(不合题意舍去), 当m =2则,2=12x 2, 解得:x =±2, 则AB =2+2=4;故答案为2,4;(2)①由已知,抛物线对称轴为:y 轴,∵抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ∴抛物线必过(2,0),代入y =ax 2﹣4a ﹣53(a >0), 得,9a ﹣4a ﹣53=0, 解得:a =13, ∴抛物线的解析式是:y =13x 2﹣2; ②由①知,如图2,y =13x2﹣2的对称轴上P (0,2),P (0,﹣2)时,∠APB 为直角, ∴在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,y p 的取值范围是y p <﹣2或y p >2.【题目点拨】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.21、(1)证明见解析;(2);【解题分析】(1)先利用切线的性质得出∠CAD+∠BAD=90°,再利用直径所对的圆周角是直角得出∠B+∠BAD=90°,从而可证明∠B=∠EAD,进而得出∠EAD=∠CAD,进而判断出△ADF≌△ADC,即可得出结论;(2)过点D作DG⊥AE,垂足为G.依据等腰三角形的性质可得到EG=AG=1,然后在Rt△GEG中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在Rt△ABD中,依据锐角三角函数的定义可求得AB的长,从而可求得⊙O 的半径的长.【题目详解】(1)∵AC 是⊙O 的切线,∴BA⊥AC,∴∠CAD+∠BAD=90°,∵AB 是⊙O 的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠CAD=∠B,∵DA=DE,∴∠EAD=∠E,又∵∠B=∠E,∴∠B=∠EAD,∴∠EAD=∠CAD,在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,∴△ADF≌△ADC,∴FD=CD.(2)如下图所示:过点D作DG⊥AE,垂足为G.∵DE=AE,DG⊥AE,∴EG=AG=AE=1.∵tan∠E=,∴=,即=,解得DG=1.∴ED==2. ∵∠B=∠E ,tan ∠E=,∴sin ∠B=,即,解得AB=.∴⊙O 的半径为.【题目点拨】本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质 和同角的余角相等判断角相等是解本题的关键.22、这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【解题分析】设动车组列车的平均速度为x 千米/小时,则高铁列车的平均速度为(x +99)千米/小时,根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x 的分式方程,解之经检验后即可得出结论.【题目详解】设动车组列车的平均速度为x 千米/小时,则高铁列车的平均速度为(x+99)千米/小时, 根据题意得:﹣=3, 解得:x 1=161,x 2=﹣264(不合题意,舍去),经检验,x=161是原方程的解,∴x+99=264,1320÷(x+99)=1.答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【题目点拨】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.23、a 2+2a ,2【解题分析】根据分式的减法和除法可以化简题目中的式子,然后根据a 2+2a−2=2,即可解答本题.【题目详解】 解:242a a a a ⎛⎫--÷ ⎪⎝⎭=2242a a a a -⋅- =2(2)(2)2a a a a a +-⋅- =a (a +2)=a 2+2a ,∵a 2+2a ﹣2=2,∴a 2+2a =2,∴原式=2.【题目点拨】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.24、22m +- ,当m=0时,原式=﹣1. 【解题分析】原式括号中两项通分,并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果.根据分数分母不为零的性质,m 不等于-1、2,将0m =代入原式即可解出答案.【题目详解】 解:原式2312(2)()111m m m m m --=-÷+++, 242(2)11m m m m --=÷++, (2)(2)112(2)m m m m m -+-+⋅+-, 22m +=-, ∵1m ≠-且2m ≠,∴当0m =时,原式1=﹣.【题目点拨】本题主要考查分数的性质、通分,四则运算法则以及倒数.25、(1)y=12x 1﹣4x+6;(1)D 点的坐标为(6,0);(3)存在.当点C 的坐标为(4,1)时,△CBD 的周长最小 【解题分析】(1)只需运用待定系数法就可求出二次函数的解析式;(1)只需运用配方法就可求出抛物线的顶点坐标,只需令y=0就可求出点D 的坐标;(3)连接CA ,由于BD 是定值,使得△CBD 的周长最小,只需CD+CB 最小,根据抛物线是轴对称图形可得CA=CD ,只需CA+CB 最小,根据“两点之间,线段最短”可得:当点A 、C 、B 三点共线时,CA+CB 最小,只需用待定系数法求出直线AB 的解析式,就可得到点C 的坐标.【题目详解】(1)把A (1,0),B (8,6)代入212y x bx c =++,得 14202164862b c b c ⎧⨯++=⎪⎪⎨⎪⨯++=⎪⎩ 解得:46b c =-⎧⎨=⎩∴二次函数的解析式为21462y x x =+﹣; (1)由2211464222y x x x =+=﹣(﹣)﹣,得 二次函数图象的顶点坐标为(4,﹣1).令y=0,得214602x x +=﹣, 解得:x 1=1,x 1=6,∴D 点的坐标为(6,0);(3)二次函数的对称轴上存在一点C ,使得CBD 的周长最小.连接CA ,如图,∵点C 在二次函数的对称轴x=4上,∴x C =4,CA=CD ,∴CBD 的周长=CD+CB+BD=CA+CB+BD ,根据“两点之间,线段最短”,可得当点A 、C 、B 三点共线时,CA+CB 最小,此时,由于BD 是定值,因此CBD 的周长最小.设直线AB 的解析式为y=mx+n ,把A (1,0)、B (8,6)代入y=mx+n ,得208m n m n +=⎧⎨+=⎩解得:12 mn=⎧⎨=-⎩∴直线AB的解析式为y=x﹣1.当x=4时,y=4﹣1=1,∴当二次函数的对称轴上点C的坐标为(4,1)时,CBD的周长最小.【题目点拨】本题考查了(1)二次函数综合题;(1)待定系数法求一次函数解析式;(3)二次函数的性质;(4)待定系数法求二次函数解析式;(5)线段的性质:(6)两点之间线段最短.26、(1)y B=-0.2x2+1.6x(2)一次函数,y A=0.4x(3)该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元【解题分析】(1)用待定系数法将坐标(2,2.4)(4,3.2)代入函数关系式y B=ax2+bx求解即可;(2)根据表格中对应的关系可以确定为一次函数,通过待定系数法求得函数表达式;(3)根据等量关系“总利润=投资A产品所获利润+投资B产品所获利润”列出函数关系式求得最大值【题目详解】解:(1)y B=-0.2x2+1.6x,(2)一次函数,y A=0.4x,(3)设投资B产品x万元,投资A产品(15-x)万元,投资两种产品共获利W万元,则W=(-0.2x2+1.6x)+0.4(15-x)=-0.2x2+1.2x+6=-0.2(x-3)2+7.8,∴当x=3时,W最大值=7.8,答:该企业投资A产品12万元,投资B产品3万元,可获得最大利润7.8万元.27、B 60【解题分析】分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF,则点F在线段BC的垂直平分线上,又由AC=AB,可得点A在线段BC的垂直平分线上,由AF垂直平分BC,即∠CQP=90,进而得出∠APC的度数.详解:(1)B,60;(2)补全图形如图所示;APC ∠的大小保持不变,理由如下:设AF 与BC 交于点Q∵直线CD 是等边ABC ∆的对称轴∴AE BE =,1302DCB ACD ACB ∠=∠=∠=︒ ∵ABE ∆经顺时针旋转后与BCF ∆重合∴ BE BF =,AE CF =∴BF CF =∴点F 在线段BC 的垂直平分线上∵AC AB =∴点A 在线段BC 的垂直平分线上∴AF 垂直平分BC ,即90CQP ∠=︒∴120CPA PCB CQP ∠=∠+∠=︒点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的.。
浙江省宁波市海曙区2024届中考三模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.把图中的五角星图案,绕着它的中心点O进行旋转,若旋转后与自身重合,则至少旋转()A.36°B.45°C.72°D.90°2.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是()A.向左平移1个单位B.向右平移3个单位C.向上平移3个单位D.向下平移1个单位3.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的()A.平均数B.中位数C.众数D.方差4.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为()A.4.67×107B.4.67×106C.46.7×105D.0.467×1075.函数y=ax2+1与ayx(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C. D.6.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是()A.B.C .D .7.下列各式中正确的是( ) A .=±3 B .=﹣3 C .=3 D .8.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π- B .2233π- C .433π- D .4233π- 9.已知二次函数y=x 2+bx ﹣9图象上A 、B 两点关于原点对称,若经过A 点的反比例函数的解析式是y=8x,则该二次函数的对称轴是直线( ) A .x=1 B .x=49C .x=﹣1D .x=﹣4910.化简的结果是( )A .﹣B .﹣C .﹣D .﹣二、填空题(共7小题,每小题3分,满分21分)11.一个不透明的袋子中装有6个球,其中2个红球、4个黑球,这些球除颜色外无其他差别.现从袋子中随机摸出一个球,则它是黑球的概率是______.12.如图,在△ABC 中,AB ≠AC .D ,E 分别为边AB ,AC 上的点.AC=3AD ,AB=3AE ,点F 为BC 边上一点,添加一个条件:______,可以使得△FDB 与△ADE 相似.(只需写出一个)13.函数2xy x=-中自变量x 的取值范围是_____;函数26y x =-x 的取值范围是______. 14.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数y=kx的图象上,若点A的坐标为(﹣2,﹣2),则k的值为_____.15.如图,一次函数y1=kx+b的图象与反比例函数y2=mx(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.16.可燃冰是一种新型能源,它的密度很小,31cm可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是__________.17.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)三、解答题(共7小题,满分69分)18.(10分)如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.用含m或n的代数式表示拼成矩形的周长;m=7,n=4,求拼成矩形的面积.19.(5分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.求证:△ABM∽△EFA;若AB=12,BM=5,求DE的长.20.(8分)(1)计算:﹣22+|12﹣4|+(13)-1+2tan60°(2)求不等式组620{21xx x-≥->的解集.21.(10分)为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放8240aa+辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.22.(10分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.23.(12分)先化简,再求值:22144(1)1a aa a a-+-÷--,其中a是方程a(a+1)=0的解.24.(14分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1)、(2,1).以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形;分别写出B、C两点的对应点B′、C′的坐标;如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】分析:五角星能被从中心发出的射线平分成相等的5部分,再由一个周角是360°即可求出最小的旋转角度.详解:五角星可以被中心发出的射线平分成5部分,那么最小的旋转角度为:360°÷5=72°.故选C.点睛:本题考查了旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.2、D【解题分析】A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;C.平移后,得y=x2+3,图象经过A点,故C不符合题意;D.平移后,得y=x2−1图象不经过A点,故D符合题意;故选D.3、B【解题分析】总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.【题目详解】要想知道自己是否入选,老师只需公布第五名的成绩,即中位数.故选B.4、B【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】将4670000用科学记数法表示为4.67×106,故选B.【题目点拨】本题考查了科学记数法—表示较大的数,解题的关键是掌握科学记数法的概念进行解答.5、B【解题分析】试题分析:分a>0和a<0两种情况讨论:当a>0时,y=ax2+1开口向上,顶点坐标为(0,1);ayx=位于第一、三象限,没有选项图象符合;当a<0时,y=ax2+1开口向下,顶点坐标为(0,1);ayx=位于第二、四象限,B选项图象符合.故选B.考点:1.二次函数和反比例函数的图象和性质;2.分类思想的应用.6、D【解题分析】分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于12两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意; 故选D.点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.7、D【解题分析】原式利用平方根、立方根定义计算即可求出值.【题目详解】解:A、原式=3,不符合题意;B、原式=|-3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2-=,符合题意,故选:D.【题目点拨】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.8、D【解题分析】连接OC,过点A作AD⊥CD于点D,四边形AOBC是菱形可知OA=AC=2,再由OA=OC可知△AOC是等边三角形,可得∠AOC=∠BOC=60°,故△ACO与△BOC为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×323S阴影=S扇形AOB﹣2S△AOC=21202360π⨯﹣2×12×2×3=43π﹣3.故选D.点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键. 9、D 【解题分析】 设A 点坐标为(a ,8a),则可求得B 点坐标,把两点坐标代入抛物线的解析式可得到关于a 和b 的方程组,可求得b 的值,则可求得二次函数的对称轴. 【题目详解】解:∵A 在反比例函数图象上,∴可设A 点坐标为(a ,8a). ∵A 、B 两点关于原点对称,∴B 点坐标为(﹣a ,﹣8a). 又∵A 、B 两点在二次函数图象上,∴代入二次函数解析式可得:228989a ab aa ab a ⎧+-=⎪⎪⎨⎪--=-⎪⎩,解得:389a b =⎧⎪⎨=⎪⎩或389a b =-⎧⎪⎨=⎪⎩,∴二次函数对称轴为直线x =﹣49. 故选D . 【题目点拨】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b 的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系. 10、C 【解题分析】 试题解析:原式=.故选C.考点:二次根式的乘除法.二、填空题(共7小题,每小题3分,满分21分) 11、23【解题分析】根据概率的概念直接求得.解:4÷6=23. 故答案为:23.【题目点拨】本题用到的知识点为:概率=所求情况数与总情况数之比. 12、//DF AC 或BFD A ∠=∠ 【解题分析】因为3AC AD =,3AB AE =,A A ∠=∠ ,所以ADE ∆ACB ~∆ ,欲使FDB ∆与ADE ∆相似,只需要FDB ∆与ACB ∆相似即可,则可以添加的条件有:∠A=∠BDF ,或者∠C=∠BDF,等等,答案不唯一.【方法点睛】在解决本题目,直接处理FDB ∆与ADE ∆,无从下手,没有公共边或者公共角,稍作转化,通过ADE ∆ACB ~∆,FDB ∆得与ACB ∆相似.这时,柳暗花明,迎刃而解.13、x≠2 x≥3 【解题分析】根据分式的意义和二次根式的意义,分别求解. 【题目详解】解:根据分式的意义得2-x≠0,解得x≠2; 根据二次根式的意义得2x-6≥0,解得x≥3. 故答案为: x≠2, x≥3. 【题目点拨】数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数为非负数. 14、1 【解题分析】试题分析:设点C 的坐标为(x ,y ),则B (-2,y )D (x ,-2),设BD 的函数解析式为y=mx ,则y=-2m ,x=-2m,∴k=xy=(-2m )·(-2m)=1. 考点:求反比例函数解析式. 15、-2<x<-0.5根据图象可直接得到y 1>y 2>0时x 的取值范围. 【题目详解】根据图象得:当y 1>y 2>0时,x 的取值范围是﹣2<x <﹣0.5, 故答案为﹣2<x <﹣0.5. 【题目点拨】本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键. 16、9.2×10﹣1. 【解题分析】根据科学记数法的正确表示为()10110na a ⨯≤<,由题意可得0.00092用科学记数法表示是9.2×10﹣1. 【题目详解】根据科学记数法的正确表示形式可得: 0.00092用科学记数法表示是9.2×10﹣1. 故答案为: 9.2×10﹣1. 【题目点拨】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式. 17、> 【解题分析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数; 接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目. 【题目详解】 甲组的平均数为:3626463+++++=4,S 甲2=16×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=73,乙组的平均数为:4353465+++++ =4,S 乙2=16×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=23,∵73>23, ∴S 甲2>S 乙2.故答案为:>.【题目点拨】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.三、解答题(共7小题,满分69分)18、(1)矩形的周长为4m;(2)矩形的面积为1.【解题分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【题目详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=1.【题目点拨】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.19、(1)见解析;(2)4.1【解题分析】试题分析:(1)由正方形的性质得出AB=AD,∠B=10°,AD∥BC,得出∠AMB=∠EAF,再由∠B=∠AFE,即可得出结论;(2)由勾股定理求出AM,得出AF,由△ABM∽△EFA得出比例式,求出AE,即可得出DE的长.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD,∠B=10°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=10°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=10°,AB=12,BM=5,∴,AD=12,∵F 是AM 的中点,∴AF=12AM=6.5, ∵△ABM ∽△EFA , ∴BM AM AF AE =, 即5136.5AE=, ∴AE=16.1,∴DE=AE-AD=4.1.考点:1.相似三角形的判定与性质;2.正方形的性质.20、(1)1;(2)-1≤x<1.【解题分析】试题分析:(1)、首先根据绝对值、幂、三角函数的计算法则得出各式的值,然后进行求和得出答案;(2)、分半求出每个不等式的解,然后得出不等式组的解.试题解析:解:(1)、4433=-+-+=原式(2)、6-2021x x x >⎧⎨≥-⎩①② 由①得:x<1,由②得:x≥-1,∴不等式的解集:-1≤x<1. 21、问题1:A 、B 两型自行车的单价分别是70元和80元;问题2:a 的值为1【解题分析】问题1:设A 型车的成本单价为x 元,则B 型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A 、B 两型自行车的单价分别是70元和80元;问题2:由题可得,1500a ×1000+12008240a a+×1000=10000, 解得a=1,经检验:a=1是分式方程的解,故a 的值为1.22、见解析试题分析:根据等边三角形的性质得出AC=BC ,∠B =∠ACB =60°,根据旋转的性质得出CD=CE ,∠DCE =60°,求出∠BCD =∠ACE ,根据SAS 推出△BCD ≌△ACE ,根据全等得出∠EAC =∠B =60°,求出∠EAC =∠ACB ,根据平行线的判定得出即可.试题解析:∵△ABC 是等边三角形,∴AC=BC ,∠B =∠ACB =60°,∵线段CD 绕点C 顺时针旋转60°得到CE ,∴CD=CE ,∠DCE =60°,∴∠DCE =∠ACB ,即∠BCD +∠DCA =∠DCA +∠ACE ,∴∠BCD =∠ACE ,在△BCD 与△ACE 中,BC AC BCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△ACE,∴∠EAC=∠B=60°,∴∠EAC=∠ACB,∴AE ∥BC.23、13【解题分析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解.【题目详解】解:原式=()()2a a 1a 11a 1a 2---⨯-- =a a 2- ∵a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0,∴a=-1,将a=-1代入a a 2-得, 原式=13本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.24、(1)画图见解析(2)B'(-6,2)、C'(-4,-2)(3) M'(-2x,-2y)【解题分析】解:(1)(2)以0点为位似中心在y轴的左侧将△OBC放大到两倍,则是对应点的坐标放大两倍,并将符号进行相应的改变,因为B(3,-1),则B’(-6,2) C(2,1),则C‘(-4,-2)(3)因为点M (x,y)在△OBC内部,则它的对应点M′的坐标是M的坐标乘以2,并改变符号,即M’(-2x,-2y)。
宁波九年级数学选拔试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > 0,b > 0,则下列哪个选项是正确的?A. a + b > 0B. a b > 0C. a × b > 0D. a ÷ b > 02. 已知x² 5x + 6 = 0,则 x 的取值为?A. 2 或 3B. -2 或 -3C. 1 或 6D. -1 或 -63. 若一个等腰三角形的底边长为 8cm,腰长为 5cm,则这个三角形的周长为?A. 18cmB. 20cmC. 22cmD. 24cm4. 下列哪个数是质数?A. 21B. 23C. 25D. 275. 已知一组数据的平均数为 10,则这组数据的中位数可能是?A. 5B. 10C. 15D. 20二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 一组数据的众数只有一个。
()3. 对角线互相垂直平分的四边形一定是菱形。
()4. 任何数乘以 0 等于 0。
()5. 若 a > b,则a² > b²。
()三、填空题(每题1分,共5分)1. 若一个正方形的边长为 a,则它的对角线长为 _______。
2. 若一个等差数列的首项为 1,公差为 2,则第 10 项的值为 _______。
3. 若一个圆的半径为 r,则它的面积为 _______。
4. 若一个数的算术平方根为 3,则这个数为 _______。
5. 若一个等比数列的首项为 2,公比为 3,则第 5 项的值为 _______。
四、简答题(每题2分,共10分)1. 简述平行四边形的性质。
2. 简述二次函数的定义。
3. 简述勾股定理的内容。
4. 简述概率的定义。
5. 简述因式分解的意义。
五、应用题(每题2分,共10分)1. 计算下列各式的值:(1)3² + 4²(2)(2 + 3)²(3)²² 2²(4)³² ³²(5)²² + ²²2. 解方程:x² 7x + 10 = 0。
浙江省宁波三校初中竞赛选拔模拟试卷2008.12 (本卷满分:150分测试时间:120分钟)一、填空题(每空4分,满分48分)1.因式分解34xx-=;2.a、b为实数,且满足b>a>0, abba422=+,则baba+-的值等于;3.观察下列各等式:2111211-=⨯,3121321-=⨯,4131431-=⨯,…根据你发现的规律,计算:()()=+-+⋯+⨯+⨯+⨯132311071741411nn______;(n为正整数)4.已知在坐标轴上有两点A(3,6),和B(2,-2),试在y轴上找一点P,使PA+PB最短,则点P的坐标为;5.观察分析下列数据,寻找规律:已知一列实数1、5、3、13……,则第n个数是__________;6.已知等式:()()bxaxxx++=++352,则=+abba____________;7.如图,在ABCRt∆中,D为斜边AB上一点,AD=5,BD=4,四边形CEDF为正方形,则图中阴影部分的面积为;8.如图,在22⨯的正方形格纸中,有一个以格点为顶点的ABC∆,请你找出格纸中所有与ABC∆成中心对称且也以格点为顶点的三角形共有个;(不包括ABC∆本身)学校姓名考试编号第7题图第8题图9.已知不等式组⎩⎨⎧<-≥+0123a x x 无解,则a 的取值范围是 ;10.以O 为圆心的两个同心圆的半径分别为()223+cm 和()223-cm ,⊙O 1与这两个圆都相切,则⊙O 1的半径是 ; 11.若不论x 取何值时,分式3212-+-m x x 总有意义,则m 的取值范围是_________; 12.如图所示,在ABC Rt ∆中,已知︒=∠90B ,6=AB ,8=BC ,F E D ,,分别是三边CA BC AB ,,上的点,则FD EF DE ++的最小值为 。
二.选择题(每小题4分,满分24分)13.若(x -1)2的算术平方根是x -1,则x 的取值范围是( ) A .x <1B .x≤1C .x >1D .x≥114.已知0<⋅n m 且1101m n n m ->->>++,那么n ,m ,1n ,1n m+的大小关系是( )A .11m n n n m <<+<B .11m n n m n <+<<C .11n m n m n +<<<D .11m n n m n<+<<15.下列五个命题:(1)若直角三角形的两条边长为3和4,则第三边长是5; (2)()2a =a (a ≥0); (3)若点P (a ,b )在第三象限,则点P '(-a ,-b +1)在第一象限;(4)顺次连结对角线互相垂直且相等的四边形各边中点的四边形是正方形; (5)两边及第三边上的中线对应相等的两个三角形全等。
其中正确命题的个数是( )A .2个B .3个C .4个D .5个16.已知△ABC 中,E 、F 分别是AB 、AC 上的点,且EF ∥BC ,在BC 边上取一点D ,连结DE 、DF ,要使以C 、F 、D 为顶点的三角形与△AEF 相似,还需添加一个条件,现给出下列结论 ①DF ∥AB ②DE ∥AC ③CD=EF ④∠CFD=∠AEF ⑤∠CFD=∠AFE ,其中能满足的条件有( )A .2个B .3个C .4个D .5个17.已知抛物线c bx x y ++=2的系数满足52=-c b ,则这条抛物线一定经过点( )A .)2,1(--B . )1,2(--C .)1,2(-D .)1,2(- 18.如图,甲、乙两动点分别从正方形ABCD 的顶点A 、C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的3倍,则它们第2008次相遇在边( ) A .AD 上 B .DC 上 C .AB 上 D .BC 上三.解答题(19~21每题满分8分;22~24每题满分10分;25、26每题满分12分)19.某仪器厂计划制造A 、B 两种型号的仪器共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于制造仪器,两种型号的制造成本和售价如下表:(1)该厂对这两种型号仪器有哪几种制造方案? (2)该厂应该选用哪种方案制造可获得利润最大?(3)根据市场调查,每套B 型仪器的售价不会改变,每套A 型仪器的售价将会提高a 万元(a >0),且所制造的两种仪器可全部售出,问该厂又将如何制造才能获得最大利润?20.齐王和他的大臣田忌均有上、中、下马各一匹,每场比赛三匹马各出场一次,共赛三次,以胜的次数多者为赢.已知田忌的马较齐王的马略有逊色,即:田忌的上马不敌齐王的上马,但胜过齐王的中马;田忌的中马不敌齐王的中马,但胜过齐王的下马; 田忌的下马不敌齐王的下马. 田忌在按图1的方法屡赛屡败后,接受了孙膑的建议,用图2的方法,结果田忌两胜一负,赢了比赛.假如在不知道齐王出马顺序的情况下: (1)请按如图的形式,列出所有其他可能的情况; (2)田忌能赢得比赛的概率是___________.21.已知直线11:n n l y x n n+=-+(n 是正整数)。
当n=1时,直线1:21l y x =-+与 x 轴和y 轴分别交于点1A 和1B ,设△11OB A (O 是平面直角坐标系的原点)的面积为1s ;当n=2时,直线231:22l y x =-+与x 轴和y 轴分别交于点2A 和2B ,设△22OB A 的面积为2s ,…,依此类推,直线n l 与x 轴和y 轴分别交于点n n A B 和,设n n A OB ∆的面积为n S . (1)求△11OB A 的面积1s ;(2)求2008321s s s s +⋅⋅⋅⋅⋅⋅+++的值.图1图222.(1)如图A 、B 两个化工厂位于一段直线形河堤的同侧,A 工厂至河堤的距离AC 为1km ,B 工厂到河堤的距离BD 为2km ,经测量河堤上C 、D 两地间的距离为6km.现准备在河堤边修建一个污水处理厂,为使A 、B 两厂到污水处理厂的排污管道最短,污水处理厂应建在距C 地多远的地方?(2)通过以上解答,充分展开联想,运用数形结合思想构造图形,尝试解决下面问题:若4)9(122+-++=x x y ,当x 为何值时,y 的值最小,并求出这个最小值。
23.如图:菱形ABCD 是由两个正三角形拼成的,点P 在△ABD 内任一点,现把△BPD 绕点B 旋转到△BQC 的位置。
则(1)当四边形BPDQ 是平行四边形时,求∠BPD ; (2)当△PQD 是等腰直角三角形时,求∠BPD ; (3)若∠APB=1000,且△PQD 是等腰三角形时,求∠BPD 。
AC BD学校 姓名 考试编号24.如图,在直角梯形ABCD中。
AB∥CD,AB=12cm,CD=6cm,DA=3cm,∠D=∠A=90°,点P 沿AB边从点A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动,如果P、Q同时出发,用t表示移动的时间(单位:秒),并且0≤t≤3.(1)证明不论t取何值,四边形QAPC的面积是一个定值,并且求出这个定值;(2)请问是否存在这样的t,使得∠PCQ=90°,若存在,求出t的值,若不存在,请说明理由;(3)请你探究△PBC能否构成直角三角形?若能,求出t的值;若不能,请说明理由.25.如图,直线3+-=x y 与x 轴,y 轴分别相交于点B 、C ,经过B 、C 两点的抛物线cbx ax y ++=2与x 轴的另一交点为A ,顶点为P ,且对称轴是直线2=x . (1)求该抛物线的函数表达式;(2)连结AC .请问在x 轴上是否存在点Q ,使得以点P ,B ,Q 为顶点的三角形与ABC ∆相似,若存在,请求出点Q 的坐标;若不存在,请说明理由.26.如图,已知等腰AOB Rt ∆,其中090=∠AOB ,2==OB OA ,E 、F 为斜边AB 上的两个动点(E 比F 更靠近A ),满足045=∠EOF 。
(1)求证:BEO ∆∆∽AOF (2)求BE AF ⨯的值.(3)作OA EM ⊥于M ,OB FN ⊥于N ,求ON OM ⨯的值 .(4)求线段EF 长的最小值.(提示:必要时可以参考以下公式:当0>x ,0>y 时,()xyy x y x 22+-=+或2112+⎪⎭⎫ ⎝⎛-=+x x x x ).答案与评分标准一.填空题1.()()22-+-x x x ;2.33-;3. 13+n n ;4.(0,56); 5. 34-n6.319;7.10; 8. 2; 9. 1-≤a ;10. 5或62; 11.m>4; 12.548; 二.选择题13. D 14.D 15. C 16. A 17. B 18. C 三.解答题19.解:(1) 设A 种型号的仪器造x 套,则B 种型号的仪器造(80-x)套, 由题意得:()20968028252090≤-+≤x x解之得:5048≤≤x所以 x=48、49、50 三种方案:即:A 型48套,B 型32套;A 型49套,B 型31套;A 型50套,B 型30套。
………………3分 (2)该厂制造利润W (万元)由题意知:()x x x W -=-+=4808065 所以当x=48时, 432=最大W (万元), 即:A 型48套,B 型32套获得利润最大;…………………………5分 (3)由题意知()()()x a x x a W 14808065-+=-++=所以:① 当10<<a 时,x=48,W 最大,即A 型48套,B 型32套;…………………6分 ② 当1=a 时,01=-a 三种制造方案获得利润相等;…………………………7分 ③ 当1>a 时,x=50,W 最大,即A 型50套,B 型30套…………………………8分20.解:(1)其他可能的对阵形式有: 田上 王上 王中 王下 王下 田中 对 王下 王上 王上 王中 田下 王中 王下 王中 王上(每写对一个得1分)…………………………(4分)(2)根据对对阵形式的分析可以知道:天忌赢得比赛的概率为61………………8分 21.解:(1)当n=1时,直线1:21l y x =-+与 x 轴和y 轴的交点是1A (21,0)和1B (0,1) ----------------------1分所以1OA =21,1OB =1, ∴1s =41----------------------------------------3分 (2) 当n=2时,直线231:22l y x =-+与 x 轴和y 轴的交点是2A (31,0)和2B (0,21)所以2OA =31,2OB =21,∴2s =213121⨯⨯=)3121(21-⨯ -----------------------4分当n=3时,直线3134:33+-=x y l 与 x 轴和y 轴的交点是3A (41,0)和3B (0,31)所以3OA =41,3OB =31,∴3s =314121⨯⨯=)4131(21- -----------------------5分依次类推,n s ==)111(21+-n n ----------------------------6分 ∴2008321s s s s +⋅⋅⋅⋅⋅⋅+++=)20091200814131312121(21-+⋅⋅⋅⋅⋅⋅+-+-+---7分 ∴2008321s s s s +⋅⋅⋅⋅⋅⋅+++=)200912121(21-+ =2009200821⨯ =20091004 ---------------------8分 22.解:(1)延长AC 到E ,使CE=AC ,连结EB 交CD 于点P ,则点P 就是污水处理厂所在的地方(画出图形)。